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Activation of innate immunity is associated with the development of liver disease, including non-alcoholic fatty liver disease
(NAFLD). In the innate immune system, Toll-like receptors (TLRs) are sensors that recognize bacterial and viral components
such as lipopolysaccharide, bacterial DNA, and peptidoglycan. Recent data have demonstrated that the liver is exposed to a high
load of TLR ligands due to bacterial overgrowth and increased intestinal permeability in NAFLD. Upon stimulation by these TLR
ligands, hepatic immune cells produce various mediators that are involved in host defense. On the other hand, these mediators
alter lipid metabolism, insulin signaling, and cell survival. Indeed, some TLR-deficient mice demonstrate lesser degrees of NAFLD
even though TLR ligands are increased. This paper will highlight the recent progress on the study of TLR signaling and their
downstream molecules in the development of NAFLD.

1. Introduction

Nonalcoholic steatosis is a component of metabolic syn-
drome, and obese people with insulin resistance frequently
have fatty liver disease [1]. Although steatosis is considered
a benign liver disease, a subset of steatosis includes a
progressive liver disease, nonalcohol steatohepatitis (NASH),
that causes liver cirrhosis and cancer. In 1980, Ludwig et
al. proposed the concept of “NASH”, steatohepatitis without
a history of excess alcohol intake [2]. Currently, the term
“nonalcoholic fatty liver disease (NAFLD)” is more widely
used because it is difficult to diagnose NASH at an early stage
without histological examinations. Thus, NAFLD comprises
a spectrum of disorders ranging from simple steatosis to
advanced steatohepatitis and fibrosis. Since NAFLD has
become the most common liver disease and the prevalence
is estimated to be 14–24% of the population in developed
countries [3–5], NAFLD is a growing public health concern
worldwide.

Hepatic steatosis occurs when the amount of imported
and synthesized lipids exceeds the export or catabolism
in hepatocytes [6–8], including (1) increased lipid delivery
to the liver, (2) increased lipid uptake in hepatocytes, (3)
increased de novo lipogenesis in the liver, (4) failure of
lipid export, and (5) impaired hepatic mitochondrial β-
oxidation of fatty acids. Steatosis is present in most patients
with insulin resistance, suggesting that dysfunction of insulin
signaling is closely associated with excessive accumulation
of lipid in the liver. However, hepatic inflammation and
consequent fibrosis are not always observed in these patients,
suggesting that additional factors are required for the
development of NASH.

This paper highlights Toll-like receptors (TLRs) and
their downstream targets, including inflammatory cytokines
and chemokines, as emerging factors in the development
of NAFLD. We further review the role of nuclear factor κB
(NF-κB) and c-Jun N-terminal kinase (JNK), key molecules
mediating TLR signaling in NAFLD. Since hepatic resident
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macrophages, Kupffer cells, perceive various TLR ligands
and produce inflammatory mediators through NF-κB and/or
JNK activation [9–11], we will focus on TLR signaling in
Kupffer cells.

2. The Gut-Liver Axis Is an Important Pathway
in the Development of NAFLD

Gut microbiota, consisting of 15,000–35,000 species of bac-
teria, play a crucial role in nutrient absorption and energy
storage [12–14]. Young conventionally reared mice have a
40% higher body fat and 47% higher gonadal fat content
than germ-free mice, even though conventionally reared
mice consume fewer calories. In addition, gnotobiotic mice
exhibit a 60% increase in body fat within 2 weeks following
transplantation of the gut microbiota from conventionally
reared mice [15], indicating that gut microbiota contribute
to nutrient acquisition. In particular, gut microbiota pro-
mote absorption of monosaccharides from the gut lumen,
with resulting induction of de novo hepatic lipogenesis [15].

In addition to nutrient acquisition, gut microbiota are
a source of bacterial products such as lipopolysaccharide
(LPS), bacterial DNA, and peptidoglycan, which are deliv-
ered to the liver through the portal vein. In murine models
of NAFLD, bacterial overgrowth is observed with compo-
sitional change as well as increased intestinal permeability
by reducing the expression of tight junction proteins such
as ZO-1 and occludin [16]. In human, the composition of
gut microbiota differs between individuals with and without
diabetes mellitus [17, 18]. Indeed, circulating bacterial com-
ponents are elevated in NAFLD patients and in animal
models [19–22]. As a result, liver cells are exposed to a high
load of bacterial products that function as TLR ligands. Since
TLR signaling is a key pathway to produce inflammatory
cytokines and chemokines, the gut microbiota contribute to
the development of NAFLD as a source of TLR ligands.

3. TLRs Are Associated with NAFLD

TLRs are associated with liver diseases including alcoholic
liver injury, ischemia/reperfusion liver injury, liver fibrosis,
and liver cancer [23, 24]. Among 13 TLRs identified in
mammals, TLR2, TLR4, and TLR9 play a role in the devel-
opment of NAFLD [20, 21, 25, 26]. To date, no information
is available on the role of other TLRs in NAFLD. Results from
gene-modified mice indicate that TLR4, and TLR9 signaling
promote the progression of NAFLD.

Several groups have demonstrated that TLR4 signaling
worsens NAFLD [19–21]. TLR4 is the receptor for LPS, a
component of the Gram-negative bacterial cell wall. Serum
LPS levels are increased in patients with hepatic steatosis
caused by total parenteral nutrition or intestinal bypass [27–
29]. Antibiotics treatment in these patients attenuates steato-
sis with decreased plasma levels of LPS [27–29]. Circulating
LPS levels are elevated in most animal models of NAFLD
induced by diets, including the high-fat (HF) diet, fructose-
rich diet, methionine/choline-deficient (MCD) diet, and
choline-deficient amino acid-defined (CDAA) diet [19–22].

Wild-type (WT) mice fed these diets show severe steatosis or
steatohepatitis. In contrast, TLR4 mutant mice on these
diets have less steatosis or steatohepatitis, although LPS
levels are equivalent to those in WT mice. Even in mice
on standard laboratory chow, continuous subcutaneous
infusion of low-dose LPS results in hepatic steatosis, hepatic
insulin resistance, and hepatic weight gain [30]. In addition,
an intraperitoneal injection of LPS exacerbates liver injury in
mice fed an MCD diet [31]. Eighty percent of intravenously
injected LPSs molecules are detected in the liver within 20–
30 min [32, 33]. These data indicate that the liver is the
main target of LPS, and LPS-TLR4 is a key pathway for the
progression of NAFLD.

TLR9 signaling contributes to the development of NASH
[26]. TLR9 recognizes DNA containing an unmethylated-
CpG motif that is highly expressed in bacteria-derived DNA
[34]. Although bacterial DNA is detectable in blood and
ascites in patients with advanced cirrhosis [35, 36], it remains
unclear whether bacterial DNA is present at the early stage
of liver disease and whether bacterial DNA contributes to
NAFLD. We have recently demonstrated that bacterial DNA
is detectable in the blood in a murine model of NASH,
and that bacterial DNA binding to TLR9 contributes to the
development of steatohepatitis [26]. WT mice on a CDAA
diet showed severe steatohepatitis with insulin resistance.
In contrast, TLR9-deficient mice had less steatohepatitis
even though bacterial DNA was present in the blood [26].
In addition, TLR9-deficient mice demonstrated less insulin
resistance and less fibrogenic response [26].

The role of TLR2 in NAFLD has not been well studied.
TLR2 recognizes components of Gram-positive bacterial cell
wall such as peptidoglycan and lipoteichoic acid [34]. At
present, no studies have shown increased TLR2 ligands in
NAFLD, which might be limited by current methodology.
Blockade of TLR2 signaling prevents insulin resistance in HF
diet-fed mice [37, 38]. In contrast, TLR2-deficient mice on
an MCD diet exhibit equivalent levels of steatohepatitis but
more severe steatohepatitis after LPS challenge compared to
WT mice [25].

MyD88 is a key molecule in the development of
metabolic syndrome including NAFLD [39, 40]. MyD88, an
adaptor protein for all TLRs except for TLR3, is required
for the expression of various inflammatory cytokines and
chemokines [41]. MyD88-deficient mice are protected from
metabolic syndrome including atherosclerosis [39, 40] and
from liver injury induced by bile duct ligation or carbon
tetrachloride [23, 42]. We have demonstrated that MyD88-
deficient mice on a CDAA diet show less steatohepatitis
with less insulin resistance compared with WT mice [26].
As expected, inflammatory cytokines and fibrogenic factors
are also significantly suppressed in MyD88-deficient mice
compared with WT mice fed a CDAA diet [26].

4. Endogenous TLR Ligands in NAFLD

Nonbacterial substances may function as TLR ligands; free
fatty acids (FFAs) and denatured host DNA activate TLR2,
TLR4 and TLR9 [43–46]. For instance, palmitate activates
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WT macrophage but not TLR4-deficient macrophages [44].
Stearic acid and palmitic acid, potential TLR4 ligands, are
rich in dietary fat, and circulating FFAs are elevated in
patients with NAFLD [47]. These data demonstrate an
association between TLR4 and FFAs. On the other hand,
some reports have demonstrated that FFAs do not bind to
TLR4 [48, 49]. LPS has a high affinity for lipids such as
chylomicrons and fatty acids, suggesting that contaminated
LPS in the lipids may be the actual TLR4 ligand. Although
the LPS-lipids complexes still have affinity to TLR4, the toxic
effect of LPS is decreased [50, 51]. Thus, the concept of lipids
as endogenous TLR4 ligands is still unresolved. TLR4 also
recognizes oxidized phospholipid [52] and HMGB-1 [53]. To
date, the role of these TLR4 ligands has not been investigated
in NAFLD.

Denatured host DNA is a candidate for a TLR9 ligand
in liver injury. Apoptotic hepatocyte DNA induces type I
collagen and TGFβ expression in hepatic stellate cells via
TLR9 [45]. Denatured host DNA also stimulates sinusoidal
endothelial cells to produce interleukin (IL)-1β via TLR9
[24]. In these studies, TLR9-deficient mice were resistant to
carbon tetrachloride- or acetaminophen-induced sterile liver
injury. If apoptotic host DNA functions as a TLR9 ligand,
NASH livers are constantly exposed to TLR9 ligands because
hepatocytes undergo apoptosis and necrosis in NASH.
However, the unmethylated CpG-motif is uncommon in
mammalian DNAs [54], and host DNA is recognized
by other DNA sensors such as DNA-dependent activator
of IFN-regulatory factors and the inflammasome which
sense cytosolic DNA in TLR9-indendent manner [55, 56].
Although some FFAs and denatured host DNA are attractive
candidates for TLR ligands, further investigations are nec-
essary to determine whether these nonbacterial substances
function as reliable TLR ligands in NAFLD.

5. Liver Cells That Perceive TLR Ligands

The liver is composed of various types of cells including
hepatocytes, biliary epithelial cells, hepatic stellate cells,
Kupffer cells, and sinusoidal endothelial cells. Most types of
liver cells are reported to express TLRs and produce various
inflammatory mediators in response to TLR ligands [10].
For instance, hepatic stellate cells and sinusoidal endothelial
cells produce chemokines and inflammatory cytokines in
response to a TLR4 ligand [23] and a TLR9 ligand [24],
respectively. Among resident liver cells, Kupffer cells are well
documented to respond to various TLR ligands such as
peptidoglycan, double-stranded RNA, LPS, bacterial DNA,
and probably other TLR ligands. In addition, Kupffer cells
are a major source of inflammatory cytokines such as TNFα
and IL-1β [9, 11]. These cytokines produced by Kupffer cells
promote lipid accumulation and cell death in hepatocytes
as described below in detail. These cytokines also induce
hepatic stellate cells to produce profibrogenic factors such
as TIMP1 and PAI-1 [26, 57, 58]. Thus, Kupffer cell-
derived mediators through TLRs affect lipid metabolism,
liver damage and liver fibrosis in NAFLD (Figure 1). Indeed,
depletion of Kupffer cells ameliorates the progression of

diet-induced steatohepatitis. Rivera et al. have reported
Kupffer cell depletion delayed the development of steatohep-
atitis induced by an MCD diet [20]. We also have shown that
depletion of Kupffer cells decreased inflammatory cytokines
in mice on a CDAA diet, resulting in improvement of
NASH [26]. These findings indicate that Kupffer cells play
a pivotal role in the development of steatohepatitis. On the
other hand, the roles of Kupffer cells in HF diet models,
a simple steatosis model, are more complicated. While
most of reports have shown that depletion of Kupffer cells
ameliorates steatosis [59–62], one report shows an opposite
effect [63]. This discrepancy may partially depend on the
methodology to deplete Kupffer cells. Clodronate liposome
was used to deplete Kupffer cells by intravenous injec-
tion [61] or intraperitoneal injection [62, 63]. Intravenous
injection selectively depletes Kupffer cells and/or splenic
macrophages but not visceral fat macrophages whereas
intraperitoneal injection affects both Kupffer cells and vis-
ceral fat macrophages [23, 64]. Adipose tissue macrophages
are activated in an HF diet model [63] and release various
mediators such as TNFα and IL-6, which influence insulin
signaling and lipid metabolism. These mediators could
further activate Kupffer cells, and contribute to steatosis.
Although further studies are necessary to determine the
role of adipose tissue macrophages in the development of
NAFLD, it is clear that Kupffer cells are important in the
development of NAFLD.

6. NF-κB Activation in NAFLD

Activation of the transcriptional factor NF-κB, a down-
stream target for TLR-MyD88 signaling, is crucial for the
inflammatory response in immune cells and is a key in
the development of NAFLD [10, 11]. In NAFLD patients
as well as animal models of NAFLD, NF-κB activation
is observed in liver cells, including hepatocytes, hepatic
stellate cells and Kupffer cells [23]. Hepatocytes respond
minimally to TLR ligands in vivo, suggesting that other
mediators activate NF-κB in hepatocytes [23, 65]. For
instance, TNFα and IL-1β activate NF-κB in hepatocytes
[26, 66]. On the other hand, TLR ligands directly activate
NF-κB in Kupffer cells. TLR signaling triggers inflammatory
cytokine and chemokine production in Kupffer cells through
NF-κB activation [26, 67]. IKKβ activates NF-κB by the
phosphorylation and subsequent degradation of Iκ-B, an
essential inhibitor for NF-κB. Specific deletion of IKKβ in
myeloid cells including macrophages results in suppression
of inflammatory cytokine production, which prevents sys-
temic insulin resistance induced by an HF diet [68].

It is unclear whether NF-κB activation in hepatocytes
leads to steatosis. Hepatocyte-specific IKKβ overexpression
induces steatosis [69]. In contrast, NF-κB essential mod-
ulator (NEMO) deficiency in hepatocytes results in spon-
taneous steatohepatitis [70]. NEMO deficiency completely
blocks NF-κB activation, indicating that NF-κB activation
in hepatocytes is not a primary cause of steatosis. We and
others have recently demonstrated that hepatocytes increase
their lipid content in response to TNFα and IL-1β [26, 71].
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Figure 1: TLRs and downstream signaling in NAFLD. Kupffer cells respond to TLR ligands such as LPS and bacterial DNA through TLR4
and TLR9, respectively. Upon TLR ligation, MyD88, an adaptor molecule, is recruited to transmit the signals that activate NF-κB and
JNK. Activated Kupffer cells produce inflammatory cytokines such as TNFα and IL-1β and chemokines such as MCP-1 (CCL2). These
inflammatory cytokines and chemokines induce lipid accumulation in hepatocytes and cell death. In addition, TNFα and IL-1β promote
liver fibrosis by activating hepatic stellate cells. Other cells including hepatic resident cells, infiltrated cells into the liver, and adipose tissue
macrophages produce various mediators in response to TLR ligands. These pathways also contribute to the development of NAFLD.

In that process, TNFα and IL-1β activate NF-κB in normal
hepatocytes. On the other hand, NF-κB activation by TNFα
and IL-1β is blunted in lipid-laden hepatocytes [26]. NF-κB
activation in hepatocytes may be required only for an initial
step of lipid accumulation in the liver. Regardless of NF-κB
activation in hepatocytes, inflammatory cell infiltrations and
expression of F4/80, a marker for macrophage, are increased
in both hepatocyte-specific IKKβ overexpressed mice and
hepatocyte-specific NEMO-deficient mice [69, 70]. These
data further support the concept that NF-κB activation in
immune cells is a key event in the development of NAFLD.

7. JNK Activation in NAFLD

TLR-MyD88 signaling pathway activates JNK, a member of
mitogen-activated protein kinases. JNK is an attractive target
in the pathogenesis of NAFLD, because JNK activation plays

a central role in the development of obesity and insulin resis-
tance [72]. In patients and animals with NASH, JNK is acti-
vated in the liver, and JNK activation in immune cells results
in inflammatory cytokine production [22]. Current research
is analyzing the distinct roles of the JNK isoforms, JNK1 and
JNK2, in the development of the metabolic syndrome includ-
ing NAFLD. JNK1 promotes steatosis and inflammation in
two different models of NAFLD [73]. In contrast, lack of
JNK2 promotes liver injury [74]. However, it must be noted
that the roles of JNKs are different in hepatocytes and Kupffer
cells; JNK activation in hepatocytes is involved in cell death
and insulin signaling whereas JNK activation in Kupffer cells
induces inflammatory cytokine production. Recently, we and
others have demonstrated the role of hematopoietic cells
in the development of the metabolic syndrome including
NASH [22, 75]. The results from chimeric mice generated
by transplanting bone marrow cells lacking JNK1 or JNK2
into WT mice have shown that JNK1 in hematopoietic cells
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contributes to developing metabolic syndrome by producing
inflammatory cytokines. Thus, hematopoietic cells including
Kupffer cells and recruited macrophages play a pivotal role
in the development of NAFLD. On the other hand, JNK in
hepatocytes is involved in cell death and insulin signaling.
Thus, JNK plays multiple roles in multiple steps in NAFLD.

8. Inflammatory Cytokines and NAFLD

Inflammatory cytokines are important mediators in the
development of NAFLD. Among inflammatory cytokines,
TNFα and IL-1β have multiple functions including immune
modulation, cell differentiation, proliferation, apoptosis, and
energy metabolism. Indeed, expressions of TNFα and IL-1β
are increased in NAFLD patients and animal models [76–
79]. In contrast, most of TLR-deficient mice show decreased
TNFα and IL-1β levels in NAFLD models [20, 26].

TNFα levels are increased in the liver, the adipose tissue,
and the serum of NAFLD patients [76, 77]. Expression
of TNF receptors is also increased in the liver of NAFLD
patients [77]. Mice deficient in both TNF receptor type 1 and
type 2 demonstrate less steatosis, inflammation, and liver
fibrosis in a NASH diet model [80], indicating that TNF
receptor signaling contributes to the development of NAFLD.
So far, several mechanisms of TNFα-mediated functions are
proposed: (1) insulin resistance, (2) release of fatty acids
from adipose tissue, (3) regulation of lipid influx and efflux
in hepatocytes, and (4) hepatocyte cell death. TNFα impairs
insulin signaling by suppressing insulin receptors, insulin
receptor substrate-1 and GLUT4 expressions [80], and by
the expression of SOCS-3. As a result of insulin resistance,
FFAs and glucose uptake are inhibited in adipocytes, whereas
increased insulin levels promote FFA flux into hepatocytes
and hepatic lipogenesis [81]. Moreover, TNFα increases fatty
acid release from adipose tissue by promoting lipolysis,
resulting in insulin resistance. In addition to impaired insulin
signaling and FFA metabolism, TNFα promotes cholesterol
accumulation in hepatocytes by inducing expression of
LDL receptor and by inhibiting efflux of cholesterol [71].
Thus, TNFα promotes lipid accumulation in hepatocytes
inducing insulin resistance, increased FFA levels, and lipid
retention in the cells. Lipid-accumulated hepatocytes are
vulnerable to various stimuli such as TNFα. In NASH
patients, hepatocyte apoptosis and necrosis frequently occur.
TNFα stimulation alone does not induce cell death in normal
hepatocytes, because TNFα induces the upregulation of NF-
κB-related antiapoptotic genes [66]. However, impaired lipid
metabolism leads to hepatocyte apoptosis in the presence
of TNFα. Hepatocytes laden with lipids have increased sus-
ceptibility to TNFα-induced cell death [82, 83]. Free choles-
terol accumulation in hepatocytes depletes mitochondrial
glutathione. This induces ROS generation in hepatocytes
and then evokes cell death signaling [82]. In addition, lipid-
accumulated hepatocytes increase the expression of ASK-1
and JNK in response to TNFα [83], which lead to cell death.
These findings demonstrate that TNFα plays an important
role in lipid metabolism as well as hepatocyte cell death in
the development of NAFLD.

Increased IL-1β is recognized as a risk factor for the
metabolic syndrome [84]. Indeed, expression of IL-1β as well
as its receptor is increased in the adipose tissue of obese
patients with type II diabetes [78, 79]. Single-nucleotide
polymorphisms of IL-1β, which may elevate circulating
IL-1β, are frequently observed in patients with metabolic
syndrome including atherosclerosis [85, 86] and NASH [87].
In addition to these findings, blockade of IL-1β decreased the
severity of atherosclerosis and insulin sensitivity in animal
models [88, 89]. HF diet feeding, a diet model for obesity
and hepatic steatosis, results in severe steatohepatitis in IL-
1 receptor antagonist-deficient mice [90], suggesting that
IL-1β plays an important role in NASH. The proposed
functions of IL-1β are as follows: (1) lipid accumulation in
hepatocytes [26, 71], (2) hepatocyte cell death [26], and (3)
activation of hepatic stellate cells [26, 57, 58]. IL-1β promotes
hepatic steatosis by activating PPARα [62] and diacylglycerol
acyltransferase 2, an enzyme that converts diglyceride to
triglyceride [26]. In addition, IL-1β promotes cell death
in lipid-accumulated hepatocytes. Upon IL-1β stimulation,
antiapoptotic genes are upregulated in normal hepatocytes.
In contrast, proapoptotic genes such as Bax are induced
in lipid-accumulated hepatocytes treated with IL-1β [26].
IL-1β induces the production of nitric oxide, generating
peroxynitrite in the presence of superoxide radicals, which
induces hepatocellular injury. In NAFLD, free radicals are
generated by β-peroxidation of FFAs, and nitric oxide
metabolites are increased in rats with NASH [91], which may
further promote liver injury. Moreover, IL-1β contributes to
liver fibrosis by activating hepatic stellate cells [26, 57, 58].
IL-1β induces the expression of TIMP-1 and TGFβ in hepatic
stellate cells. We have shown that IL-1R-deficient mice are
resistant to CDAA diet-induced liver fibrosis [26]. Thus, IL-
1β is an important factor in the development of NAFLD.

9. Chemokines and NAFLD

Chemokines, strongly induced by TLR stimulation, play
an important role in the development of metabolic syn-
drome including NAFLD. TLR4- and MyD88-deficient mice,
which are resistant to metabolic syndrome, show reduced
chemokine production compared with WT mice [39, 40].
MCP-1 levels are elevated in genetically obese diabetic
(db/db) mice and in HF diet-fed mice. This suggests that
MCP-1 and its receptor CCR2 contribute to the meta-
bolic syndrome including obesity-related steatosis [92–
95]. Indeed, MCP-1 overexpressing transgenic mice exhibit
insulin resistance and hepatic steatosis as well as macrophage
infiltration in adipose tissue. In contrast, MCP-1- or CCR2-
deficient mice have attenuated HF diet-induced steatosis
and macrophage infiltration. In these mice, inflammatory
cytokine production is reduced, which could ameliorate
steatohepatitis. Moreover, administration of a CCR2 antago-
nist improves insulin resistance. Clinical studies also demon-
strate that MCP-1 levels in adipose tissue positively correlate
with BMI, and patients with type II diabetes have higher
serum MCP-1 levels than nondiabetes [96].
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In addition to macrophage recruitment, MCP-1 pro-
motes hepatic lipid accumulation by increasing lipid synthe-
sis and by inhibiting lipid efflux from hepatocytes [97]. MCP-
1 increases PEPCK level, resulting in de novo lipogenesis.
MCP-1 decreases secretion of ApoB, which suppresses lipid
efflux. Since hepatocytes do not express CCR2, hepatocytes
may utilize other receptors such as CCR7 and CCR8 as
the receptors for MCP-1. Thus, MCP-1 regulates lipid
metabolism through macrophage recruitment and also di-
rectly on hepatocytes.

10. Perspectives

This paper summarized the role of TLRs and their down-
stream molecules in the development of NAFLD and showed
that TLR signaling mediates steatosis, inflammation, and
fibrosis. Thus, regulation of TLRs and their downstream
molecules is potential targets for the therapy of NAFLD, in
particular NASH. Several antagonists for TNFα, IL-1β, and
CCR2 are used in NAFLD animal models [89, 93, 98–101]. In
the future, these agents may be new tools for the therapy of
human NAFLD. In addition to the blockade of TLR signaling,
control of TLR ligands is another option for the therapy
of NAFLD. Probiotics may suppress the growth of harmful
intestinal bacteria and the generation of TLR ligands in
the intestine. As a result, exposure to TLR ligands may be
decreased in the liver. Beneficial effects of probiotics have
been reported in animal NAFLD models [98, 102, 103]. Since
their adverse effects are minimal in humans, randomized
clinical trials of adequate size and methodology are needed
for assessing the benefit of using probiotics on the NAFLD
patients.

TLRs play multiple roles in multiple steps and in many
hepatic cells in the development of NAFLD. In this review,
we focused on the TLR signaling in Kupffer cells that produce
key mediators in NAFLD. Other resident liver cells and
recruited immune cells also produce many mediators that
modulate the status of NAFLD in response to TLR ligands
(Figure 1). Thus, better understanding of TLR signaling will
provide new insight into the management and prevention of
NAFLD.
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tiple abnormalities in glucose and energy metabolism and
coordinated changes in levels of adiponectin, cytokines, and
adhesion molecules in subjects with metabolic syndrome,”
Circulation, vol. 110, no. 25, pp. 3842–3848, 2004.

[79] C. E. Juge-Aubry, E. Somm, R. Chicheportiche et al., “Regu-
latory effects of interleukin (IL)-1, interferon-β, and IL-4 on
the production of IL-1 receptor antagonist by human adipose
tissue,” Journal of Clinical Endocrinology and Metabolism, vol.
89, no. 6, pp. 2652–2658, 2004.

[80] K. Tomita, G. Tamiya, S. Ando et al., “Tumour necrosis
factor α signalling through activation of Kupffer cells plays an
essential role in liver fibrosis of non-alcoholic steatohepatitis
in mice,” Gut, vol. 55, no. 3, pp. 415–424, 2006.

[81] W. P. Cawthorn and J. K. Sethi, “TNF-α and adipocyte
biology,” FEBS Letters, vol. 582, no. 1, pp. 117–131, 2008.

[82] M. Marı́, F. Caballero, A. Colell et al., “Mitochondrial free
cholesterol loading sensitizes to TNF- and Fas-mediated
steatohepatitis,” Cell Metabolism, vol. 4, no. 3, pp. 185–198,
2006.

[83] W. Zhang, H. Kudo, K. Kawai et al., “Tumor necrosis factor-α
accelerates apoptosis of steatotic hepatocytes from a murine
model of non-alcoholic fatty liver disease,” Biochemical and
Biophysical Research Communications, vol. 391, no. 4, pp.
1731–1736, 2010.

[84] J. Jager, T. Grémeaux, M. Cormont, Y. Le Marchand-Brustel,
and J. F. Tanti, “Interleukin-1β-induced insulin resistance
in adipocytes through down-regulation of insulin receptor
substrate-1 expression,” Endocrinology, vol. 148, no. 1, pp.
241–251, 2007.

[85] K. Oda, N. Tanaka, T. Arai et al., “Polymorphisms in pro-
and anti-inflammatory cytokine genes and susceptibility to
atherosclerosis: a pathological study of 1503 consecutive
autopsy cases,” Human Molecular Genetics, vol. 16, no. 6, pp.
592–599, 2007.

[86] J. Shen, D. K. Arnett, J. M. Peacock et al., “Interleukin1β
genetic polymorphisms interact with polyunsaturated fatty
acids to modulate risk of the metabolic syndrome,” Journal of
Nutrition, vol. 137, no. 8, pp. 1846–1851, 2007.

[87] Y. Nozaki, T. Saibara, Y. Nemoto et al., “Polymorphisms
of interleukin-1β and β3-adrenergic receptor in Japanese
patients with nonalcoholic steatohepatitis,” Alcoholism: Clin-
ical and Experimental Research, vol. 28, no. 8, pp. 106S–110S,
2004.

[88] H. Kirii, T. Niwa, Y. Yamada et al., “Lack of interleukin-
1ß decreases the severity of atherosclerosis in apoE-deficient
mice,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol.
23, no. 4, pp. 656–660, 2003.

[89] O. Osborn, S. E. Brownell, M. Sanchez-Alavez, D. Salomon,
H. Gram, and T. Bartfai, “Treatment with an Interleukin
1 beta antibody improves glycemic control in diet-induced
obesity,” Cytokine, vol. 44, no. 1, pp. 141–148, 2008.

[90] K. Isoda, S. Sawada, M. Ayaori et al., “Deficiency of
interleukin-1 receptor antagonist deteriorates fatty liver
and cholesterol metabolism in hypercholesterolemic mice,”
Journal of Biological Chemistry, vol. 280, no. 8, pp. 7002–
7009, 2005.

[91] K. Fujita, Y. Nozaki, M. Yoneda et al., “Nitric oxide plays a
crucial role in the development/progression of nonalcoholic
steatohepatitis in the choline-deficient, l-amino acid-defined
diet-fed rat model,” Alcoholism: Clinical and Experimental
Research, vol. 34, no. 1, pp. S18–S24, 2010.

[92] S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R.
L. Leibel, and A. W. Ferrante, “Obesity is associated with
macrophage accumulation in adipose tissue,” Journal of
Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003.

[93] S. P. Weisberg, D. Hunter, R. Huber et al., “CCR2 modulates
inflammatory and metabolic effects of high-fat feeding,”
Journal of Clinical Investigation, vol. 116, no. 1, pp. 115–124,
2006.

[94] H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes
to macrophage infiltration into adipose tissue, insulin resis-
tance, and hepatic steatosis in obesity,” Journal of Clinical
Investigation, vol. 116, no. 6, pp. 1494–1505, 2006.

[95] A. E. Obstfeld, E. Sugaru, M. Thearle et al., “C-C Chemokine
Receptor 2 (CCR2) regulates the hepatic recruitment of
myeloid cells that promote obesity-induced hepatic steato-
sis,” Diabetes, vol. 59, no. 4, pp. 916–925, 2010.

[96] M. R. Chacón, J. M. Fernández-Real, C. Richart et al.,
“Monocyte chemoattractant protein-1 in obesity and type 2
diabetes. Insulin sensitivity study,” Obesity, vol. 15, no. 3, pp.
664–672, 2007.

[97] S. Clément, C. Juge-Aubry, A. Sgroi et al., “Monocyte
chemoattractant protein-1 secreted by adipose tissue induces
direct lipid accumulation in hepatocytes,” Hepatology, vol.
48, no. 3, pp. 799–807, 2008.

[98] Z. Li, S. Yang, H. Lin et al., “Probiotics and antibodies to TNF
inhibit inflammatory activity and improve nonalcoholic fatty
liver disease,” Hepatology, vol. 37, no. 2, pp. 343–350, 2003.

[99] I. Pappo, H. Bercovier, E. Berry, R. Gallilly, E. Feigin, and
H. R. Freund, “Antitumor necrosis factor antibodies reduce
hepatic steatosis during total parenteral nutrition and bowel
rest in the rat,” Journal of Parenteral and Enteral Nutrition,
vol. 19, no. 1, pp. 80–82, 1995.

[100] R. Barbuio, M. Milanski, M. B. Bertolo, M. J. Saad, and L. A.
Velloso, “Infliximab reverses steatosis and improves insulin
signal transduction in liver of rats fed a high-fat diet,” Journal
of Endocrinology, vol. 194, no. 3, pp. 539–550, 2007.

[101] S. J. Yang, H. B. Iglayreger, H. C. Kadouh, and P. F.
Bodary, “Inhibition of the chemokine (C-C motif) ligand
2/chemokine (C-C motif) receptor 2 pathway attenuates
hyperglycaemia and inflammation in a mouse model of
hepatic steatosis and lipoatrophy,” Diabetologia, vol. 52, no.
5, pp. 972–981, 2009.

[102] F. Lirussi, E. Mastropasqua, S. Orando, and R. Orlando,
“Probiotics for non-alcoholic fatty liver disease and/or
steatohepatitis,” Cochrane Database of Systematic Reviews, no.
1, article CD005165, 2007.

[103] A. Velayudham, A. Dolganiuc, M. Ellis et al., “VSL#3
probiotic treatment attenuates fibrosis without changes in
steatohepatitis in a diet-induced nonalcoholic steatohepatitis
model in mice,” Hepatology, vol. 49, no. 3, pp. 989–997, 2009.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


