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In this paper, we consider the dynamical description of a pendulummodel consists of a heavy solid connection to a nonelastic string
which suspended on an elliptic path in a vertical plane. We suppose that the dimensions of the solid are large enough to the length
of the suspended string, in contrast to previous works which considered that the dimensions of the body are sufficiently small to the
length of the string. According to this new assumption, we define a large parameter ε and apply Lagrange’s equation to construct the
equations of motion for this case in terms of this large parameter. These equations give a quasi-linear system of second order with
two degrees of freedom. The obtained system will be solved in terms of the generalized coordinates θ and φ using the large
parameter procedure. This procedure has an advantage over the other methods because it solves the problem in a new domain
when fails all other methods for solving the problem in such a domain under these conditions. It is one of the most important
applications, when we study the slow spin motion of a rigid body in a Newtonian field of force under an external moment or
the rotational motion of a heavy solid in a uniform gravity field or the gyroscopic motions with a sufficiently small angular
velocity component about the major or the minor axis of the ellipsoid of inertia. There are many applications of this technique
in aerospace science, satellites, navigations, antennas, and solar collectors. This technique is also useful in all perturbed problems
in physics and mechanics, for example, the perturbed pendulum motions and the perturbed mechanical systems. The results of
this paper also are useful in moving bridges and the swings. For satisfying the validation of the obtained solutions, we consider
numerical considerations by one of the numerical methods and compare the obtained analytical and numerical solutions.

1. Introduction

The pendulum models have attracted scientists and
researchers with many descriptions of motions and their
analysis as important examples in physics and theoretical
and applied dynamics. The most important pendulum
motions come from the moving of a heavy particle suspended
a light rod which is jointed pivotally at a point on the X-axis
which rotates by an angular velocity ω about the horizontal
fixed axis. In [1], the authors presented the elastic pendulum
problem. They derived the equations of motion and gave
real-life examples for elastic pendulum motions. Equilibrium
states and trivial cases are studied. In [2], a harmonically
excited spring pendulum motion with 3 degrees of freedom
is considered. The authors were connected to a direct trans-

versely tuned absorber. The authors used the multiple scale
method for solving the system of equations of motion. They
used the phase-plane method for applying the stability of
the motion. They studied the influence of the tuned absorber
and the parameters of the model on the change of the motion
numerically. In [3], the elastic pendulum with resonance
appearing at cubic approximation in the Lagrangian function
was investigated. The modulated equations of motion were
obtained. The authors used the Hamiltonian reduction tech-
nique to describe the dynamical behavior of this system. In
[4], the approximated damping elastic pendulum model
was considered. The authors derived the governing equation
with six degrees of freedom. The natural frequencies are
derived from the linearized system of equations. The stability
diagrams are used to show regular periodicity. Due to
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damping, there are unstable waves (irregular) depending on
the damping level and the amount of parametric excitation
for the natural frequency. The article [5] presented the rota-
tional motion in a plane for a mathematical pendulum when
its axis swinging vertically and horizontally, so the axis path
is an ellipse nears a circle. The study is considered as precise
spin solutions for a circular axis path case with zero gravity.
The existence of the stability conditions of these solutions is
considered. Supposing that the excitation amplitude is not
small and the coaxial path contains a small ellipsoid. Approx-
imated solutions for both high and low linear damping are
found. A comparison of approximate and digital solutions
was performed for different values of the damping factor.
In [6], the governing system of two generalized coordinates
of a nonlinear dynamic model with the spring pendulum
damped motion is considered in presence of the flow of
an inviscid fluid. The motion control system is attained by
applying the equations of Lagrange. The multiple scale pro-
cedure is used to solve the equations of motion for this sys-
tem. The authors obtained approximated solutions of the
2nd approximation. The resonance cases and the steady-
state ones are studied. The stability procedure is given using
the phase plane diagrams. In [7], the dynamics of nonlinear
multiple degrees of freedom for a spring pendulum model
moving in an auxiliary circle for the elliptical path are con-
sidered. Using the method of multiple scales, the authors
solved the system of equations of motion. The temporal
history of the solutions obtained and the phase plane pro-
jections are given to explain the dynamic behavior of the
mentioned system.

In [8] the authors studied the elastic pendulum motion
with resonance appearing at the third order in its Lagrange’s
approximation. The governing dynamical equations of
motion and Hamiltonian reduction are obtained for this sys-
tem. In [9], the frequencies of the elastic pendulum oscilla-
tions are in the ratio 2 : 1 which is named the pulsation. The
dynamics of this problem and the modulation equations for
the resonant motion with small amplitudes are obtained as
3 wave equations. The complete solutions are obtained by
using the Hamiltonian reduction. The phases, amplitudes,
and precession angles of the solutions are given. The validity
of the obtained results is given in high accuracy by numerical
experiments. The article [10] presented a dynamical behavior
of an elastic pendulum model. The author assumed that the
pendulum moves in a vertical plane which rotates with uni-
form angular velocity ω. The author used Lagrange’s equa-
tions to find the differential equations of motion. The
obtained equations are reduced to a nonlinear system of 2nd

order which is solved by the small parameter perturbed tech-
nique. Numerical considerations are obtained through the
Matlab program. These considerations show the validity of
both analytical and numerical solutions.

In [11], the nonlinear multiple degrees of freedom
response is investigated for a normal dynamic system given
by the spring pendulum moving in an elliptical path. The
Lagrange equations were used to construct the governing sys-
tem of equations for the motion. The multiple scale method
is used for deriving the approximated solutions of the reso-
nance system. The steady-state motions and the stabilities

of the solutions are considered. The authors in [12] studied
the problem of spring pendulum dynamics in the presence
of pendulum absorber using the theory of nonlinear normal
patterns and asymptotic numerical procedures. They investi-
gated the dynamics of the pendulum for both low and high
vibration amplitudes. Using different methods, the stability
of the vibration patterns is analyzed. The authors in [13]
studied the relative periodic solutions for an elastic pendu-
lum motion of a rigid body with a corresponding suspended
point moves on the auxiliary sphere of an ellipse. The
Lagrange’s function is applied to construct the equations of
motion which are solved using the perturbed small parame-
ter method. Numerical considerations are given using the
Runge-Kutta method to prove the validity of the solutions.

In this article, we consider a heavy solid suspended in a
string which suspended to an ellipse in a uniform vertical
plane. The equations of motion for this mathematical pendu-
lum in terms of the two degrees of freedom are obtained, and
a large parameter depends on the model properties is
assumed. By the definition of the large parameter, the
approximated periodic solutions are obtained using the large
parameter perturbed procedure. The accuracy of these solu-
tions is investigated through a numerical technique and com-
puterized programs.

2. Formulation of the Problem

Let us consider the coordinate system OXY on which X-axis
is horizontal and Y-axis is downward vertical. A rigid body
with mass m is suspended by a string of length ℓ which
attached to a point O1 moving on the ellipse. The point Q
on the circle, which has the same center of the ellipse and
its radius equals b such that the line AQ is normal to the larg-
est axis of the ellipse, is called the corresponding point of the
point O1 on that circle. When the point O1 moves on the
ellipse, the point Qmoves on the circle with a constant angu-
lar velocity ω (i.e., the angle between the line OQ and the Y
-axis must depend on time t only). Let us assume that the
angle between the straight line passing through O2 and the
center of gravity C of the body and the vertical will be denoted
by φ, the angle of deflection of the string from the vertical
straight line passing through O1 will be denoted by θ, and
the distance between the center of gravity of the body and
the point O2 will be denoted by h (i.e., h =O2C) (see
Figure 1). Choosing the body system of coordinatesC ξηζ such
that C η passes through O2, C ξ is orthogonal to C η and lying
in the plane OXY , while C ζ is orthogonal to OXY .

We assume that the axes of the system C ξηζ represent
the principal axes of inertia of the body. The principal
moment of inertia concerning C ξ will be denoted by J . The
motion of the body starts at the instant t = 0 in the anticlock-
wise direction; after time t, the point O1 is expected to make
an angle θ = ωt with the vertical axis.

The coordinate of the point C is (xc, yc) which takes the
form

xc = a sin ωt + ℓ sin θ + h sin φ,
yc = b cos ωt + ℓ cos θ + h cos φ:

ð1Þ
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The kinetic energy of the system is

T = 1
2m _x2c + _y2c
� �

+ 1
2 J _φ

2, ð2Þ

which takes the form

L = 1
2m
h
ℓ2 _θ

2 + h2 _φ2 + ω2 a2 cos2ωt + b2 sin2ωt
� �

+ 2ℓh _θ _φ cos θ − φð Þ + 2ℓω _θ a cos ωt cos θð
+ b sin ωt sin θÞ + 2hω _φ a cos φ cos ωtð
+ b sin φ sin ωtÞ

i
+ 1
2 J _φ

2:

ð3Þ

The potential energy of the system can be expressed as
follows:

π = −mg ℓ cos θ + h cos φ½ �: ð4Þ

The Lagrangian of the system is [14]

L = T − π: ð5Þ

It can be written as follows:

L = 1
2m
h
ℓ2 _θ

2 + h2 _φ2 + ω2 a2 cos2ωt + b2 sin2ωt
� �

+ 2ℓh _θ _φ cos θ − φð Þ + 2ℓω _θ a cos ωt cos θð
+ b sin ωt sin θÞ + 2hω _φ a cos φ cos ωtð
+ b sin φ sin ωtÞ

i
+ 1
2 J _φ

2 +mg ℓ cos θ + h cos φð Þ
ð6Þ

Let us define the following parameters.

ε = h
ℓ
≻ ≻1,

εδ = a
ℓ
,

εσ = b
ℓ
,

ð7Þ

where δ = a/h, σ = b/h, and ε is a large parameter.
We introduce the variables

Φ = ε−1φ = ℓ
h

� �
φ, Θ = ε−1θ = ℓ

h

� �
θ, τ = ωt, ð8Þ

so that d/dt = ωðd/dτÞ and d/dτ = ð′Þ.
The new Lagrangian function of the system can be writ-

ten as follows:

L
∗
= 1
2m
h
ω2ℓ2ε−2θ′2 + ω2h2ε−2φ′2 + ω2 a2 cos2τ + b2 sin2τ

� �

+ 2ω2ℓhε−2θ′φ′ cos ε−1θ cos ε−1φ + sin ε−1θ sin ε−1φ
� �

+ 2ℓε−1ω2θ′ a cos τ cos ε−1θ + b sin τ sin ε−1θ
� �

+ 2hε−1ω2φ′ a cos τ cos ε−1φ + b sin τ sin ε−1φ
� �i

+ 1
2 Jε

−2ω2φ′2 +mg ℓ cos θ + h cos ε−1φ
� �

:

ð9Þ

For a small value of ε−1θ, ε−1φ, we can expand the sines
and cosines in the form of power series expansions to obtain

L
∗
= 1
2mω2

(
ℓ2ε−2θ′2 + h2ε−2φ′2 + a2 cos2τ + b2 sin2τ

+ 2ℓhε−2θ′φ′
"

1 − ε−2θ2

2

 !
1 − ε−2φ2

2

� �

+ ε−1θ −
ε−3θ3

6

 !
ε−1φ −

ε−3φ3

6

� �#
+ 2ℓε−1θ′

� a cos τ 1 − ε−2θ2

2

 !
+ b sin τ ε−1θ −

ε−3θ3

6

 !" #

+ 2hε−1φ′
�
a cos τ 1 − ε−2φ2

2

� �

+ b sin τ ε−1φ −
ε−3φ3

6

� ��)
+ 1
2 Jε

−2ω2φ′2

+mg ℓ 1 − ε−2θ2

2

 !
+ h 1 − ε−2φ2

2

� �" #
:

ð10Þ
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Figure 1: The pendulum model.
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3. Equations of Motion

According to Lagrange’s equations [15],

d
dτ

∂L∗

∂qi′

 !
−
∂L∗

∂qi
= 0, i = 1, 2ð Þ, ð11Þ

where qi are the generalized coordinates and qi ′ are the gen-
eralized velocities, and we take the coordinates q1 = θ and
q2 = φ.

Introducing the parameters

ω2
n =

g
ℓω2 ,

γ = ℓ2

h2 + J/mð Þ ,

Ω2 = gh

h2 + J/mð Þ ,

ð12Þ

where g is the acceleration of gravity; the system of differen-
tial equations of motion can be written as follows:

θ″ + ω2
nθ = δ sin τ − ε−1 θ″ + θσ cos τ

� 	

−
1
2 ε

−2θ2δ sin τ + ε−3
 
1
2φ

″θ2 + φ″
2 φ2

− θφφ″ − φ′2θ + φ′2φ + θ3

6 σ cos τ
!
,

ð13Þ

φ″ +Ω2φ = ε−1 γ −θ″ + δ sin τ
� 	

+ ε−3γ

� 1
2 θ

″θ2

+ 1
2 θ

″φ2 − θ″θφ + θ′2θ − θ′2φ

−
δ

2 φ
2 sin τ − σφ cos τ

�
:

ð14Þ

The expressions Θ and Φ are expected to be functions of
a large parameter ε and dependent on the values of γ, ωn, and
Ω.

4. Approximate Periodic Solutions

Now, to find the perturbed solution of the nonresonance case
up to the second approximation, we apply the method of the
large parameter [16] in the following form.

Θ τ, εð Þ = θ0 τð Þ + ε−1 θ1 τð Þ + ε−2θ2 τð Þ+⋯,
Φ τ, εð Þ = φ0 τð Þ + ε−1φ1 τð Þ + ε−2φ2 τð Þ+⋯:

ð15Þ

Substituting from (15) into (13) and (14) and equating to
zero each coefficient of ð1/εÞ, we find that

Coefficient of ð1/εÞ0

θ0″ + ω2
nθ0 = δ sin τ,

φ0″ +Ω2φ0 = 0:
ð16Þ

Coefficient of ð1/εÞ

θ1″ + ω2
nθ1 = −φ0″ − θ0σ cos τ,

φ1″ +Ω2φ1 = γ δ sin τ − θ0″
� 	

:
ð17Þ

Coefficient of ð1/εÞ2

θ2″ + ω2
nθ2 = −φ1″ − θ1σ cos τ − 1

2 δθ
2
0 sin τ,

φ2″ +Ω2φ2 = −γθ1″:
ð18Þ

Coefficient of ð1/εÞ3

θ3″ + ω2
nθ3 = −φ2″ − θ2σ cos τ + δθ20θ1 sin τ

−
1
2φ0″θ20 −

1
2φ0″φ2

0 + θ0φ0φ0″

+ φ′20θ0 − φ′20φ0 −
θ30
6 σ cos τ,

ð19Þ

φ3″ +Ω2φ3 = γ

�
−θ2″ +

1
2 θ0

″θ20 +
1
2 θ0

″φ2
0 − θ0″θ0φ0 + θ′20θ0

− θ′20φ0 −
δ

2 φ
2
0 sin τ − σφ0 cos τ

�
:

ð20Þ

Making use of the equations (15)-(20), the required peri-
odic solutions take the form

Θ τ, εð Þ = δ

ω2
n − 1ð Þ sin τ + ε−1

"
Ω2A

ω2
n −Ω2� � cos Ωτ

+ Ω2B

ω2
n −Ω2� � sin Ωτ −

σδ

2 ω2
n − 1ð Þ ω2

n − 4ð Þ sin 2τ
#

+ ε−2
"

γδω2
n

ω2
n − 1ð Þ2 Ω2 − 1

� � sin τ

−
Ω2σA

2 ω2
n −Ω2� �

ω2
n − 1 +Ωð Þ2� � cos 1 +Ωð Þτ

−
Ω2σA cos Ω − 1ð Þτ

2 ω2
n −Ω2� �

ω2
n − Ω − 1ð Þ2� �

−
Ω2Bσ sin Ω + 1ð Þτ

2 ω2
n −Ω2� �

ω2
n − Ω + 1ð Þ2� �
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−
Ω2Bσ sin Ω − 1ð Þτ

2 ω2
n −Ω2� �

ω2
n − Ω − 1ð Þ2� �

+ σ2δ cos τ
4 ω2

n − 1ð Þ2 ω2
n − 4ð Þ

−
σ2δ cos 3 τ

4 ω2
n − 1ð Þ ω2

n − 4ð Þ ω2
n − 9ð Þ −

3δ3 sin τ

8 ω2
n − 1ð Þ3

+ δ3 sin 3τ
8 ω2

n − 1ð Þ ω2
n − 9ð Þ

#
,

ð21Þ

Φ τ, εð Þ = A cos Ωτ + B sin Ωτ

+ ε−1
γδω2

n

Ω2 − 1
� �

ω2
n − 1ð Þ sin τ

− ε−2
2γσδ sin 2τ

ω2
n − 1ð Þ ω2

n − 4ð Þ Ω2 − 4
� � :

ð22Þ

Neglecting the secular terms [17] in the formulas (21)
and (22), the constants A and B will vanish; then,

Θ τ, εð Þ = δ

ω2
n − 1 sin τ −

ε−1σδ sin 2τ
2 ω2

n − 1ð Þ ω2
n − 4ð Þ

+ ε−2
"

γ δ ω2
n

ω2
n − 1ð Þ2 Ω2 − 1

� � sin τ

+ σ2δ cos τ
4 ω2

n − 1ð Þ2 ω2
n − 4ð Þ

−
σ2δ cos 3τ

4 ω2
n − 1ð Þ2 ω2

n − 4ð Þ ω2
n − 9ð Þ

−
3δ3

8 ω2
n − 1ð Þ3

sin τ

+ δ3

8 ω2
n − 1ð Þ2 ω2

n − 9ð Þ
sin 3τ

#
+⋯,

Φ τ, εð Þ = ε−1
γδω2

n sin τ

ω2
n − 1ð Þ Ω2 − 1

� �

− ε−2
2γσδ sin 2τ

ω2
n − 1ð Þ ω2

n − 4ð Þ Ω2 − 4
� �+⋯:

ð23Þ

5. Discussion of the Results

In this subsection, we give a parametric analysis of the
obtained results for the behavior of the obtained analytical
solutions Θ and Φ as functions dependent on the time τ,
the valuesγ, ωn, Ω, δ , and σ, and the large parameter ε;
that is,

Θ =Θ τ, γ, ωn,Ω, δ, σ, εð Þ,
Φ =Φ τ, γ, ωn,Ω, δ, σ, εð Þ:

ð24Þ

We note that the domain of the obtained solutions
under the assumed conditions is as follows:

Θ =Θ τ, γ⟶ 0, ωn ⟶∞,Ω⟶ 0, δ⟶ 0, σ⟶ 0, ε⟶∞ð Þ,
Φ =Φ τ, γ⟶ 0, ωn ⟶∞,Ω⟶ 0, δ⟶ 0, σ⟶ 0, ε⟶∞ð Þ,

ð25Þ

while the domain of the previous corresponding cases is as
follows:

Θ =Θ τ, γ⟶∞, ωn ⟶ 0,Ω⟶∞, δ⟶∞, σ⟶∞, ε⟶ 0ð Þ,
Φ =Φ τ, γ⟶∞, ωn ⟶ 0,Ω⟶∞, δ⟶∞, σ⟶∞, ε⟶ 0ð Þ:

ð26Þ

This means that the obtained solutions are treated in a
new domain which is considered as a complement space
for the previous work domains.

In what follow, we study the validity of both analytical
and numerical solutions. Using one of the numerical
methods, we obtain numerical solutions and give more anal-
ysis of the results. The graphical representations for both
solutions are obtained through computer programming.
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6. Computerized Data

This section is devoted to ascertaining the accuracy of the
solutions being considered in Sections 3 and 4. Computer
programs are developed for the representation of the
obtained analytical solutions θ and φ and their derivatives
in a definite period. On the other hand, the fourth-order
Runge-Kutta method [18] is applied to solve the autonomous
system (13) and (14) for obtaining the numerical solutions
and their derivatives and investigating their graphical repre-
sentations. The characteristic curves for both the analytical
and numerical solutions and their derivatives appear in
Figures 2–5. From Figures 2 and 3, we deduce that when h

increases, the number of the waves and their amplitudes of
the solutions φ and φ′ decrease and vice versa, while from
Figures 4 and 5, we deduce that when h increases, the number
of the waves is the same as the solutions θ and θ′ but their
amplitudes decrease and vice versa. The phasing diagram
procedures [19] for the stability of the solutions are given
in Figures 6–11. From these figures, we deduce that the solu-
tions and their derivatives are stable but their amplitudes
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decrease with increasing h. In all stability figures, the curves
take the cardioid form except Figure 9. We deduce from
Figures 2–5 that the analytical and numerical solutions are
in full agreement, and Figures 6–11 show that the stability
diagrams are largely identical. That is, the numerical results
are largely correspondence with the analytical ones which

prove the validation of both solutions and the used
techniques.

7. Conclusion

This motion is very important as a mathematical pendulum
model for many problems in fluid materials and gas transla-
tion in big and small tanks and is considered as a generaliza-
tion for the problem studied in [11]. The description of the
motion of this pendulum model is given. The equations of
motion are obtained in terms of two degrees of freedom.
New conditions for the motion are considered when the
length of the string and radii of the ellipse are sufficiently
small comparing to the dimensions of the solid body. A large
parameter ε is constructed such that ε = h/ℓ. Using the large
parameter technique, we solve this problem in terms of two
degrees of freedom θ and φ. The large parameter procedure
gives us the chance to study the motion in new conditions
and a new domain of the solutions. The obtained analytical
solutions are represented graphically through a computer
program. On the other hand, the fourth-order Runge-Kutta
numerical technique is used to show the validity of the solu-
tions. The obtained phasing diagrams prove full agreement of
the obtained analytical and numerical solutions. We deduce
also that the change of the parameters of the solid body
affects the behavior of the obtained solutions. For example,
the increase in h for the solutions of φ and φ′ gives a decrease
in the number and amplitude of the waves and vice versa,
while the increase of h for the solutions θ and θ′ gives a
decrease in the amplitudes of these solutions with the same
number of the waves. When h→∞, we have a straightened
wave of the motion and the number of the waves is infinite.

Data Availability

Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.

Conflicts of Interest

The author declares that he has no competing interests.

References

[1] L. N. Hand and J. D. Finch, Analytical Mechanics, Cambridge
University Press, 2008.

[2] M. Eissa and M. Sayed, “Vibration reduction of a three DOF
non-linear spring pendulum,” Communications in Nonlinear
Science and Numerical Simulation, vol. 13, no. 2, pp. 465–
488, 2008.

[3] D. D. Holm and P. Lynch, “Stepwise precession of the resonant
swinging spring,” SIAM Journal on Applied Dynamical Sys-
tems, vol. 1, no. 1, pp. 44–64, 2002.

[4] J. Orszaghova, H. Wolgamot, S. Draper, R. Eatock Taylor,
P. H. Taylor, and A. Rafiee, “Transverse motion instability of
a submerged moored buoy,” Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, vol. 475,
no. 2221, article 20180459, 2019.

–10 –5 0 5 10

h = 50

–15

–10

–5

0

5

10

15
φ′

φ

Figure 9: The analytical and numerical stabilities φ′ against φ at h
= 50.

–0.25

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

–0.2 –0.1 0 0.1 0.2

φ′

h = 200

φ

Figure 10: The analytical and numerical stabilities φ′ against φ at
h = 200.

–0.1

–0.08

–0.06

–0.04

–0.02

0.02

0.04

0.06
φ′

φ

h = 400

0
–0.1 –0.05 0 0.05 0.1

Figure 11: The analytical and numerical stabilities φ′ against φ at
h = 400.

7International Journal of Aerospace Engineering



[5] O. Anton, “On rotational solutions for elliptically excited pen-
dulum,” Physics Letters A, vol. 375, no. 25, pp. 2524–2530,
2011.

[6] M. A. Bek, T. S. Amer, M. A. Sirwah, J. Awrejcewicz, and A. A.
Arab, “The vibrational motion of a spring pendulum in a fluid
flow,” Results in Physics, vol. 19, p. 103465, 2020.

[7] T. S. Amer, M. A. Bek, and M. K. Abouhmr, “On the vibra-
tional analysis for the motion of a harmonically damped rigid
body pendulum,” Nonlinear Dynamics, vol. 91, no. 4,
pp. 2485–2502, 2018.

[8] J. Walker, Principles of Physics, Wiley, Hoboken, N.J., 9th edi-
tion, 2011.

[9] P. Lynch and C. Houghton, “Pulsation and precession of the
resonant swinging spring,” Physica D: Nonlinear Phenomena,
vol. 190, no. 1-2, pp. 38–62, 2004.

[10] T. S. Amer, “The dynamical behavior of a rigid body relative
equilibrium position,” Advances in Mathematical Physics,
vol. 2017, Article ID 8070525, 13 pages, 2017.

[11] T. S. Amer, M. A. Bek, and I. S. Hamada, “On the motion of
harmonically excited spring pendulum in elliptic path near
resonances,” Advances in Mathematical Physics, vol. 2016,
Article ID 8734360, 15 pages, 2016.

[12] A. A. Klimenko, Y. V. Mikhlin, and J. Awrejcewicz, “Nonlinear
normal modes in pendulum systems,” Nonlinear Dynamics,
vol. 70, no. 1, pp. 797–813, 2012.

[13] A. I. Ismail, “Relative periodic motion of a rigid body pendu-
lum on an ellipse,” Journal of Aerospace Engineering, vol. 22,
no. 1, pp. 67–77, 2009.

[14] R. Starosta, G. Sypniewska-Kaminska, and J. Awrejcewicz,
“Asymptotic analysis of kinematically excited dynamical sys-
tems near resonances,” Nonlinear Dynamics, vol. 68, no. 4,
pp. 459–469, 2012.

[15] M. Eissa, M. Kamel, and A. T. El-Sayed, “Vibration reduction
of multi-parametric excited spring pendulum via a transver-
sally tuned absorber,” Nonlinear Dynamics, vol. 61, no. 1-2,
pp. 109–121, 2010.

[16] A. I. Ismail, “Solving a problem of rotary motion for a heavy
solid using the large parameter method,” Advances in Astron-
omy, vol. 2020, Article ID 2764867, 7 pages, 2020.

[17] T. S. Amer and M. A. Bek, “Chaotic responses of a harmoni-
cally excited spring pendulum moving in circular path,” Non-
linear Analysis. Real-World Applications, vol. 10, no. 5,
pp. 3196–3202, 2009.

[18] V. Ruas, Numerical Methods for Partial Differential Equations:
An Introduction, Jhon Wiley & Sons Ltd, 2016.

[19] http://ddebiftool.sourceforge.net/demos/neuron/html/
demo1_psol.html.

8 International Journal of Aerospace Engineering

http://ddebiftool.sourceforge.net/demos/neuron/html/demo1_psol.html
http://ddebiftool.sourceforge.net/demos/neuron/html/demo1_psol.html

	Treating the Solid Pendulum Motion by the Large Parameter Procedure
	1. Introduction
	2. Formulation of the Problem
	3. Equations of Motion
	4. Approximate Periodic Solutions
	5. Discussion of the Results
	6. Computerized Data
	7. Conclusion
	Data Availability
	Conflicts of Interest

