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γ-Secretase cleaves the carboxyl-terminal fragment (βCTF) of APP not only in the middle of the transmembrane domain (γ-
cleavage), but also at sites close to the membrane/cytoplasm boundary (ε-cleavage), to produce the amyloid β protein (Aβ) and
the APP intracellular domain (AICD), respectively. The AICD49–99 and AICD50–99 species were identified as counterparts of
the long Aβ species Aβ48 and Aβ49, respectively. We found that Aβ40 and AICD50–99 were the predominant species in cells
expressing wild-type APP and presenilin, whereas the production of Aβ42 and AICD49–99 was enhanced in cells expressing
familial Alzheimer’s disease mutants of APP and presenilin. These long Aβ species were identified in cell lysates and mouse brain
extracts, which suggests that ε-cleavage is the first cleavage of βCTF to produce Aβ by γ-secretase. Here, we review the progress of
research on the mechanism underlying the proteolysis of the APP transmembrane domain based on tri- and tetrapeptide release.

1. Introduction

The amyloid precursor protein (APP) is a type I membrane
protein. After ectodomain shedding by β-secretase, the
carboxyl-terminal fragment (βCTF) of APP becomes a direct
substrate of γ-secretase and is processed into the amyloid
β protein (Aβ) and the APP intracellular domain (AICD)
[1–5]. γ-secretase is an enigmatic protease composed of
presenilin 1/2, nicastrin, Aph-1, and Pen-2 that catalyzes
proteolysis in the hydrophobic environment of the lipid
bilayer [6–15]. Currently, over 50 molecules are reported
as γ-secretase substrates, which reflects the physiological
importance of this enzyme [16]. For instance, the Notch
receptor on the plasma membrane is cleaved by γ-secretase
upon ligand binding and the liberated Notch intracellular
domain (NICD) translocates into the nucleus and activates
the expression of transcription factors to suppress neu-
ronal differentiation [17, 18]. This indicates that inhibition
of γ-secretase for suppression of Aβ production causes

harmful side effects. To avoid this risk in anti-Alzheimer’s
disease (AD) therapeutics, it is very important to elucidate
the molecular mechanism underlying γ-secretase-dependent
proteolysis. Recently, it was revealed that γ-secretase forms a
hydrophilic pore and three water-accessible cavities [19–23].
Here, we review the progress of research on the mechanism
underlying the proteolysis of the transmembrane domain of
βCTF.

2. Discovery of ε-Cleavage during
APP Processing

After the β-secretase-dependent cleavage of APP, the ecto-
domain of APP is released into the extracellular space and
βCTF (as a stub in the lipid bilayer) is the direct substrate of
γ-secretase [2, 3, 24]. βCTF is composed of 99 amino acids
and is eventually processed into the 38–43-residue-long Aβ,
suggesting that the counterparts of those Aβ species should
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Figure 1: βCTF is cleaved at the membrane-cytoplasm boundary and not in the middle of the transmembrane domain (ε-cleavage), to
release the AICD49–99 and AICD50–99 species. The production of AICD species was inhibited in the presence of a γ-secretase inhibitor.
ε-Cleavage is analogous to the S3 cleavage of mNotch-1. Red indicates the transmembrane domain.

contain 56–61 residues [4, 25–29]. However, 50-51-residue-
long AICDs were identified that correspond to residues
49–99 and 50–99 of βCTF (AICD49–99 and AICD50–
99), instead of 56–61-residue-long species (Figure 1) [30–
32]. These AICD species were suppressed by L-685,458,
a transition state analogue γ-secretase inhibitor, and by
expression of a dominant-negative mutant of presenilin
(PS), suggesting that γ-secretase cleaves βCTF not only in
the middle of the transmembrane domain (γ-cleavage), but
also at sites close to the membrane/cytoplasm boundary (ε-
cleavage), releasing AICD49–99 and AICD50–99. ε-Cleavage
sites are analogues of the Notch S3 cleavage site, which is
located at the membrane, near the cytoplasm (Figure 1).
Cleavages similar to the APP ε-cleavage were identified in
other proteins, such as amyloid precursor-like protein 1
(APLP-1), APLP-2, CD44, Delta 1, E-cadherin, ErbB4, and
LRP1 [30, 33–37]. It is reasonable to consider that the water
molecules required for proteolysis have access to the catalytic
center of γ-secretase from the cytoplasm, rather than from
the extracellular space, and that ε-cleavage precedes γ-
cleavage during APP processing.

3. Relationship between γ- and ε-Cleavage

CHO cells expressing familial AD (FAD) mutants of PS or
APP increase production ratio of Aβ42 (Aβ43) to Aβ40

compared to cells expressing wild-type PS or APP these
longer Aβ species are more hydrophobic and more prone
to form neurotoxic aggregates. CHO cells expressing wild-
type PS preferentially release AICD50–99, whereas those
expressing a subset of familial AD (FAD) mutants of PS
or APP exhibit an increased proportion of AICD49–99
(Figure 2(a)) [42]. As those FAD mutations cause an increase
in the Aβ42/Aβ40 ratio, a potential link between γ- and
ε-cleavage was assumed. To test this, we expressed Aβ49
and Aβ48, which are potential counterparts of AICD50–
99 and AICD49–99, respectively, in CHO cells. The cells
expressing Aβ49 predominantly secreted Aβ40, whereas
those expressing Aβ48 exhibited a significantly increased
proportion of Aβ42/Aβ40 (Figure 2(b)) [43]. These data
indicate that ε-cleavage sites determine the preference for γ-
and ε-cleavage sites to produce Aβ40 and Aβ42. Long Aβ
species, Aβ49 and Aβ48, have been identified in cell lysates
and mouse brain extracts, which suggests that ε-cleavage
is the first cleavage of βCTF to produce Aβ by γ-secretase
[44]. On the other hand, ε-cleavage can be considered as
endopeptidase activity of γ-secretase. FAD mutations did
not consistently impair the endopeptidase activity on APP,
Notch, ErbB4, and N-Cadherin, but altered γ-cleavage of
APP, especially fourth cleavage to produce Aβ40 and Aβ38
from Aβ43 and Aβ42, respectively [45]. Such dissociation
between ε-cleavage and γ-cleavage was also proposed by
Quintero-Monzon et al. [46].
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Figure 2: Relationship between γ- and ε-cleavage. (a) Cells expressing wild-type PS or APP predominantly produce Aβ40 and AICD50–99,
while cells expressing a FAD mutant of PS or APP exhibited increased proportion of Aβ42 and AICD49–99. (b) Expression of Aβ49 results
in an increase in Aβ40/Aβ42 ratio, whereas expression of Aβ48 leads to opposite results. ↗ increase, ↘ decrease.
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Figure 3: Tri- and tetrapeptide release from βCTF. (a) Upon ε-cleavage at ε48, γ-secretase releases the VIT and TVI tripeptides successively
to produce Aβ42. (b) In the Aβ40 product line, after ε-cleavage at ε49, βCTF is converted into Aβ40 by releasing ITL, VIV, and IAT. Aβ42 is
a direct substrate during Aβ38 production, which acts by releasing the VVIA tetrapeptide.
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Figure 4: Multiple cleavage sites on the transmembrane domain of γ-secretase substrates. APP [38], APLP-1 [30, 39], mNotch-1 [40], and
CD44 [41].

4. Tripeptide Hypothesis

Treatment with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-
(S)-phenylglycine t-butyl ester (DAPT), a γ-secretase
inhibitor, suppressed extracellular Aβ in cells expressing APP
[47]. The levels of the intracellular Aβ40 and Aβ42 species
also decreased after DAPT treatment; however, intracellular
Aβ43 and Aβ46 increased in a dose-dependent manner [44,
48, 49]. Tryptophan substitutions of γ-cleavage site (41–43)
of APP attenuated Aβ secretion, but accumulated Aβ45
species in cell lysate. Tryptophan substitutions of ε-cleavage
site (48–52) of APP decreased Aβ production and allowed
longer AICD46–99 production. Tryptophan substitutions of
ξ-cleavage site (45–47) also suppressed Aβ production. These
substitution studies also implied successive cleavage of APP
for Aβ production after ε-cleavage [50].

γ-Secretase containing mature nicastrin accumulates in
lipid rafts, which indicates that active γ-secretase mainly
localizes to the lipid raft of cells [51]. Lipid rafts are an
ideal material to investigate Aβ production in the membrane
environment. Aβ46 was the dominant species in a lipid raft
isolated from DAPT-treated cells. Interestingly, incubating
this lipid raft in the absence of DAPT resulted in production
of Aβ40 and Aβ43, but not of Aβ42 [52]. These data suggest
that Aβ46 is mainly converted into Aβ40 by releasing VIV
and IAT tripeptides (successive tripeptide release, tripeptide
hypothesis; Aβ40 product line) (Figure 3(a)). On the other
hand, CHO cells expressing an FAD mutant of presenilin 2
exhibited a decrease in intracellular Aβ42 and a concomitant

increase in intracellular Aβ45 levels in the presence of DAPT,
suggesting that Aβ45 is a precursor of Aβ42 by releasing TVI
(Aβ42 product line) (Figure 3(a)) [53]. It is reasonable to
consider that two major product lines lead to Aβ40 and Aβ42
production (Figure 3(a)).

5. Identification of Tri- and
Tetrapeptides Released from βCTF

The most effective approach to confirm tripeptide release
from βCTF is the identification of those tripeptides directly
in the reaction mixture of Aβ production. CHAPSO soluble
γ-secretase was isolated and incubated with the βCTF
substrate. LC-MS/MS analysis identified five major tripep-
tides, and γ-secretase inhibitors abolished the production
of these molecules. ITL, VIV, and IAT were predicted
tripeptides in the Aβ40 product line (Figure 3(a)). The
amounts of Aβ40 and Aβ43 in the reaction mixture, as
assessed using Western blotting, corresponded roughly to
the predicted Aβ40 and Aβ43 levels, respectively [38]. VIT
and TVI were also detected in the Aβ42 product line, as
predicted (Figure 3(a)). Interestingly, the VVIA tetrapeptide
was detected in the reaction mixture only in the absence of γ-
secretase inhibitors (Figure 3(b)). We postulated that VVIA
was released from Aβ42 to produce Aβ38. No significant
difference was detected between the level of Aβ42 by Western
blot quantification and that by LC-MS/MS quantitative
estimation. These results indicate that γ-secretase releases
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tri- and tetrapeptides successively upon ε-cleavage of βCTF,
to produce Aβ species. These tri- and tetrapeptides released
from βCTF were detected even in the lipid raft fraction
(Takami, unpublished observation).

6. Is Tripeptide Release a General
Property of Substrate Cleavage by
γ-Secretase?

Successive tripeptide release was observed in βCTF process-
ing by γ-secretase. We also found that γ-secretase released tri-
and tetrapeptides successively from αCTF substrate (Takami,
unpublished observation). Recently, tripeptide spacing of
endoproteolysis on presenilin has been reported [54]. These
suggest that successive tri- and tetrapeptide release is a
general property of γ-secretase-mediated intramembrane
proteolysis.

Yanagida et al. reported that APLP-1 was also cleaved
into three Aβ-like peptides [39]. As three ε-like cleavages
are known, it is likely that APLP-1 is processed in three
product lines by successive tripeptide release [30] (Figure 4).
The transmembrane domain of mNotch-1 is cleaved by
γ-secretase after ectodomain shedding to liberate NICD
(S3 cleavage). NICD containing V1744 was found as the
prominent species produced by S3 cleavage [55]. To date, it
seems reasonable to suppose that there is a single cleavage
site in S3. γ-Secretase also cleaves mNotch-1 at the lumen-
membrane boundary (S4 cleavage) to release Notch β
peptides (Nβ) (Figure 4) [40, 56, 57]. Fenofibrate treatment
increased the proportion of Nβ25, but not that of Nβ21,
which implies that Nβ25 and Nβ21 correspond to Aβ42 and
Aβ40, respectively [57]. However, it is unlikely that several
Nβ product lines exist in Notch processing because of the
single S3 site. The production of Nβ species may not fit the
tripeptide-processing model (Figure 4). CD44 is cleaved not
only at the membrane-cytoplasm boundary, but also at the
middle of the transmembrane domain, which results in the
release of Aβ-like peptides [33, 41]. Similar to Notch, the
processing of the CD44 transmembrane domain may not fit
the tripeptide-processing model (Figure 4).

7. Conclusion and Perspectives

The tripeptide hypothesis was confirmed in the processing
of the APP transmembrane domain, which accounts for
the production of Aβ species. Although the physiological
significance of the multiple cleavage of the transmembrane
domain is unknown, it is important to illustrate the cleavage
mechanisms of other γ-secretase substrates, because the lim-
itation of this stepwise mechanism would help to elucidate
the substrate-specific inhibition of Aβ production. As shown
in Figure 4, APLP-1 may be cleaved by tripeptide release;
however, Notch and CD44 do not fit this processing model
[40, 41]. γ-Secretase is widely believed to be a promiscuous
protease; however, the cleavage mechanisms of APP and
Notch, at least, seem to be different (Figure 4), which
indicates that γ-secretase distinguishes substrates during
proteolysis. Perhaps absence of helix breaker glycine residues

in mid-portion of transmembrane domain allows multiple
S4 cleavages even after single S3 cleavage in Notch. From
this point of view, uncovering the mechanisms underlying
γ-secretase-dependent cleavage offers a basis for new ther-
apeutic approaches that are aimed at substrate-specific Aβ
inhibition.
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