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This paper reports investigations on the effect of antenna mutual coupling on performance of training-based Multiple-Input
Multiple-Output (MIMO) channel estimation. The influence of mutual coupling is assessed for two training-based channel
estimation methods, Scaled Least Square (SLS) and Minimum Mean Square Error (MMSE). It is shown that the accuracy of
MIMO channel estimation is governed by the sum of eigenvalues of channel correlation matrix which in turn is influenced by
the mutual coupling in transmitting and receiving array antennas. A water-filling-based procedure is proposed to optimize the
training signal transmission to minimize the MIMO channel estimation errors.

1. Introduction

In recent years, there has been a growing interest in
multiple-input multiple-output (MIMO) wireless commu-
nication systems as they can significantly increase data
throughput (capacity) without the need for extra operational
frequency bandwidth. In order to explore the advantages of
MIMO technique, precise channel state information (CSI)
is required at the receiver. The reason is that without CSI,
decoding of the received signal is impossible [1–5]. In
turn, an inaccurate CSI leads to an increased bit error rate
(BER) that translates into a degraded capacity of the system
[6–8].

Obtaining accurate CSI can be accomplished using
suitable channel estimation methods. The methods based
on the use of training sequences, known as the training-
based channel estimation methods, are the most popular. In
[9, 10], several training-based methods including the least
square (LS) method, the scaled least square (SLS) method
and the minimum mean square error (MMSE) method have
been investigated. It has been shown that the accuracy of
these training-based estimation methods is influenced by
the transmit signal power to noise ratio (SPNR) in the
training mode, and the number of antenna elements at the
transmitter and receiver. In particular, it has been pointed

out that when the transmitted SPNR and the number of
antenna elements are fixed, the SLS and MMSE methods
offer better performance than the LS method. This can be
explained by the fact that the SLS and MMSE methods utilize
the channel correlation in the estimator cost function while
the LS estimator does not take into account the channel
properties.

It is worthwhile to note that the channel properties
are governed by a signal propagation environment, which
in turn affects the spatial correlation (SC) observed at
the input/output ports of the MIMO system. The spatial
correlation is dependent on an antenna configuration and
a distribution of scattering objects that are present in the
path between transmitter and receiver. In particular it is
influenced by the finite antenna spacing in array antennas.
This finite antenna spacing is also responsible for mutual
coupling which adversely affects signal power transmission
and reception. The mutual coupling effect is especially
pronounced in tightly spaced arrays. Because there is a
considerable demand for compact size Mobile Station (MS)
terminals, the effect of mutual coupling cannot be neglected
and thus has to be taken into account while assessing the
MIMO link performance. The problem of mutual coupling
in MIMO systems for the case of peer-to-peer communica-
tion has been addressed via simulations and measurements
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in [10–18]. It has been shown that the mutual coupling may
improve the channel capacity when the spacing of antenna
elements in the array is between 0.2λ to 0.4λ (where λ is the
carrier wavelength) [15–18] .

In this paper, the focus is on the effect of mutual coupling
on MIMO channel estimation. The problem of mutual
coupling and its effect on the MMSE method of channel
estimation have been investigated in [19, 20]. The presented
results have been limited to simulations providing general
trends without any further mathematical insight.

In this paper, we present a mathematical analysis explain-
ing the mutual coupling effects on the SLS and MMSE
methods for channel estimation. It is shown that for a
fixed transmit SPNR and for a given number of transceiver
antenna elements the accuracy of SLS and MMSE methods is
determined by the sum of eigenvalues of channel correlation
matrix characterizing the signal propagation conditions.
The presence of mutual coupling in array antennas causes
variations of the sum of these eigenvalues, which in turn
affects the accuracy of estimation. In order to reduce the
channel estimation errors, a water-filling based optimization
method is proposed to find an optimal training matrix
minimizing the channel estimation errors when the MIMO
system operates under the condition in which the mutual
coupling cannot be neglected.

The rest of the paper is organized as follows. In Section 2,
a MIMO system model is introduced. Also, LS, SLS, and
MMSE channel estimation methods are described followed
by an analysis of channel estimation accuracy. Section 3
describes the method for modeling mutual coupling effects.
Section 4 presents the optimization of a training signal
transmission when the MIMO system operates under mutual
coupling conditions. Section 5 describes computer simula-
tion results. Section 6 concludes the paper.

2. System Description and Training-Based
MIMO Channel Estimation

In this paper, a narrow band block fading MIMO channel
is assumed. The number of transmitting and receiving
antennas is denoted as Mt and Mr , respectively. The channel
is described by theMr×Mt complex matrix H with entries hi j
representing the response between the ith receiving antenna
and the jth transmitting antenna.

2.1. Training-Based MIMO Channel Estimation. For the
training-based channel estimation method, the relationship
between the received signal and the training sequence is given
by

Y = HP +V , (1)

where P represents the Mt × L complex training matrix and
L is the length of the training sequence.

The goal is to estimate the complex channel matrix H
from the knowledge of Y and P. The transmitted power

over L time slots in the training mode is constrained by the
following expression

‖P‖2
F = P, (2)

where P is a given constant representing the total power and
‖ · ‖2

F stands for the Frobenius norm.
The training matrices are assumed to be orthogonal [9,

10] and the transmitted signal power to noise ratio (SPNR)
in the training mode is set to ρ equal to P/σ2

n .
Using the LS method, the estimated channel matrix can

be written as [19]

̂HLS = YP†, (3)

where {·}† stands for the pseudo-inverse operation and P† =
PH(PPH)

−1
. The mean square error (MSE) of the estimated

channel matrix in the LS method is given as

MSELS = E
{
∥

∥

∥H − ̂HLS

∥

∥

∥

2

F

}

subject to‖P‖2
F = P. (4)

According to [9, 10], the optimal training sequence satisfying
(4) is given as

PPH = P

Mt
I. (5)

The minimum value of MSE for the LS method is

MSELS = M2
t Mr

ρ
. (6)

From (6) one can see that the optimal performance of the LS
estimator is influenced by the number of antenna elements at
the transmitter and the receiver. However, the channel matrix
has no effect on the minimum value of MSE.

The SLS method further reduces the estimation error that
is obtained in the LS method. The improvement is given by a
scaling factor γ which uses the channel estimator as given by

̂HSLS = γ ̂HLS. (7)

The resulting estimation error is given by (8)

MSESLS = E
{
∥

∥

∥H − γ ̂HLS

∥

∥

∥

2

F

}

subject to ‖P‖2
F = P. (8)

Expression (8) can be rewritten as (9)

MSESLS = E
{

tr
{

(H − γ ̂HLS)
H(

H − γ ̂HLS

)

}}

= E
{

(1− γ)2 tr{RH} + γ2MSELS

}

= E

{

(MSELS + tr{RH})
(

γ − tr{RH}
MSELS + tr{RH}

)2

+
MSELS tr{RH}

MSELS + tr{RH}
}

,

(9)
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in which RH is the channel correlation matrix defined as
RH = {HHH}.

From (9), it is apparent that in order to minimize the
MSE of SLS, an optimal value of γ as given by (10) has to
be chosen

γ = tr{RH}
MSELS + tr{RH} . (10)

The minimized value of MSE can be written as [9, 10]

MSESLS = E
{

MSELS tr{RH}
MSELS + tr{RH}

}

< MSELS. (11)

By substituting (6) into (11), the minimum value of MSE is
expressed as,

MSESLS = E

{

1
1/ tr{RH} + ρ/M2

t Mr

}

. (12)

The estimated channel matrix as given by SLS method can be
obtained using (7) and is given as

̂HSLS = γ ̂HLS

=
{

tr{RH}
MSELS + tr{RH}YpP

†
}

.
(13)

In practice, RH can be obtained using the channel matrix
estimated by the LS method. Therefore

tr
{

̂RH
}

= tr
{

̂HH
LS
̂HLS

}

. (14)

In the MMSE method, the estimated channel matrix is given
as [21],

̂HMMSE = Yψ. (15)

The objective is to find the optimal ψ to minimize the MSE.
This task can be expressed as

ψopt = arg min
∥

∥

∥H − ̂HMMSE

∥

∥

∥

2

F

= arg
ψ

min
∥

∥H − Yψ∥∥2
F .

(16)

The mean-square error (MSE) for the MMSE method is
given as,

MSEMMSE = E
{
∥

∥H − Yψ∥∥2
F

}

,

= E
{

tr{RH} − tr
{

RHPψ
}− tr

{

ψHPHRH
}

+ tr
{

ψH
(

PHRHP + σ2
nMrI

)

ψ
}}

.

(17)

The optimal ψ minimizing MSE satisfies (18),

∂MSEMMSE

∂ψ
= 0. (18)

Thus the optimal ψ can be represented by

ψopt = (PHRHP + σ2
nMrI)

−1
PHRH. (19)

The estimated channel matrix can be derived as,

̂HMMSE = Yψopt = Y(PHRHP + σ2
nMrI)

−1
PHRH. (20)

By defining the channel estimation error as

e = H − ̂HMMSE, (21)

the MSE for the MMSE method can be expressed as

MSEMMSE = E{tr{RE}}

= E
{

tr
{

E
{

eeH
}}}

= E

{

tr

{

(R−1
H +

1
σ2
nMr

PPH)
−1
}}

= E
{

tr
{

(

Λ−1 + σ−2
n M−1

r QHPPHQ
)−1

}}

.

(22)

In (22), Q is a unitary eigenvector matrix of RH and Λ is
a diagonal matrix with eigenvalues of RH , which are given
through the eigenvalue decomposition of RH as

RH = HHH = QΛQH. (23)

Here, to construct the channel matrix H, the Kronecker
channel model is postulated [22, 23]. In this model, the
transmitter and receiver correlation matrices are assumed to
be separable and the channel matrix is represented as:

H = R1/2
R GHR

1/2
T , (24)

where GH is the matrix including identical independent
distributed (i.i.d) Gaussian entries with a zero mean and
a unit variance, and RR and RT are the spatial correlation
matrices at the receiver and transmitter, respectively.

The superiority of SLS and MMSE methods over LS
method is due to the fact that SLS and MMSE methods
utilize information of the channel correlation RH . Here, it
is assumed that the RH is perfectly obtained before channel
estimation.

In further considerations, it is assumed that the trans-
mitting and receiving array antennas are formed by vertically
polarized wire dipole antennas which are surrounded by
scattering objects. Assuming that these scattering objects are
uniformly distributed within circles surrounding the array
antennas, the spatial correlation matrix elements can be
obtained using the Clark’s model as given by.

ρR(T)
i, j = J0

(

κdi, j
)

. (25)

where J0 stands for the zero-order Bessel function, κ is a wave
number and di j is the distance between elements i and j of



4 International Journal of Antennas and Propagation

the uniform array antenna. The correlation matrices RT and
RR can be generated using (25) as

RR(T) =

⎡

⎢

⎢

⎢

⎣

ρR(T)
1,1 · · · ρR(T)

1,Mr(t)

...
. . .

...

ρR(T)
Mr(t), j · · · ρR(T)

Mr(t),Mr(t)

⎤

⎥

⎥

⎥

⎦

. (26)

Having determined RT and RR, the channel matrix can be
calculated using (24).

2.2. Estimation Accuracy Analysis. By taking into account
expression (23), the minimized MSE of the SLS method (12)
can be rewritten as

MSESLS = E

⎧

⎨

⎩

[

(tr{RH})−1 +
ρ

M2
t Mr

]−1
⎫

⎬

⎭

= E

⎧

⎨

⎩
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(tr{Λ})−1 +
ρ

M2
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]−1
⎫

⎬

⎭

= E

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎣

⎛

⎝

n
∑

i

λi

⎞

⎠

−1

+
ρ

M2
t Mr

⎤

⎥

⎦

−1
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(27)

where n = min(Mr ,Mt) and λi is the ith eigenvalue of the
channel correlation matrix RH . ρ is the transmit SPNR and
equal to P/σ2

n . P is the transmitted training sequence total
power. If power P and the number of transmit and receive
antennas are fixed then the following relationship holds

MSESLS = E

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎣

⎛

⎝

n
∑

i

λi

⎞

⎠

−1

+
ρ

M2
t Mr

⎤

⎥

⎦

−1
⎫

⎪

⎪

⎬

⎪

⎪

⎭

< E

⎧

⎨

⎩

n
∑

i

λi

⎫

⎬

⎭

. (28)

It can be seen from (28) that MSESLS is smaller than the
sum of the eigenvalues of the channel correlation matrix
RH . Therefore, the sum of the eigenvalues of the channel
correlation matrix RH is the upper bound of MSE in the SLS
method.

As observed from expression (28), MSE decreases when
the sum of eignvalues of RH decreases. The same expression
shows that the MSE in the SLS method is influenced by
the number of antenna elements at the transmitter and
receiver. When the number of antenna elements on the
two sides of communication link drops to one, the system
becomes the conventional SISO system. In this case, the
channel estimation using a fixed-length training sequence
becomes most accurate. This confirms the expectation that it
is easier to estimate the SISO channel which is characterized
by a single transfer coefficient between single transmitting
and receiving antennas than the MIMO channel which is
described by a matrix of transfer coefficients between many
antenna elements.

The derived expression also shows that when the number
of transmit and receive antennas and the total transmitted
power P is fixed, MSE can be minimized by minimizing the
sum of eigenvalues of RH .

The expression (22) for the minimized value of MSE can
be rewritten using the orthogonality properties of a training
sequence P and the unitary matrix Q, as shown by

MSEMMSE

= E
{

tr
{

(Λ−1 + ρM−1
r I)

−1
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(

λ−1
i + ρM−1

r
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⎭

.

(29)

Similar derivations for MSE apply for the MMSE method.
By using the steps analogous to those used for the SLS
method, the MSE upper bound for the MMSE method can
be expressed as

MSEMMSE = E

⎧

⎨

⎩

n
∑

i

(

λ−1
i + ρM−1

r

)−1
<

n
∑

i

λi

⎫

⎬

⎭

. (30)

The expression (30) shows that similarly as in the SLS
method, a smaller sum of eigenvalues of the channel
correlation matrix RH leads to a smaller estimation error in
the MMSE method. Similarly as in the SLS method, the MSE
of MMSE is influenced by the number of transmitting and
receiving antennas.

Through the above mathematical analysis, one can see
that if the total transmitted power P as well as the number
of antenna elements at the transmitter and the receiver is
fixed, the accuracy of the training-based MIMO channel
estimation is governed by the sum of eigenvalues of the
channel correlation matrix RH . The smaller is the sum, the
more accurate channel estimation is achieved.

Decreasing the sum of eigenvalues of channel correlation
is equivalent to decreasing the effective degree of freedom
(EDOF) of the MIMO channel [24]. This is caused by an
increased spatial correlation [25]. Hence, it is apparent that
an increased spatial correlation helps improving the channel
estimation accuracy.

3. Mutual Coupling Effects

Mutual coupling in an array of collinear side-by-side wire
dipoles can be modeled using the approach described in [26].
Assuming the array is formed byMrt wire dipoles, the mutual
matrix can be calculated using the following relationship
with the impedance matrix

C = (ZA + ZT)
(

Z + ZTIMrt

)−1, (31)

where ZA is the element impedance in isolation, for example,
when the wire dipole is λ/2, its value is ZA = 73 + j42.5[Ω];
ZT is impedance of the receiver at each element chosen as
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the complex conjugate of ZA to obtain the impedance match.
The mutual impedance matrix Z is given by

Z =

⎡

⎢

⎢

⎢

⎢

⎣

ZA + ZT Z12 · · · Z1Mrt

Z21 ZA + ZT · · · Z2Mrt

...
...

. . .
...

ZMrt1 ZMrt2 · · · ZA + ZT

⎤

⎥

⎥

⎥

⎥

⎦

. (32)

Note that this expression provides the circuit representation
for the mutual coupling in array antennas. It is valid for
antennas operating in a single mode. Wire dipoles fall into
this category.

For a side-by-side array configuration of dipoles having
length l equal to 0.5λ, the expressions for {Zmn} can be
adapted from [18, 26] and are rewritten here as

Zmn

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

30[0.5772+ln(2κl)−Ci(2κl)]+ j[30Si(2κl)], m = n,

30[2Ci(u0)− Ci(u1)− Ci(u2)]

− j[30(2Si(u0)− Si(u1)− Si(u2))], m /=n,
(33)

where κ is the wave number equal to 2π/λ,

u0 = κdh,

u1 = κ
(√

dh
2 + l2 + l

)

,

u2 = κ
(√

dh
2 + l2 − l

)

,

(34)

dh is the horizontal distance between the two dipole antenna
elements. Ci(u) and Si(u) are the cosine and sine integrals,
respectively. They are given as,

Ci(u) =
∫ u

∞

(

cos(x)
x

)

dx,

Si(u) =
∫∞

0

(

sin(x)
x

)

dx.

(35)

Expressions (33) provide quite accurate values for {Zmn} for
the dipole spacing of not less than 0.15λ. If one wishes to
have a more accurate model for the mutual coupling effect,
the theory and expressions given in [27] are recommended.

Under the presence of mutual coupling, the channels
matrix H appearing in expressions (23) and (24) has to be
replaced by the new channel matrix H′ = CRHCT which
takes into account the mutual coupling. By taking into
account the mutual coupling, the expression for the channel
matrix (24) is modified to

Hmc = CRR
1/2
R GHR

1/2
T CT. (36)

The new transmit and receiving correlation matrices can be
obtained by introducing,

RRmu = CRR
1/2
R ,

RTmu = R1/2
T CT.

(37)
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Figure 1: Mutual coupling effects on the sum of channel correlation
matrix eigenvalues. (a) Sum of eigenvalues versus transmitter
antenna element spacing; (b) Sum of eigenvalues versus receiver
antenna element spacing.

By using (23) and (24) they can be rewritten as (39) and (38),
respectively

Hmc = RRmuGHRTmc, (38)

Rmc
H = HH

mcHmc = QmcΛmcQ
H
mc. (39)

Under the mutual coupling conditions, (22) is changed
to

MSEmc
MMSE = E

{

tr
{

(

Λ−1
mc + σ−2

n M−1
r QH

mcPP
HQmc

)−1
}}

.

(40)

The inclusion of mutual coupling affects the matrix Λ.
Therefore, the sum of the eigenvalues of channel correlation
matrix is changed accordingly. Figure 1 shows the simulation
results illustrating the effect of mutual coupling on the sum
of the eigenvalues. For this simulation, a uniform linear array
with 4 antenna elements is assumed at both transmitter and
receiver sides. The elements are wire dipoles having length
of 0.5λ. The following normalization of channel matrix H is
applied ‖H‖2

F =MrMt, where ‖ · ‖2
F is the Frobenius norm.

In Figure 1(a), the antenna element spacing at the
receiver is fixed to 1λ while the spacing at the transmitter
varies from 0.1λ to 1λ. In Figure 1(b), the spacing at the
transmitter is fixed to 1.λ while the spacing at the receiver
varies from 0.1λ to 1λ. From both Figures 1(a) and 1(b), one
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can see that when the antenna elements spacing is between
0.1λ to 0.5λ, there is an apparent difference between the sum
of channel correlation eigenvalues with and without taking
mutual coupling effects into account. The ones with mutual
coupling effects are higher than the ones without. When the
spacing is increased and exceeds 0.5λ, the difference becomes
smaller and the blue and red curves overlap. As a result, at the
antenna spacing between 0.1λ and 0.5λ, the mutual coupling
increases the sum of eigenvalues of the channel correlation
matrix. This is because within this spacing range the mutual
coupling decreases the spatial correlation level. Therefore the
channel estimation accuracy is adversely affected.

4. MMSE Method Performance Optimization
Under Mutual Coupling Conditions

In order to optimize the performance of MMSE training-
based estimation method, we have to find the optimal
training matrix. This optimization problem can be expressed
as,

MSEmc
MMSE = min

‖P‖2
F=P

tr
{

(Λ−1
mc + σ−2

n M−1
r QH

mcPP
HQmc)

−1
}

,

(41)

Popt = arg
p

min tr
{

(

Λ−1
mc + σ−2

n M−1
r QH

mcPP
HQmc

)−1
}

,

subject to ‖P‖2
F = P.

(42)

By denoting the combined training matrix as

P = σ−1
n M−1/2

r QH
mcP, (43)

expression (41) can be rewritten as

MSEmc
MMSE = min

‖P‖2
F=P

tr
{

(

Λ−1
mc + P P

H
)−1

}

. (44)

Based on properties of the unitary eigenvector matrix Qmc,

P P
H

has a diagonal structure as given by

P P
H =

⎡

⎢

⎢

⎢

⎢

⎣

p2
1

p2
2

. . .
p2
Mt

⎤

⎥

⎥

⎥

⎥

⎦

, (45)

where p2
i is the power of each combined training symbol.

When no optimization is applied, the transmit power is
equally distributed into the training symbols as given by

p2
i = σ−2

n M−1
r M−1

t P. (46)

Next (44) can be rewritten as,

MSEmc
MMSE = min

‖P‖2
F=P

Mt
∑

i=1

(λ−1
i,mc + p2

i )
−1

assume Mt =Mr ,

(47)

in which λi,mc is the ith eigenvalue in Λ.
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Figure 2: MMSE and SLS MSE performance versus transmitter
antenna element spacing.

To minimize MSE in (44), a water-filling based algorithm
can be applied to optimize the power allocation to training
symbols. The symbols in the optimal training matrix are
given as [9, 10]

pi =
√

(μ− λ−1
i,mc)

+
, (48)

in which (x)+ = max(x, 0) and μ needs to be found to satisfy
‖P‖2

F = P.
Finally, the optimal training matrix is given as

Popt = σ−2
n M−1

r Qmc([μI −Λ−1
mc]

+
)

1/2
. (49)

5. Simulation Results

This section reports the computer simulations aiming at the
assessment of effects of mutual coupling on the training-
based MIMO channel estimation methods. In the under-
taken investigation, the transmitter and receiver are assumed
to be equipped with 4-element uniform array antennas. The
elements are wire dipoles having length of 0.5λ. The antenna
element spacing at the receiver is fixed to 1λwhile the spacing
at the transmitter varies from 0.1λ to 1λ. Equations (38)
and (24) are used to construct the MIMO channel with and
without taking mutual coupling effects into account. The
transmit SPNR is fixed at 25 dB.

Figure 2 presents the MSE performance of MMSE and
SLS methods versus transmitter antenna elements spacing. In
this figure, the blue and red curves indicate with and without
taking into account mutual coupling cases, respectively. For
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Figure 3: MMSE MSE versus transmitter and receiver antenna
element spacing taking MC into account.

both MMSE and SLS methods, an apparent difference occurs
between the MSE performance with and without taking
mutual coupling into account when the transmitter antenna
element spacing varies from 0.1λ to 0.5λ. The MSE obtained
for taking into account mutual coupling effects is worse
than the MSE obtained without taking into account the
mutual coupling. When the antenna element spacing is larger
than 0.5λ, the difference disappears. This finding agrees with
the prediction based on the sum of channel correlation
eigenvalues that shows that for the spacing between 0.1λ
to 0.5λ the mutual coupling undermines the estimation
accuracy.

Further investigations are done by varying the antenna
element spacing in both transmitter and receiver arrays. The
results are given in Figures 3, 4, 5 and 6. In each figure, there
are two subfigures showing three dimensional (3D) and two
dimensional (2D) views. Figure 3 shows the MMSE MSE
performance under the impact of mutual coupling. One can
see that the worst estimation error occurs when the antenna
element spacing in the transmitter and receiver is between
0.3λ and 0.4λ. Figure 3 shows the MMSE MSE performance
without taking into account the mutual coupling. When the
antenna element spacing in the transmitter and receiver is
between 0.5λ and 0.7λ, MSE achieves its best performance.
Similar results are also obtained for the SLS method, as
presented in Figures 5 and 6.

Figure 7 shows the results for the MMSE estimation
method when the training sequence is optimized. For
comparison purposes, the results for nonoptimized MMSE
are also plotted. One can see that with the optimized training
symbols, the channel estimation error decreases. However,
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Figure 4: MMSE MSE versus transmitter and receiver antenna
element spacing without taking MC into account.

the optimization does not narrow the difference between the
two sets of results with and without taking mutual coupling
into account when the antenna element spacing is between
0.1λ to 1.0λ. In the case of a compact multiple antenna
mobile communication device whose antenna element spac-
ing is between 0.1λ to 0.5λ, the antenna decoupling is a
required to achieve a better channel estimation performance.

Figure 8 further demonstrates the advantages of the
optimization method. For the undertaken simulation, the
antenna element spacing at the receiver is fixed to 1λ while
the spacing at the transmitter is made 0.2λ. From the pre-
sented results one can see that the performances of MSE with
optimization are always better than the ones without it. At a
lower transmit SPNR, the results for MSE with optimization
are significantly improved. The results also show that when
the transmitter antenna element spacing is within 0.1λ to
0.5λ, the MSE taking into account mutual coupling is worse
than the one without taking into account mutual coupling.
This is irrespective from whether optimization is used or not.

6. Conclusion

This paper has reported the investigations on the training-
based channel estimation methods for a narrowband MIMO
system, in which both the transmitter and the receiver are
equipped with multiple element antennas in the form of
wire dipoles. The investigations have included the effect of
mutual coupling in addition to spatial correlation that is
present at the transmitting and receiving array antennas due
to surrounding scattering objects. The spatial correlation
has been taken into account using the Kronecker model, in
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Figure 5: SLS MSE versus transmitter and receiver antenna element
spacing taking MC into account.
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Figure 6: SLS MSE versus transmitter and receiver antenna element
spacing without taking MC into account.

which correlation matrices for the transmitting and receiving
sides are separated. The mutual coupling has been included
using the closed-form expressions for impedance matrices of
parallel side-to-side wire dipoles. Two cases of nonoptimized
and optimized training sequence transmission schemes have
been considered. The computer simulations have been
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Figure 7: Optimized and nonoptimized MMSE MSE versus
transmitter antenna element spacing with and without taking
mutual coupling effects into account.
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carried out for the case when the transmitting and receiving
sides are equipped with four-element uniform half-wave
dipole arrays surrounded by circles of uniformly distributed
scattering objects. The obtained simulation results have
shown that at the antenna (dipole) spacing between 0.1λ to
0.5λ, mutual coupling decreases the spatial correlation and
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adversely affects the channel estimation offered by MMSE
and SLS methods. When the spacing is larger than 0.5λ
the MSE is slightly different when the mutual coupling
is taken into account or neglected. Next considerations
have focused on optimization of training signals for MIMO
channel estimation. When the optimization of the training
sequence is applied, an improvement in MSE has been
demonstrated irrespectively whether the mutual coupling
effects are neglected or taken into account. This improve-
ment is more significant at a lower transmit SPNR. The
difference in MSE for with and without taking into account
mutual coupling effects is unchanged when the antenna
element spacing is within 0.1λ to 0.5λ. This means that
for a compact multiple antenna mobile communication
device the improvement of MSE requires decoupling of the
antenna elements to achieve a better estimation of MIMO
channel.
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