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A substantial number of research studies have investigated the separate influence of working memory, attention, motivation, and
learning strategies on mathematical performance and self-regulation in general. There is still little understanding of their impact
on performance when taken together, understanding their interactions, and how much each of them contributes to the prediction
of mathematical performance. With the emergence of new methodologies and technologies, such as the modelling with predictive
systems, it is now possible to study these effects with approaches which use a wide range of data, including student characteristics,
to estimate future performance without the need of traditional testing (Boekaerts and Cascallar, 2006). This research examines the
different cognitive patterns and complex relations between cognitive variables, motivation, and background variables associated
with different levels of mathematical performance using artificial neural networks (ANNs). A sample of 800 entering university
students was used to develop three ANN models to identify the expected future level of performance in a mathematics test.
These ANN models achieved high degree of precision in the correct classification of future levels of performance, showing
differences in the pattern of relative predictive weight amongst those variables. The impact on educational quality, improvement,
and accountability is highlighted.

1. Introduction

Although there is substantial research which has investigated
the influences of (a) working memory [1–11]; (b) attentional
systems [12, 13], and (c) motivation [14–20], on mathemat-
ical performance and self-regulation in general, these studies
have looked at the separate effects of these components.
Therefore, we have little understanding and data about how
they impact performance when taken together, understand-
ing their interactions, and how much each can predict the
mathematical performance in an integrated model [21, 22].
New methodologies and technologies, and the emergence of
predictive systems, have focused on the possibility of assess-
ments which use a wide range of data or student productions
to estimate future student performance without the need for
traditional testing [23].

Artificial neural networks (ANNs) have been used in sev-
eral different fields of research and in applied environments,

such as biology [24], business [25], finance [26], medicine
[27], defense [28], meteorology and environmental studies
[29], and in the prediction of terrorist attacks [30]. During
the last few decades, ANNs have been increasingly utilized as
a statistical methodology in applied areas such as classifica-
tion and recognition of patterns in business, finance, and the
social sciences [25, 31–35].

However, the literature shows very few studies applying
neural networks in education and in educational assessment
in particular [36, 37]. Some authors have suggested that
traditional statistical methods do not always yield accurate
predictions [38]. ANNs may improve the validity and the
accuracy of the predictions and/or classifications and also
improve the predictive validity of test scores [36, 39, 40].

The purpose of this research was to develop predictive
classification models that could identify with sufficient pre-
cision three groups of students corresponding to the highest
30%, lowest 30%, and middle 30% of estimated future
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performance in a mathematics test, utilizing only cognitive,
motivational, and background variables, with no consider-
ation of the mathematics content present in the test or of
any measure of previous mathematics performance. Finally,
in order to compare the predictive power of this ANN-
based approach with more classical statistical methods,
discriminant analyses were used.

It was expected that results would enable the develop-
ment of an “early warning” system which could allow early
and prompt intervention with those students most in need
of support and remediation in mathematics (at the level of
exit from secondary education and/or at the beginning of
university studies). Similarly, this approach could serve to
identify top or advanced students and improve their place-
ment and/or career choice.

2. Theoretical Background

2.1. Working Memory Capacity and Mathematical Perfor-
mance. A large body of literature shows working memory as
a very important construct in several areas, and several stud-
ies have shown its important role in a wide range of complex
cognitive behaviors, such as comprehension, reasoning, and
problem solving [41]. Working memory (WM) is an impor-
tant predictive variable of intellectual ability and academic
performance, consistent over time [1–11, 21, 22, 42, 43].
Nevertheless, it is still not understood precisely how this
basic cognitive mechanism influences specific performance
and how it is related to performance levels in particular areas,
as is the case with mathematical performance.

Working memory capacity refers to the temporary rep-
resentation of information that was just experienced or just
retrieved from long-term memory but no longer exists in the
external environment, and it will be operationalized by the
overall measure of the automated operation span [44]. Inter-
nal representations are short-lived, but can be maintained
for longer periods of time through active rehearsal strategies,
and can be subjected to operations that manipulate the
information in such a way that it becomes useful for goal-
directed behavior. The term working memory is applied to
a system of limited capacity, which is capable of storing and
handling information necessary for the performance of com-
plex tasks such as learning, comprehension, and reasoning
[45]. There are several paradigms to examine the role of
working memory in complex tasks. One important approach
examines it from the perspective of individual differences,
using various working memory span tasks as a research
tool [46–49]. These span tasks (reading, operation, and
spatial spans) are designed to resemble the working memory
demands during the performance of complex cognitive tasks
by placing simultaneous demands on both processing and
storage. Individual differences in WM influence the perfor-
mance in complex tasks [50, 51]. It is possible to assume that
task complexity has an influence on performance because the
increase of complexity demands a greater level of activation
for retrieval of information from declarative memory [50].

Mathematical cognition involves complex mechanisms
or processes such as identification of relevant quantities,

encoding into an internal representation, mental com-
parisons, and calculations [52]. These cognitive activities
are encompassed by working memory. Despite the level
of agreement regarding the close relationship between work-
ing memory and mathematics processing and learning, fur-
ther studies on the role of working memory in mathematical
cognition are necessary to better understand the participa-
tion of task and subject characteristics in the modulation
of performance in mathematical processing and learning
[1, 53].

There is some supportive but not extensive literature
on the critical role of working memory in mathematical
performance [54]. Working memory is related to a variety
of numerical and mathematical abilities used for counting,
which underlie the solution of simple addition and subtrac-
tion problems [2–4, 6–8, 11] in [1, 5, 9, 10, 55], as well
as the solution of complex arithmetic problems [50, 51].
From a perspective of individual differences, and specifically
from the perspective of “math disabilities,” results of various
studies indicate that children with poor mathematics ability
also show low working memory [56–62]. These children
have difficulty in holding information in memory while
performing another activity (e.g., counting) and in inhibiting
irrelevant information [7, 63]. Furthermore, they perform
poorly in measures of the visuospatial working memory and
the central executive [61, 64–67]. However, they do not show
particular problems in phonological working memory tasks
[60, 67].

One of the most recent working memory’s approaches
develops computational models that simulate the effects
of individual differences and/or working memory load
on participants’ performance on various cognitive tasks.
Interesting areas of this approach include the model of
mental algebra [50] and reasoning and problem solving [68].

2.2. Attention and Mathematical Performance. In cognitive
models, attention has been traditionally involved in the con-
trol of intended actions. In this sense, attentional control has
been identified as an important domain in self-regulation
[12, 13].

Specifically, attention problems have been related to
mathematical performance. Inattention is considered as a
risk factor for poor math achievement [69]. Some research
has found that a deficit in sustained attention is correlated
with problems in mathematics (from 26% to 60% [70]).
Other studies have found a low predictive power of atten-
tion considering it together with depressive symptoms and
anxiety [71]. However, most of those studies have used
classical multiple regression analysis to predict mathematical
performance.

Current research findings suggest that attention involves
different mechanisms which involve separate brain areas. In
particular, attention encompasses three subsystems: (a) ori-
enting, (b) alerting, and (c) executive control. The orienting
network allows the selection of information from sensory
input, the alerting network refers to a system that achieves
and maintains an alert state, and executive control is respon-
sible for resolving conflict among responses [72]. Executive
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control has been closely related to working memory capacity
[73].

2.3. Self-Regulation of Learning and Mathematical Perfor-
mance. Previous research on self-regulated learning focuses
primarily on the learning strategies that students need to use
in order to guide their learning [23]. Motivation researchers
(e.g., [14–16]) argued that students also need their motiva-
tion for learning and effort investment, motivation strategies
[17, 18] and volitional strategies [74, 75] to comply with
social rules and expectations and deal with obstacles en
route to the learning goal. Therefore, this study analyzes
both learning strategies as motivational components of self-
regulation. Learning strategies (LSs) involve any thoughts or
behaviors that help the students to acquire new information
and integrate these in their existing knowledge [76–79]. LS
also help students retrieve stored information. Examples of
LS include summarizing, paraphrasing, imaging, creating
analogies, note taking, and outlining [77].

Motivational self-regulation includes motivational
beliefs, motivation strategies, and motivational regulatory
strategies. Motivational beliefs involve (a) values that stu-
dents attach to a particular domain, (b) the students’ opinion
of the efficiency and effectiveness of learning and teaching
methods, (c) beliefs about internal control transformed into
self-efficacy beliefs (opinions that students hold about their
own ability in relation to a specific domain), (d) outcome
expectations: beliefs about the success or failure of specific
actions, (e) goal orientation: orientation to learning tasks
versus egoorientation: the intention is to demonstrate suc-
cess (approach ego orientation) or to hide failure (avoidance
ego-orientation), and (f) effort beliefs. Domain-specific
self-efficacy beliefs influence effort investment, and not the
other way round [80].

Research shows that epistemic and motivational beliefs
that students hold play an important role in self-regulation
[16, 81, 82]. Shoenfeld [83] recognized the existence of a
system of beliefs that influences the mathematics problem-
solving behavior. Several studies have identified beliefs
about mathematics as a discipline, about the learning of
mathematics, and about the social context of mathematical
activities [19, 20].

Other categories of beliefs have been identified about the
self in relation to mathematical learning: achievement goal
orientation [84], responsibility beliefs for failure and success
[85], self-efficacy beliefs [86–88], and value beliefs [88].

2.4. Neural Networks and Performance. Conceptually, a neu-
ral network is a computational structure consisting of several
highly interconnected computational elements, known as
neurons, perceptrons, or nodes. Each neuron carries out a
very simple operation on its inputs and transfers the output
to a subsequent node or nodes in the network topology
[89]. Neural networks exhibit polymorphism in structure
and parallelism in computation [90], and it can be construed
as a highly connected structure of processing elements that
attempts to mimic the parallel computation ability of the
biological brain [91–94].

Predictive streams analyses [21], based in this case on
neural network (ANN) models, have several strengths: (a)
because these are machine learning algorithms, the assump-
tions required for traditional statistical predictive models
(e.g., ordinary least squares regression) are not necessary. As
such, this technique is able to model nonlinear and complex
relationships among variables. ANNs aim to maximize classi-
fication accuracy and work through the data in an interactive
process until maximum accuracy is achieved, automatically
modeling all interactions among variables; (b) ANNs are
robust, general function estimators. They usually perform
prediction tasks at least as well as other techniques and
sometimes perform significantly better [95]; (c) ANNs can
handle data of all levels of measurement, continuous or
categorical, as inputs and outputs. Because of the speed of
microprocessors in even basic computers, ANNs are more
accessible today than they were when originally developed.

The ANN learns by examining individual training case,
then generating a prediction for each testing case, and mak-
ing adjustments to the weights whenever it makes an incor-
rect prediction. Information is passed back through the
network in iterations, gradually changing the weights. As
training progresses, the network becomes increasingly accu-
rate in replicating the known outcomes. This process is
repeated many times, and the network continues to improve
its predictions until one or more of the stopping criteria have
been met. A minimum level of accuracy can be set as the
stopping criterion, although additional stopping criteria may
be used as well (e.g., number of iteration and amount of
time). Once trained, the network can be applied to future
cases (validation or holdout sample) for validation and
implementation [96].

2.5. Measures to Evaluate the Neural Network System Perfor-
mance. In order to evaluate the performance of the neural
network system, there are a number of measures used which
provide a means of determining the quality of the solutions
offered by the various network models tried. The traditional
measures include the determination of actual numbers and
rates for true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) outcomes, as products of the
ANN analysis. In addition, certain summative evaluative
algorithms have been developed in this field of work, to assess
overall quality of the predictive system.

These overall measures are Recall, which represents the
proportion of correctly identified targets, out of all targets
presented in the set, and is represented as Recall = P/(TP +
FN); Precision which represents the proportion of correctly
identified targets, out of all identified targets by the system,
and is represented as Precision = TP/(TP + FP). Two other
measures have been used to report the characteristics of the
detection sensitivity of the system. One of them is Sensitivity
(similar to Recall: the proportion of correctly identified tar-
gets, out of all targets presented in the set), which is expressed
as Sensitivity = TP/(TP + FN). The other is Specificity,
defined as the proportion of correctly rejected targets from
all the targets that should have been rejected by the system
and which is expressed as Specificity = TN/(TN + FP).
These measures are typically represented in what is called
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Table 1: Testing phase of the neural network predicting lowest 30%
math scores.

Prediction of performance

∼30% lowest 30% lowest

Observed performance
∼30% lowest 71.40% 28.60%

30% lowest 0% 100%

a “confusion matrix” representing all four outcomes (see
Table 1).

In addition, the evaluation of ANN performance is car-
ried out with a summative measure, which is used to account
for the somewhat complementary relationship between
Precision and Recall. This measure is defined as F1 = (2 ∗
Precision ∗ Recall)/(Precision + Recall). Such a definitional
expression of F1 assumes equal weights for Precision and
Recall. This assumption can be modified to favor either
Precision or Recall, according to the utility and cost/benefit
ratio of outcomes favoring either Precision or Recall for any
given predictive circumstance.

3. Method

The sample included 800 university students, of both gen-
ders, ages between 18 and 25, enrolled in the first year in sev-
eral different disciplines (psychology, engineering, medicine,
law, social communication, business, and marketing), in
three universities, during the 2009-2010 academic year.

3.1. Instruments

3.1.1. Attention Network Test (ANT) [72]. This task provides
a measure for each of the three anatomically defined atten-
tional networks: alerting, orienting, and executive. Partici-
pants are asked to determine when a central arrow points
left or right. The ANT’s responses were collected via two
mouse buttons (left-right). They were instructed to focus on
a centrally located fixation cross throughout the task and to
respond as quickly and accurately as possible. During
the practice trials, but not during the experimental trials,
subjects received feedback from the computer on their
speed and accuracy. The practice trials took approximately
2 minutes, and each of the three experimental blocks was
approximately 5 minutes long. The whole experiment took
about twenty minutes. The measure for (general) attention is
the average response time regardless of the cues or flankers.
To analyse the effect of the three attentional networks, a
set of cognitive subtractions described by Fan et al. [72]
were used. The efficiency of the three attentional networks
is assessed by measuring how response times are influenced
by alerting cues, spatial cues, and flankers [72]. The alerting
effect was calculated by subtracting the mean response
time of the double-cue conditions from the mean response
time of the no-cue conditions. For the orienting effect, the
mean response time of the spatial cue conditions (up and
down) was subtracted from the mean response time of the
centre cue condition. Finally, the effect of the executive
control (conflict effect) was calculated by subtracting the

mean response time of all congruent flanking conditions,
summed across cue types, from the mean response time of
incongruent flanking conditions [72].

3.1.2. Automated Operation Span [44]. This is a computer-
administered version of the Ospan instrument [44] that
measures working memory capacity. The responses were
collected via click of a mouse button. This study reported
Absolute Ospan score that is interpreted as the measure
of overall working memory capacity and one Reaction
Time’s score (operations). The task took approximately 20–
25 minutes to complete [44].

3.1.3. Learning Strategies Questionnaire [77–79]. A validated
Spanish version was administered. It is a 77-item question-
naire with 10 scales that assesses the students’ awareness
about, and use of, learning and study strategies related
to skill, will, and self-regulation components of strategic
learning. The Attitude Scale assesses students’ attitudes and
interest in college and academic success. It examines how
facilitative or debilitative their approach to college and aca-
demics is for helping them get their work done and for
succeeding in college (sample item: I feel confused and unde-
cided as to what my educational goals should be). The
Motivation Scale assesses students’ diligence, self-discipline,
and willingness to exert the effort necessary to successfully
complete academic requirements (sample item: When work
is difficult I either give up or study only the easy parts).
The Time Management Scale assesses students’ application of
time management principles to academic situations (sample
item: I only study when there is the pressure of a test). The
Anxiety Scale assesses the degree to which students worry
about school and their academic performance. Students who
score low on this scale are experiencing high levels of anxiety
associated with school (note that this scale is reverse scored).
The Concentration Scale assesses students’ ability to direct
and maintain attention on academic tasks (sample item: I
find that during lectures I think of other things and do
not really listen to what is being said). The Information
Processing Scale assesses how well students can use imagery,
verbal elaboration, organization strategies, and reasoning
skills as learning strategies to help build bridges between
what they already know and what they are trying to learn
and remember, that is, knowledge acquisition, retention,
and future application (sample item: I translate what I am
studying into my own words). The Selecting Main Ideas Scale
assesses students’ skill at identifying important information
for further study from among less important information
and supporting details (sample item: Often when studying
I seem to get lost in details and cannot see the forest for the
trees). The Study Aids Scale assesses students’ use of supports
or resources to help them learn or retain information
(sample item: I use special helps, such as italics and headings
that are in my textbooks). The Self-Testing Scale assesses
students’ use of reviewing and comprehension monitoring
techniques to determine their level of understanding of the
information to be learned (sample item: I stop periodically
while reading and mentally go over or review what was
said). The Test Strategies Scale assesses students’ use of test
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preparation and test taking strategies (sample item: In taking
tests, writing themes, etc., I find I have misunderstood what
is wanted and lose points because of it). Items were scored on
a 5-point Likert scale ranging from “Always” to “Never.”

3.1.4. Online Motivation Questionnaire (OMQ) [97]. The last
version of the On-Line Motivation Questionnaire, namely,
the OMQ91 [97], was used to study motivational variables.
This is a self-report questionnaire that is applied to a specific
task (in this study, a mathematical task), and it consists of two
parts (Part 1: before the task; Part 2: after the task). This study
reports the Part 1 (appraisal part) that included 23 items
that measure three aspects of task motivation: appraisals,
emotions, and learning intention. Appraisals are registered
by 13 items that measure three aspects of task judgment:
personal relevance of the curricular task (e.g., How useful
do you consider this task), subjective competence (e.g., How
good are you at doing this type of task?), and task attraction
(e.g., How much do you like this type of task?). Six items
refer to emotional state (e.g., How do you feel now? Nervous-
not nervous; happy-not happy). Four items measure learning
intention (e.g., How much effort are you going to invest
in the task?). Students were asked to answer the questions
focusing on a multiple choice mathematics task. Items were
scored on a 4-point Likert scale ranging (e.g., not at all well,
not so well, well, very well).

3.1.5. Mathematics Test. This test consisted of 65 multiple
choice items with four or five options and only one correct
answer (50 items were taken from a national test [98], and
15 items were extracted from disclosed items of the Trends
in International Mathematics and Science Study [99]. The
local calibration for the test was done applying a 3-parameter
Item Response Theory model (IRT model). The equating to
the TIMSS results was done using a 1-parameter IRT model,
centred on ability, because the TIMSS statistical data uses
only one parameter for the analysis and reporting. The items
measure simple algorithms for arithmetic problems: some
items required the use of percentages or proportions, decimal
numbers, and a few others are algebraic and geometric
questions. There was no time limit to take the test, but its
duration for all students was under two hours. In order to
guarantee that it was not a speeded test (which would violate
the IRT assumptions), the allotted time was such that more
than 95% of the students could complete the test by at least
attempting a response to all the questions; this number was
actually much higher, closer to 99% of the students.

In addition, a questionnaire was administered in order to
collect background variables: gender, highest level of educa-
tion of mother and father (i.e., did not complete mandatory
primary school, completed primary school, completed sec-
ondary school, completed undergraduate university studies,
completed postgraduate studies), occupation of parents, and
secondary school from which the student graduated (i.e.,
public, private religious school, private nonreligious school,
bilingual school, foreign community school).

3.2. Analyses Procedure. The ANN model used was a back-
propagation multilayer perceptron neural network, that is,

a multilayer network composed of nonlinear units, which
computes its activation level by summing all the weighted
activations it receives and which then transforms its activa-
tion into a response via a nonlinear transfer function. During
their training phase, these systems evaluate the effect of the
weight patterns on the precision of their classification of
outputs, and then, through backpropagation, they adjust
those weights in a recursive fashion until they maximize
the precision of the resulting classifications. A predictive
classification architecture based on neural networks (ANNs)
model development was developed for each targeted future
mathematical performance group: lowest 30%, middle 30%,
and highest 30% of student performance groups. ANN
parameters and variable groupings, as well as all other
network architecture parameters, were manipulated to max-
imize predictive precision and total accuracy. Confusion
matrices have been determined for each ANN, as well as
receiver operating characteristic (ROC) curves to determine
the discrimination level of the model. ROC analyses provide
a very useful measure to establish the performance of the
classifier at various levels of true positive and true negative
rates, using sensitivity and specificity values. Parameters
such as learning rate, momentum, number of hidden layers,
stopping rules, transfer functions, and number of nodes were
specified and manipulated in the model construction phase
in order to maximize the overall performance of the models.

3.3. Architecture of the Neural Networks. Three different neu-
ral networks (ANNs) were developed as predictive systems
for the mathematics task of this study. ANN1 was developed
to maximize the predictive classification of the lowest 30%
of students, which would be scoring the lowest in the
mathematics test. ANN2 was developed to maximize the
predictive classification of the highest 30% of students, which
would be scoring the highest in the mathematics test. ANN3
was developed to predict the middle 30% of students, which
would be scoring in the middle level of performance in the
mathematics test. The specific architecture of each of the
three neural networks developed is as follows.

ANN1 (low 30%): all cognitive, motivational, and back-
ground variables were introduced in the analysis. They were
used for the development of the vector-matrix containing all
predictor variables for each student. The resulting network
contained all the input predictors; some of them collapsed
into subscales to maximize predictive classification, with
a total of 36 input units. The model built contained one
hidden layer, with 8 units. The output layer contained two
units (categories corresponding to “belongs to lowest 30%”
or “belongs to highest 70%”). A standardized method for
the rescaling of covariates was used. The hidden layers
had hyperbolic tangent activation functions, which is the
most common activation function used for neural networks
because of its greater numeric range (from −1 to 1) and
the shape of its graph. For the output layer, the activation
function chosen was identity, and the error function the sum
of squares.

ANN2 (high 30%): all cognitive, motivational, and back-
ground variables were introduced in the analysis. They were
used for the development of the vector-matrix containing all
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predictor variables for each student. The resulting network
contained all the input predictors; some of them collapsed
into subscales to maximize predictive classification, with a
total of 36 input units. The model built contained two hidden
layers, with 8 and 6 units, respectively, and an output layer
with two units (categories corresponding to “belongs to
highest 30%” or “belongs to lowest 70%”). A standardized
method for the rescaling of covariates was used. The hidden
layer and output layer had a hyperbolic tangent activation
function, and the error function the sum of squares.

ANN3 (middle 30%): all cognitive, motivational, and
background variables were introduced in the analysis. They
were used for the development of the vector-matrix contain-
ing all predictor variables for each student. The resulting
network contained all the input predictors; some of them
collapsed into subscales to maximize predictive classification,
with a total of 36 input units. The model built contained
one hidden layer with 1 unit and one output layer with two
units (categories corresponding to “belongs to middle 30%”
or “belongs to extreme 30%’s”). A standardized method for
the rescaling of covariates was used. The hidden layer had a
hyperbolic tangent activation function, and the output layer
applied a softmax activation function.

The software used was SPSS v.19, Neural Network Mod-
ule, for the development and analysis of all predictive models
in this study. The usual three development phases of the
predictive system were carried out: training of the network,
testing of the network developed, and validation of the
network. During the training phase several models were
attempted, and several modifications of the neural network
parameters were tried, manipulating learning persistence,
learning rate, momentum, and other criteria. These tests
continued until achieving desired levels of classification,
maximizing the benefits of the model chosen. In this analysis
both precision and recall, as outcome measures of the
network, were given equal weight. There was no need to trim
the number of predictor inputs in the three models.

3.4. Discriminant Analyses. Discriminant analyses (DA) were
carried out using the same data and the same categories
of mathematical performance used in the neural networks
analyses. The DA1 was performed to discriminate between
the students belonging to the lowest 30% of mathematical
performance and those not in that category. The DA2 has
been focused on identifying students in the highest 30%
versus those not in that group, and the DA3 was calculated
to discriminate the students belonging to the middle 30%
and those not in that category. In order to give every variable
the opportunity to contribute significantly to the prediction,
a stepwise discriminant analysis was calculated for each
category including all independent variables. In addition, we
calculated three discriminant analyses, one for each category
including the independent variables of the maximised neural
networks of each category.

4. Results

The ANN1 was able to reach 100% correct identification of
all students that belong to the target group (lowest 30%) in

Table 2: Relative importance of the top variables participating in
the model for the predictive classification of the lowest 30% of
scores in the mathematics test.

Independent variable importance, low 30% group

Importance
Normalized
importance

Gender .035 34.2%

Mother’s educational level .028 28.2%

Father’s educational level .024 23.9%

Mother’s occupation .065 64.5%

Father’s occupation .059 58.8%

Age .062 61.5%

Competence-related attribution
for success

.041 40.3%

Personal relevance of task .029 28.3%

Subjective competence .043 42.7%

Task attraction .042 41.8%

Learning intention .052 51.8%

Reported effort .062 61.1%

Expected result of assessment .099 97.7%

Emotional state .062 61.3%

Alerting attention .029 29.1%

Orienting attention .018 17.4%

Executive attention .067 66.4%

Working memory .081 80.6%

Reaction time (operations) .101 100.0%

Table 3: Testing phase of the neural network predicting highest
30% math scores.

Prediction of performance

∼30% highest 30% highest

Observed
performance

∼30% highest 66.70% 33.30%

30% highest 0% 100%

both the training and testing phase. The precision of NN1
equalled .75 on a maximum of 1 (see Table 1). The sensitivity
of the network equalled 1, and the specificity was equal
to .714 from a maximum of 1. The area under the curve
equalled .953 from a maximum of 1.

Table 2 shows the actual predictive weight of each input,
and Figure 1 shows the normalised importance of the differ-
ent variables for the ANN1 predictive classification. These
results indicate that reaction time (operations), expected
result of assessment, and working memory were the most
important predictors.

The ANN2 reached an accuracy of 90% and 100% in
the training and testing phase, respectively. The precision
of ANN2 equalled .80 from a maximum of 1 (see Table 3).
The sensitivity of the network equalled 1, and the specificity
amounted to .667 from a maximum of 1. The area under the
curve equalled .958 from a maximum of 1.

Figure 2 shows the normalised importance of the differ-
ent variables for the ANN2 predictive classification. The most
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100%

97.7%

80.6%

66.4%

64.5%

61.5%

61.3%

61.1%

58.8%

51.8%

42.7%

41.8%

40.3%

34.2%

29.1%

28.3%

28.2%

23.9%

17.4%

Reaction time (operations)

Expected result of assessment

Working memory

Executive attention

Mother’s occupation

Age

Emotional state

Reported effort

Father’s occupation

Learning intention

Subjective competence

Task attraction

Competence-related attribution for success

Gender

Alerting attention

Personal relevance of task

Mother’s educational level

Father’s educational level

Orienting attention

Normalized importance

Figure 1: Normalized importance of the top variables participating in the model for the predictive classification of the lowest 30% of scores
in the mathematics test.

important variables for the prediction of ANN2 (high 30%)
were the task attraction and father’s occupation.

Both networks showed interesting differences in the
pattern of relative normalized importance of those variables
with the highest participation in the predictive model. For
the low performers (those predicted to be in the lowest 30%
of scores), several basic cognitive variables were most impor-
tant in attaining a correct classification, such as “reaction-
time,” “working memory capacity,” and the closely related
“executive attention,” all having to do with the control and
the speed of processing. In fact, three out of the top four vari-
ables in terms of relative predictive importance correspond to
basic cognitive processing variables, with high relative values.
Among the self-regulation variables, only “expected results of
the assessment” appeared among the most predictive.

On the other hand, results from the predictive model for
those expected to be in the highest 30% of the scores, the top
three predictors with the most significant participation were
“task attraction,” “father’s occupation,” and “reported effort,”
all among the self-regulation and background variables.
Only “working memory capacity” (as measured by “absolute
AOSPAN”) among the basic cognitive processing variables
appeared among the top five predictors and then with a much
lower relative importance than for the low 30% group. It is
quite evident the relative lower importance of all cognitive
control and speed of processing variables, which are not
discriminated well for the predictive classification in the
highest 30% group. It is also worth noting the relative high

Table 4: Testing phase of the neural network predicting for middle
30% math scores.

Prediction of performance

∼30% middle 30% middle

Observed performance
∼30% middle 67.6% 32.4%

30% middle 29.4% 70.6%

importance of parents’ occupation in both low and high
groups, particularly in the first neural network.

4.1. ANN3 (Middle 30%) . The ANN3 showed an accuracy
of 74.5% and 70.6% in the training and testing phase,
respectively. The precision of ANN3 equalled .70 from a
maximum of 1 (see Table 4). The sensitivity of the network
equalled .70, and the specificity amounted to .67 from a
maximum of 1. The area under the curve equalled .725 from
a maximum of 1.

The most important variables for the prediction of ANN3
(middle 30%) were positive learning strategies and study
techniques, reaction time (natural logarithm) of attentional
networks, time management, and subjective competence (see
Figure 3).

4.2. Discriminant Analyses. DA1 focused on the lowest
30% of the students and the rest. One of the restrictions
of this analyses refers to the assumption of equality of
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Figure 2: Normalized importance of the top variables participating in the model for the predictive classification of the highest 30% of scores
in the mathematics test.

100%

94%

88%

72%

50%

45%

42%

40%

36%

33%

32%

28%

22%

18%

15%

14%

9%

6%

6%

1%

Positive learning strategies and study techniques

Time management

Subjective-competence SRL
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Figure 3: Normalized importance of the top variables participating in the model for the predictive classification of the middle 30% of scores
in the mathematics test.
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covariance matrices that, in this case, is violated (Box’s M =
302.730, F = 1.382, P = .001). None of the variables, that
were also included in the ANN1, were able to discriminate
between the two groups of the students. The squared
canonical correlation (CR2) gives the amount of variation
between the groups that is explained by the discriminating
variables; in this case it was low (Wilk’s λ = .786, χ2 =
135.050, df = 20, P = .001, CR

2 = .21).

DA2 was calculated to discriminate between the highest
30% of mathematical performance and the rest 70% of
students, entering the same independent variables that were
used into ANN2. Results show that the independent variables
were not able to discriminate between both groups of
students. The Box’s M statistic is significant (Box’s M =
321.229, F = 1.471, P = .001), meaning that the assump-
tion of equality of covariance matrices is violated. In this
analysis the squared canonical correlation indicated that the
strength of the function is low (Wilk’s λ = .756, χ2 =
157.390, df = 20, P = .001, CR

2 = .24).

DA3 involved the same variable as the ANN3 to predict
the middle 30% of mathematical performance. The assump-
tion of equality of covariance matrices was violated (Box’s
M = 303.897, F = 1.395, P = .001). In this case, also none
of the variables were able to discriminate between the stu-
dents in the mid 30% group and the extreme 30% groups;
the explained variance was also low (Wilk’s λ = .951, χ2 =
28.336,df = 20, P = .102, CR2 = .049).

5. Discussion

It is clear from these results that besides the high predictive
power of the three neural networks to model the expected
performance of low, middle, and high performance groups
of students, this methodology has also detected important
differences in the factors that seem to underlie the students’
performance. Among the student groups with the lowest
30% of math performance, the main determinants of per-
formance appear to be basic cognitive processing variables,
indicating the degree to which they represent the areas of
relative weakness in the group and more discriminating from
the rest of the students. This seems to indicate that it is the
area of basic cognitive abilities, in other words, the basic
processing capacity of the cognitive system in these students
that best provides the information necessary to correctly
identify this group. There is an extensive literature indicating
a strong correlation between poor math performance and
low working memory [56–62]. Children with mathematical
disorders have difficulty in holding information in their
memory while performing another activity (e.g., counting)
or when they must inhibit irrelevant information [7, 63].
They perform poorly in tasks that measure visual-spatial
working memory and central executive functions [61, 64–
67].

On the other hand, among the student groups with the
highest 30% of math performance, the main determinants
of performance appear to be self-regulation and background
variables (particularly, how interested students were in the
task and social indicators such as parents’ occupation). In

this group cognitive processing variables had much lower
levels of importance in terms of their predictive weights,
probably due to the fact that this group was much stronger
in its levels of cognitive processing, and therefore these
variables are less discriminating when the model attempts
to classify the students according to their performance level.
Working memory, reaction time, and attentional networks
seem to be much less discriminating among students who
reach certain threshold levels needed for basic mathematical
problem solving. The items about self-regulated learning
were important for students with high performance, reflect-
ing their appreciation of the content and context of the
math test. The model of adaptive learning [100–102] explains
how the mental representation that the student forms of
a specific (math) task depends on the context sensitivity,
and this context depends on the links between specific
appraisals and one or more domain-specific motivational
beliefs. Consequently, the performance will be moderated
by these interactions, and in this study in particular, SRL-
variable results become even more predictive when the
basic cognitive variables become less discriminating (high
performance group).

The prediction for the middle 30% level of math per-
formance group of students shows a particular pattern
involving learning strategies and self-efficacy (as important
motivational beliefs), together with attentional resources,
as important predictors. Moreover, working memory does
not seem to improve the prediction of performance for this
middle group of students, indicating that their mathematical
performance is more determined by processes related to
self-regulated learning (i.e., learning strategies, motivational
beliefs, and attention). These are variables more related to
environmental, instructional, and training constructs, rather
than to basic cognitive processes such as working memory.

The results of the discriminant analyses (DA) confirm the
lack of significant linear relations between the independent
variables analysed here and mathematical performance.
Neural network models have an important advantage in this
area, because ANN models are able to model nonlinear and
complex relationships among variables. Another assumption
required for traditional statistical predictive models (e.g.,
equality of covariance matrices) was violated for the three
stepwise discriminant analyses that were performed to
predict a specific category (lowest 30% or not, highest 30% or
not, and middle 30% or not). Even with this restriction, the
amount of variance explained was low in the three DA anal-
yses. None of the variables were able to discriminate between
the different categories of mathematical performance. When
we compare these results with the ANNs analysed in this
study, it can be concluded that ANNs are more robust and
perform significantly better than other classical techniques,
as prior studies have indicated [36, 95].

The predictive systems approach allows for the concep-
tualization and development of new modes of assessment
which could facilitate breaking away from traditional forms
of testing while at the same time improving the quality
of the assessment process [23, 42, 103]. In addition, this
new methodology allows for the understanding of the
students’ individual characteristics and for the prediction of
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expected performance levels. This opens major possibilities
for improvement of evaluation procedures and the planning
of interventions. In addition, it has implications for the
application of these methods in educational research and in
the implementation of diagnostic “early-warning” programs
in educational settings, as well as informing cognitive theory
and the development of automated tutoring and learning sys-
tems. The capacity to very accurately classify students, which
is also what tests attempt to do, without the performance
sampling issues of traditional testing, and using a much
broader spectrum of all factors influencing a student’s overall
performance, is a major advantage of the ANNs methodol-
ogy. In fact, such an approach also represents a much more
valid approach to educational evaluation due to its overall
accuracy and the breadth of the constructs considered to
classify the expected performance.
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