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Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis
(AS). Adenosine 5'-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-«B)/Yin Yang
1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid
isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimi-
crobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against
endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF-
(tumor necrosis factor-) a-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular
mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting
Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial
microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines
was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-xB and YY1 was detected by
Real-Time PCR (RT-PCR). The protein expression of NF-«xB, YY1, and AMPK was detected by immunofluorescence mi-
croscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of
proinflammatory cytokines (IL-6, IL-8, and IL-1p) increased in TNF-«a-induced injured HUVECs, but ameliorated by BBR
pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of
NEF-«B and YY1 in injured HUVECs induced by TNF-a, which were offset by the AMPK inhibitor Compound C (CC). The
results indicated that BBR protected against TNF-a-induced endothelial injury via the AMPK/NF-«B/YY1 signaling pathway.

1. Introduction

Atherosclerosis, a progressive inflammatory disease of large-
and medium-sized arteries, is the main pathological changes
of cardiovascular diseases [1]. Endothelial cell dysfunction,
manifested in lesion-prone areas of the arterial vasculature,
results in the earliest detectable changes in the life history of
an atherosclerotic lesion the focal permeation, trapping, and

physicochemical modification of circulating lipoprotein
particles in the subendothelial space [2]. Endothelial injury,
characterized by an inflammatory response and increased
permeability, is an initial stage of atherosclerosis (AS). In-
creased endothelial permeability leads to augment of reactive
oxygen species (ROS), deposition of low-density lipopro-
teins (LDLs), and infiltration of circulating leucocytes [3-5].
Extracellular lactic dehydrogenase (LDH) concentration and
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endothelial microparticle (EMP) numbers are the main
indices of endothelial permeability [6, 7]. The expression of
inflammatory cytokines, including interleukin 6 (IL-6), IL-8,
and IL-1B3, promotes the adhesion and infiltration of
monocytes into the vascular endothelium and further leads
to endothelial injury [8-10]. Moreover, the inflammatory
response causes dissociation of cell-cell junctions between
endothelial cells as well as cytoskeleton contraction,
resulting in endothelial permeability [11]. The hyper-
permeability of the endothelium, in turn, contributes to the
vascular inflammatory response by activating inflammatory
cytokines [12-14].

Adenosine 5'-monophosphate (AMP) activated protein
kinase (AMPK) is an enzyme mainly regulated by cellular
AMP and plays a vital role during the period of energy stress
which can restore energy balance by phosphorylating
multiple key factors [15, 16]. AMPK activation is involved in
many inflammatory signaling pathways and closely associ-
ated with atherosclerosis [17]. NF-«B has long been con-
sidered a prototypical proinflammatory signaling pathway,
largely based on the activation of NF-xB by proinflammatory
cytokines such as IL-6 and tumor necrosis factor o (TNFa)
and the role of NF-«xB in the expression of other proin-
flammatory genes including cytokines, chemokines, and
adhesion molecules [18, 19]. NF-xB activation aggravates the
inflammatory response by upregulating inflammatory cy-
tokines [20]. Yin Yang 1 (YY1), a 65-kDa ubiquitous
multifunction transcription factor, is a member of the GLI-
Kruppel family and regulates inflammatory gene expression
via binding to the NF-«B p65 heterodimer complex pro-
moter context [21, 22]. Previous studies demonstrated that
the NF-xB/YY1 signaling pathway is closely associated with
endothelial injury [22-24].

Berberine (BBR), the principal component of Coptis
chinensis Franch. (family Ranunculaceae) [25], is a main
active ingredient in plenty of prescriptions including
Huanglian-Jie-Du-Tang (decoction of Coptidis rhizoma,
Scutellariae radix, Phellodendri cortex, and Gardeniae
fructus), DaHuang-Haunglian-Xie-Xin-Tang (Rhubarb and
Coptis Heart-Draining Decoction), and Huanglian Tang
(Coptis Decoction), which have been used in clinical
treatment for centuries [26]. Nowadays, BBR is used ex-
tensively to treat certain diseases, such as type-2 diabetes
mellitus (T2DM) [27-29], neurodegenerative diseases
[30, 31], tumors [32-34], and atherosclerotic diseases
[35-37]. Whether BBR protects against endothelial injury
via the AMPK/NF-xB/YY1 signaling pathway remains un-
clear. This study was designed to test the effect of BBR on
protecting against endothelial injury and explore its possible
mechanism. Preliminary experiments demonstrated that
20 uM BBR significantly increased HUVEC viability injured
by TNF-a (P<0.01), so the concentration of BBR was
chosen as 20 uM in the present study.

2. Materials and Methods

2.1. Cell Culture. HUVECs (ScienCell, USA, #8000) were
cultured in an endothelial cell medium (ECM) with 5% FBS,
1% endothelial cell growth supplement, and 1% penicillin/
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streptomycin at 37°C in a humidified atmosphere with 5%
CO,. HUVECs within 4-7 passages were used and divided
into three groups: (1) control group: HUVECs were cultured
in the ECM medium without serum for 24 h and then in the
ECM medium with serum for 24 hours; (2) TNF-a group:
HUVECs were cultured with no serum for 24 hours and then
in the ECM medium with serum and TNF-« 20 ng/mL for 24
hours; and (3) TNF-a+BBR (20 uM) group: beside the 2
groups, HUVECs were pretreated with 20 uM BBR for 2
hours.

2.2. Chemical Reagents and Antibodies. Recombinant hu-
man TNF-a was purchased from PeproTech Inc. (Rocky
Hill, NJ, USA, Lot: 300-01A). TNF-«a was dissolved in
ultrapure water and stored in —20°C. Endothelial cell
medium, fetal bovine serum, endothelial cell growth
supplement, and penicillin/streptomycin solution
(#1001) were purchased from ScienCell Research Lab-
oratories (Carlsbad, CA, USA, Lot: #8000). Berberine
HPLC >98% was purchased from Coolaber Science and
Technology (China, Lot: Z21449). Berberine was dis-
solved in dimethyl sulfoxide and stored in —20°C. Anti-
AMPK antibody (2532s) and phosphor-AMPK antibody
(2535T) were purchased from Cell Signaling Technol-
ogy. Anti-NF-xB p65 antibody (ab32536), anti-YY1
antibody (ab109237), and goat anti-rabbit IgG H&L
(ab150077) were purchased from Abcam Biotechnology.
IL-15 Rabbit Polyclonal antibody was purchased from
Proteintech (China, Lot: 16806-1-AP). Compound C, 6-
[4-(2-piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-
pyrrazolo-[1,5-a]-pyrimidine), was purchased from
Sigma-Aldrich (St. Louis, MO, USA, Lot: CAS866405-
64-3). Peroxidase-conjugated goat anti-rabbit 1gG
(H+ L) was purchased from ZSGB-BIO. PE mouse anti-
human CD31 and APC mouse anti-human CD42b were
purchased from BD Bioscience (Becton, Dickinson and
Company, USA, Lot: 566125, 551061). CCK-8 assay Kkits
were purchased from Dojindo Molecular Technologies
(Japan, Lot: CK04). The LDH cytotoxicity assay kit and
BCA protein assay kit were purchased from Beyotime
(China, Lot: C0017, BC201). Human IL-6 and IL-8
ELISA kits were purchased from Multisciences (China,
Lot: EK1062 and EK1082). RIPA was purchased from
Solarbio Life Science (China, Lot: P0013B). TRIzol re-
agent was purchased from Invitrogen (Sigma, USA, Lot:
15596018).

2.3. Cell Viability Assay. HUVECs were seeded in 96-well
plates with the density of 6 x 10° per well and cultured in a
medium (including 5% FBS, 1% endothelial cell growth
supplement, and 1% penicillin/streptomycin) for 24 hours.
The medium was replaced without serum for 24 h incuba-
tion. HUVECs were subsequently treated with different
concentrations of TNF-a or BBR for 24 hours. Thereafter,
HUVEC viability was measured with Cell Counting Kit-8
assay according to the instructions of the manufacturer. The
absorbance at 450nm was detected using a microplate
reader.
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2.4. LDH Leakage. HUVECs were pretreated for 2 hours
with BBR (20uM and 40 uM) and then stimulated with
TNF-a (20 ng/mL) for 24 hours. The 120 uL supernatant of
each well was taken out and transferred into new 96-well
plates with 60 uL LDH testing fluid and incubated at room
temperature (about 25°C) for 30 minutes. The absorbance at
490 nm was detected using a microplate reader.

2.5. Flow Cytometry Analysis. The supernatant was centri-
fuged at 5000 x g for 10 minutes and at 20500 x g for 150
minutes for collecting EMPs. The EMPs were washed in PBS
and incubated with 10 yuL of PE mouse anti-human CD31
and 5 uL. APC mouse anti-human CD42b for 1 hour at 4°C.
EMPs were then washed three times in PBS and detected
with a Coulter EPICS XL flow cytometer (Beckman Coulter,
Villepinte, France). Finally, EMPs of 0.1 to 1um diameter
were calculated with an FL/FSC fluorescence dot plot.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). The
supernatant was collected to test the expression of IL-6 and
IL-8 by ELISA according the manufacturer’s instructions.
Briefly, combining rat anti-mouse cytokine antibodies with
IL-6 and IL-8, the absorbance at 450 nm was detected using a
microplate reader.

2.7. Real-Time PCR (RT-PCR). Total RNA was extracted
using TRIzol according to the manufacturer’s instructions.
cDNA was diluted to a concentration of 1.5uM. The RT-
PCR was performed by using a Bio-Rad MyIQ single-color
RT-PCR detection system with Optic system software ver-
sion 1.0. Ten ng cDNA, 2 x universal PCR master mix,
300 nmol/L forward primer, 300 nmol/L backward primer,
and 200 nmol/L Tagman probe were mixed for each PCR,
and the final volume was 25 uL. PCR amplification of the
housekeeping gene cyclophilin A and of NF-xB and YY1 was
performed (1 cycle at 50°C for 2 minutes and 1 cycle at 95°C
for 10 minutes, followed by 50 cycles of 95°C for 15 seconds
and 60°C for 1 minute). A standard curve was generated, and
all assays were performed in duplicate. Relative RNA copy
numbers were calculated from standard curves that were
obtained by serial dilution of quantified template cDNA. The
relative expressions of NF-xB and YY1 were calculated using
the 272" method. Fold change=2""*“, AACt=(Ct
Sample — Ct ﬁ-actin)_(Ct Control — Ct /)’—actin)- The expression of
each target gene was normalized referring to the expression
of the housekeeping gene cyclophilin. The primers used in
RT-PCR are shown in Table 1.

2.8. Immunofluorescence Microscopy. HUVEs were washed
three times after fixing with 4% paraformaldehyde and
incubated with primary antibodies, including anti-NF-«B
p65 antibody and and anti-YY1 antibody, at 1:100 dilution
for overnight at 4°C, and incubated with secondary antibody,
goat anti-rabbit 1gG (Alexa Fluor 488), at 1:1000 dilution for
2h with 4'—6—diamidino—Z—phenylindole (DAPI) nuclear
counterstain. HUVECs were then pictured with a confocal

TaBLE 1: The primers used in RT-PCR.

Name Primer sequences

B-Actin F: 5 -lGGGTGTGAACCATGAGAAGT-?’
R: 5'-GACTGTGGTCATGAGTCCT-3

NF-«B F: 5'-GGGATGGCTTCTATGAGGCT-3'
R: 5'-CTGACTGATAGCCTGCTCCA-3’

YY1 F: 5'-GTCTGTGCAGAATGTGGCAA-3'

R: 5'-TGTGCGCAAATTGAAGTCCA-3’

F: forward primer; R: reverse primer.

microscope (ZEISS, Germany) and analyzed using ZEN
microsystem software.

2.9. Western Blot Analysis. The proteins were extracted
from HUVECs using RIPA buffer with 1% protease in-
hibitors and 1% phenylmethanesulfonyl fluoride (PMSF).
After measurement of protein concentration, the equiv-
alent amounts of protein (10 uL/lane) were separated by
8-12% sodium dodecylsulfate-polyacrylamide gels for
electrophoresis and electrophoretically transferred to
polyvinylidene difluoride membranes. The membranes
were blocked with 5% skimmed milk at room temperature
for 2 hours and then incubated with primary antibodies
overnight at 4°C, followed by incubation with secondary
antibodies at room temperature for 1 hour. The immu-
noreactive bands were then visualized using the Super-
Signal West Femto Maximum Sensitivity Substrate
reagent (Thermo Scientific). Rabbit anti-f-actin was used
as an inner control. The images were quantitatively an-
alyzed using the Image J program.

2.10. Statistical Analysis. All statistical analysis was per-
formed using GraphPad Prism version 5.0 (GraphPad
software, San Diego, CA, USA). The data were presented as
mean + SD (standard deviation), and the difference between
groups was compared using one-way analysis of variance
(ANOVA) and Student’s t-test. Values of P<0.05 were
considered statistically significant.

3. Results

3.1. Berberine Improves the Viability of HUVECs. To assess
the effect of BBR pretreatment on the viability of HUVECs,
CCK-8 assays were performed. After incubation with TNF-«
at the concentration of 20 ng/mL for 24 h, the cell viability
was decreased (P<0.01, Figure 1(a)), and the levels of
proinflammatory cytokine (IL-6) and extracellular LDH
concentration were increased as compared with the control
group (P<0.01, Figures 1(b) and 1(c)). However, pre-
treatment with 20 uM BBR significantly increased the via-
bility of HUVECs compared with the TNF-a group
(P <0.01, Figure 1(d)).

3.2. Berberine Reduces the Endothelial Permeability of
HUVECs. Extracellular LDH concentration and EMPs
numbers were measured to test the effect of BBR
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FIGURE 1: Viability of HUVECs, IL-6 expression, and LDH leakage in TNF-a-induced injured HUVECs. (a) HUVEC:s viability. (b) IL-6
expression. (c) Extracellular LDH concentrations. (d) HUVEC viability after pretreatment with BBR for 2 hours followed by TNF-« (20 ng/
mL) for 24 hours. n=3. Data are expressed as mean+ SD. *P <0.05 and **P <0.01 compared with the control group. #P <0.05 and

##P <0.01 compared with the TNF-« group.

pretreatment on endothelial permeability. After incubation
with TNF-« at a concentration of 20 ng/mL for 24 hours,
extracellular LDH concentration (P <0.01 vs. control) and
EMP numbers (P <0.01 vs. control) increased as compared
with the control group. As compared with the TNF-« group,
BBR pretreatment decreased extracellular LDH concentra-
tion (P<0.01, Figure 2(a)) and EMP numbers (P <0.01,
Figure 2(b)).

3.3. Berberine Decreases the Expression of Proinflammatory
Cytokines. 1L-6, IL-8, and IL-1/3 were detected to investi-
gate the effect of BBR pretreatment on TNF-a-induced
inflammation. After incubation with TNF-« at the con-
centration of 20 ng/mL for 24 hours, the expression of IL-6,
IL-8, and IL-1f3 increased (P < 0.01 vs. control). Compared
with the TNF-a group, BBR pretreatment at concentration
of 20 uM decreased the expressions of IL-6, IL-8, and IL-1f3
(P <0.05, Figure 3).

3.4. Berberine Decreases the Expression of NF-xB and YY]I.
To determine whether the effect of BBR on HUVECs was
mediated by decreasing the expressions of NF-«B and YY1,
the expressions of mRNA and proteins of NF-xB and YY1
were tested. TNF-a treatment increased the mRNA and
protein of NF-«B p65 and YY1 (P <0.05 vs. control). As
compared with the TNF-«a group, BBR pretreatment de-
creased the expressions of mRNA and protein of NF-«B p65
(P<0.05, Figures 4(a) and 4(b)) and YY1 (P<0.05,
Figures 4(c) and 4(d)). In addition, TNF-« treatment caused
an increase of NF-xB and YY1 translocation into the nu-
cleus, while BBR pretreatment attenuated nuclear translo-
cation of NF-«B and YY1 (Figures 4(e) and 4(f)).

3.5. Berberine Induces the Activation of AMPK. To determine
whether the effect of BBR on the inflammation of HUVECs
induced by TNF-a was associated with AMPK activation,
HUVECs were coincubated with compound C (an AMPK
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Figure 3: Effect of BBR on the expression of IL-6, IL-8, and IL-1f3 in TNF-a-induced injured HUVECs. (a) IL-6 expression. (b) IL-8
expression. (c-d) IL-1p expression. Data are expressed as mean +SD. n=3. **P <0.01 compared with the control group; #P <0.05 and

##P <0.01 compared with the TNF-« group.

inhibitor). As compared with the TNF-a group, BBR pre-
treatment at a concentration of 20uM activated AMPK
phosphorylation in TNF-a-induced injured HUVECs
(P <0.01, Figure 5(a)). Nevertheless, the effect of BBR was
offset when coincubated with compound C (P<0.01,
Figure 5(b)). Compound C also lessened the effect of BBR on
decreasing the levels of NF-«B, YY1, and IL-18 (P <0.05,
Figure 5(c)).

4, Discussion

This study demonstrated that BBR alleviated endothelial
permeability and inflammatory reaction in TNF-« induced
injured HUVECs. The possible mechanism might be partly

associated with activating AMPK and decreasing the ex-
pressions of NF-xB and YY1.

Atherosclerosis is a lipid-driven inflammatory disease of
the arterial intima in which the balance of proinflammatory
and inflammation-resolving mechanisms dictates the final
clinical outcome [38]. Increased endothelial permeability
initiates a dysregulated transendothelial flux, leading to
abnormal deposition of lipids and infiltration of inflam-
matory cells in the intima, which promotes inflammatory
response and endothelial injury [39-41]. In the current study
of AS, most pharmaceutical interventions focused on re-
ducing the level of plasma cholesterol and the activation of
platelets, such as statins, ezetimibe, PCSKY, clopidogrel, and
ticagrelor [42-44], but no effective drug was found to protect
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FIGURE 4: Effect of BBR on the expression of NF-«B and YY1 in TNF-a-induced injured HUVECs. (a) mRNA expression of NF-«B p65. (b)
mRNA expression of YY1. (c) Expression of NF-«B p65. (d) Expression of YY1. (e) Nuclear translocation of NF-«B p65. (f) Nuclear
translocation of YY1. Data are expressed as mean + SD. n=3. *P <0.05 and **P <0.01 compared with the control group. #P < 0.05 and

##P <0.01 compared with the TNF-« group.

against endothelial injury, especially against hyper-
permeability and inflammation of endothelial cell. The
present study demonstrated that BBR reduced extracellular
LDH concentration and EMP numbers in TNF-a-induced
injured HUVECs, which is consistent with previous studies
[45-47]. BBR pretreatment also decreased the over-
expression of proinflammatory cytokines, including IL-6,
IL-8, and IL-1f, in injured HUVECs induced by TNF-q,
suggesting that BBR has a favorable effect on the inflam-
matory reaction of endothelial cells induced by TNF-a.
AMPK is a stress-activated protein kinase, which serves
as a cellular energy sensor [17]. AMPK activation inhibits the
inflammatory response in endothelial injury and demon-
strates a beneficial effect on atherosclerosis [48, 49]. The
present study showed a favorable effect of BBR on TNF-
a-induced endothelial injury, which was accompanied by
AMPK activation. However, compound C, an inhibitor of

AMPXK, significantly reduced the protective effect of BBR on
TNF-a-induced endothelial injury. Therefore, our findings
indicated that the protective effect of BBR on TNF-a-in-
duced endothelial injury was partially associated with
AMPK activation.

The NF-«xB pathway plays an essential role in in-
flammation through regulating the genes encoding
proinflammatory cytokines (IL-6 and IL-8) and adhesion
molecules [50, 51]. Hojo et al. demonstrated that Toll-like
receptor- (TLR-) 2-mediated inactivation of NF-«B sig-
nificantly inhibited the expression of IL-6 and IL-8 [52].
Tang et al. illustrated that the adhesion molecule ICAM-1
was significantly decreased via inhibiting the NF-xB
signaling pathway [53]. Moreover, NF-«B activation is
closely associated with increased endothelial permeability
[54]. YY1, a multifunctional transcription factor, is
overexpressed during endothelial injury [55, 56]. The NF-
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kB/YY1 pathway is one of the inflammatory signaling
pathways participating in endothelial injury [22, 23].
However, the association between the AMPK and NF-xB/
YY1 pathway is not unclear in our data. Our study il-
lustrated that the activation of AMPK reduced the ex-
pression of NF-xB and YY1 in TNF-a-induced injured
HUVECGs, and inhibiting AMPK phosphorylation by
compound C increased the expression of NF-xB and YY1.
Therefore, the present study indicated that AMPK was
upstream of the NF-«xB/YY]1 signaling pathway, and BBR
ameliorated endothelial injury induced by the TNF-« via
AMPK/NF-xB/YY1 signaling pathway.

There is a limitation in the present study. Only AMPK/
NF-«B/YY1 of many downstream pathways of AMPK in
HUVEGs, which is closely associated with endothelial
permeability and inflammation, was examined. Whether
BBR has some effects on other downstream pathways of
AMPK should be studied in future.

5. Conclusions

The present study suggested that BBR protected against
TNF-a-induced injury in HUVECs via the AMPK/NF-«B/
YY1 signaling pathway.
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