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Non-small-cell lung cancer (NSCLC) is one of the most devastating diseases worldwide. The study is aimed at identifying reliable
prognostic biomarkers and to improve understanding of cancer initiation and progression mechanisms. RNA-Seq data were
downloaded from The Cancer Genome Atlas (TCGA) database. Subsequently, comprehensive bioinformatics analysis
incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the protein-protein interaction
(PPI) network was conducted to identify differentially expressed genes (DEGs) closely associated with NSCLC. Eight hub genes
were screened out using Molecular Complex Detection (MCODE) and cytoHubba. The prognostic and diagnostic values of the
hub genes were further confirmed by survival analysis and receiver operating characteristic (ROC) curve analysis. Hub genes
were validated by other datasets, such as the Oncomine, Human Protein Atlas, and cBioPortal databases. Ultimately, logistic
regression analysis was conducted to evaluate the diagnostic potential of the two identified biomarkers. Screening removed 1,411
DEGs, including 1,362 upregulated and 49 downregulated genes. Pathway enrichment analysis of the DEGs examined the Ras
signaling pathway, alcoholism, and other factors. Ultimately, eight prioritized genes (GNGT1, GNG4, NMU, GCG, TAC1,
GAST, GCGR1, and NPSR1) were identified as hub genes. High hub gene expression was significantly associated with worse
overall survival in patients with NSCLC. The ROC curves showed that these hub genes had diagnostic value. The mRNA
expressions of GNGT1 and NMU were low in the Oncomine database. Their protein expressions and genetic alterations were
also revealed. Finally, logistic regression analysis indicated that combining the two biomarkers substantially improved the ability
to discriminate NSCLC. GNGT1 and NMU identified in the current study may empower further discovery of the molecular
mechanisms underlying NSCLC’s initiation and progression.

1. Introduction

As one of the most devastating diseases worldwide, lung can-
cer causes nearly 1.6 million mortalities each year [1–3].
Approximately 85% of lung cancers are characterized as

non-small-cell lung cancer (NSCLC) [4–6], which is typically
classified into two subtypes, squamous cell carcinoma (SCC)
and adenocarcinoma (AD), using standard pathology
methods [7–10]. Tobacco smoking is the most common risk
factor for lung cancer. Smoking is also associated with
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multiple risks, including worse tolerance of treatment, higher
risk of failure and second primary tumors, and poorer quality
of life. Indeed, it has become clear that the significant reduc-
tion in tobacco consumption would result in the prevention
of a large fraction of lung cancer cases and other smoking-
related diseases [11–13].

In addition, other factors such as air pollution, poor diet,
occupational exposure, and hereditary factors have been
reported in association with NSCLC in nonsmokers [14–16].
Over the past few years, newly developed cytotoxic agents,
including paclitaxel, gemcitabine, and vinorelbine, have
emerged to offer multiple therapeutic choices for patients with
LUAD [17–20]. However, chemotherapy for advanced NSCLC
is often considered ineffective or excessively toxic [21–23].

In an attempt to improve treatments for NSCLC, new
therapeutic strategies, such as the development of noncyto-
toxic targeted agents, have emerged [24–27]. Moreover, the
targeted therapies have significantly improved clinical out-
comes in a subset of lung cancer patients whose tumors har-
bor EGFR [28], ALK [29, 30], and HER2 alterations [31–33].

Despite recent advances in cancer treatment, unfortu-
nately, the current five-year survival rate of NSCLC remains
unsatisfactory [34–37]. Thus, it is imperative to identify
potential biomarkers and explore NSCLC’s underlying bio-
logical mechanisms.

In recent years, bioinformatics analysis has been utilized
as a powerful tool to explore novel prognostic and therapeu-
tic biomarkers and to unveil the potential mechanisms of
NSCLC [38–41]. For instance, a novel model including seven
genes was reported to indicate a promising prognostic bio-
marker for lung SCC patients using integrated bioinformatics
methods [41–43]. In addition, studies used comprehensive
bioinformatics analysis to show that the cell cycle pathway
may play a significant role in NSCLC in nonsmokers [44–47].

In the present study, RNA-Seq data were downloaded
from The Cancer Genome Atlas (TCGA) database. Then,
the EdgeR package was applied to uncover differentially
expressed genes (DEGs) between NSCLC tissues and normal
tissues. Using the resulting data, this study is aimed at unveil-
ing the underlying molecular mechanism of NSCLC onset and
progression through gene ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis,
and the protein-protein interaction (PPI) network. Subse-
quently, cytoHubba, a novel Cytoscape plugin, was used to
reveal the hub genes from 12 topological analysis methods.
Furthermore, the prognostic and diagnostic values of the
hub genes were further confirmed by survival analysis and
receiver operating characteristic (ROC) curve analysis.

The screening revealed two key genes, GNGT1 and NMU,
and the protein expressions of these genes were validated by
the Human Protein Atlas online database at the system level.
Their genetic alteration and coexpression were also revealed.
Finally, a logistic regression model was built to evaluate the
combined diagnostic capability of GNGT1 and NMU.

2. Materials and Methods

2.1. Downloading of TCGA Datasets and DEG Screening. The
mRNA expression data of NSCLC patients were downloaded

from the TCGA database (https://cancergenome.nih.gov/)
[48]. The criteria used were as follows: primary site (lung),
data category (Transcriptome Profiling), project ID
(TCGA-LUAD and TCGA-LUSC), experimental strategy
(RNA-Seq), and workflow type (HTSeq-counts). The other
filters were kept as default. Practical Extraction and Report-
ing Language (Perl) was utilized to extract the sample infor-
mation, generate the mRNA expression matrix, and
annotate gene symbols. Finally, data from a cohort contain-
ing 1,145 samples were obtained from TCGA. Of these
1,145 samples, there were 108 normal tissue and 1,037
NSCLC samples, respectively. The EdgeR package from Bio-
conductor was used to screen the DEGs between normal tis-
sue and NSCLC [49–51]. The adjusted P < 0:001, and
fold change ðFCÞ > 4 were set as the cutoff criteria.

2.2. DEG Functional Enrichment Analysis. Gene ontology
(GO) analysis provides a standardized description of gene
products in terms of molecular function (MF), biological
process (BP), and cellular component (CC) [52]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a database
offering gene functional meanings and expressed proteins
[53]. GO and KEGG enrichment analyses were conducted
using the powerful online tool DAVID (DAVID, https://
david.ncifcrf.gov/) and visualized by the R package “ggplot2”
[54]. In addition, P < 0:05 was considered to indicate statisti-
cal significance.

2.3. Constructing the Protein-Protein Interaction Network.
The Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) database, a database that
integrates all functional interactions between proteins, was
used to build the PPI network [55]. An interaction score of
≥0.4 was considered statistically significant.

2.4. Hub Gene Selection and Analysis. A Cytoscape plugin,
Molecular Complex Detection (MCODE), was utilized to
screen modules of PPI networks with a node score cutoff of
0.2, degree cutoff of 2, k-core of 2, and max depth of 100. A
P value of <0.05 was considered statistically significant. Next,
the DEGs were ranked by cytoHubba [56], which contains 12
algorithms: Maximal Clique Centrality, Edge Percolated
Component, Betweenness, Density of Maximum Neighbor-
hood Component, Degree, Bottleneck, Eccentricity, Close-
ness, Radiability, Maximum Neighborhood Component,
Stress, and Clustering Coefficient. The MCODE and cyto-
Hubba results were combined to identify the hub genes.

2.5. Survival Analysis of Hub Genes. Whether the expression
level of hub genes was associated with overall survival was
investigated using the Kaplan–Meier plotter (http://www
.kmplot.com/). An online database is capable of assessing
the effect of 54,675 genes on survival using 10,461 cancer
samples, including samples from 2,437 lung cancer, 1,065
gastric cancer, 1,816 ovarian cancer, and 5,143 breast cancer
patients. P < 0:05 (Cox) was considered statistically
significant.

2.6. ROC Curve. The ROC curve analysis was applied to eval-
uate the specificity and sensitivity of the hub genes. The area
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under the curve (AUC) and P value were calculated. P < 0:05
was considered to denote statistical significance.

2.7. Validation of Hub Genes. The expression level of hub
genes in LUAD was validated by Oncomine (https://www
.oncomine.org/resource/login.html) [57]. The threshold was
set as the following: P < 1E − 4, fold change > 2, and gene
ranking in the top 10%.

2.8. Human Protein Atlas. The Human Protein Atlas (https://
www.proteinatlas.org) is an online website that includes
immunohistochemical data of nearly 20 types of tumors
[58]. In our study, immunohistochemical images were used
to directly compare the expression of biomarkers in normal
and NSCLC tissues. The intensity of antibody staining indi-
cated the protein expression of hub genes.

2.9. Genetic Alteration of Hub Genes. The cBio Cancer Geno-
mics Portal (http://www.cbioportal.org/) is an open platform
that provides visualization, analysis, and downloads of large-
scale cancer genomic datasets for various cancer types [59].
Complex cancer genomic profiles can be easily obtained
using the portal’s query interface, enabling researchers to
explore and compare genetic alterations across samples.
cBioPortal was used to explore genetic alterations, coexpres-
sion, and overall survival of two hub genes, GNGT1 and
NMU.

2.10. Statistical Analysis. SPSS version 23.0 (SPSS Inc., Chi-
cago, IL, USA) was used to perform logistic regression anal-
ysis. ROC curves were generated to evaluate the diagnostic
accuracy of GNGT1 and NMU, and AUC was used to evalu-
ate sensitivity and specificity.

3. Results

3.1. Identification of DEGs in NSCLC. The workflow is shown
in Figure 1(a). DEGs were identified using the criteria of
P < 0:001 and FC > 4. A total of 1,411 DEGs were
screened out between NSCLC and normal samples, includ-
ing 1,362 upregulated genes and 49 downregulated genes
(Figures 1(b) and 1(c)).

3.2. Functional and Pathway Analysis of DEGs. To further
investigate the specific function of these genes, all DEGs were
uploaded to the online tool DAVID. GO analysis revealed
that in terms of BP, the DEGs were associated with nucleo-
some assembly, transcription from RNA polymerase II pro-
moter, telomere organization, flavonoid glucuronidation,
and DNA replication-dependent nucleosome assembly.

When examined in terms of MF, DEGs were enriched in
protein heterodimerization activity, retinoic acid-binding,
hormone activity, glucuronosyltransferase activity, and
extracellular ligand-gated ion channel activity. Regarding
CC, the DEGs were mainly enriched in the extracellular
region, cornified envelope, nucleosome, extracellular space,
and intermediate filament. KEGG analysis found that the
DEGs were predominantly involved in the Ras signaling
pathway, nicotine addiction, steroid hormone biosynthesis,
alcoholism, and systemic lupus erythematosus (Figure 2(a)).

3.3. PPI Network Construction, Module Analysis, and Hub
Gene Selection. The PPI network was constructed using the
STRING database and visualized in Cytoscape. The PPI net-
work consisted of 787 nodes and 2,104 edges, including 1,362
upregulated genes and 49 downregulated genes. The overlap-
ping genes of different algorithms selected by cytoHubba
were GNGT1, GNG4, NMU, GCG, TAC1, GAST, NPSR1,
and GCGR (Figure 2(b)). The top modules were then
extracted from the PPI network (Figure 2(c)).

3.4. Survival Analysis. The Kaplan–Meier plotter was used to
predict the prognostic value of the six identified hub genes.
The results demonstrated that high expressions of GNGT1
(HR = 1:17 ð1:03 – 1:33Þ, logrank P = 0:017), GNG4
(HR = 1:42 ð1:2 – 1:67Þ, logrank P = 4:4e − 05), NMU
(HR = 1:48 ð1:3 – 1:68Þ, logrank P = 2:5e − 09), GCG
(HR = 1:15 ð1:01 – 1:31Þ, logrank P = 0:031), TAC1
(HR = 1:23 ð1:08 – 1:39Þ, logrank P = 0:0017), GAST
(HR = 1:27 ð1:12 – 1:44Þ, logrank P = 0:00025), GCGR
(HR = 0:79 ð0:69 – 0:89Þ, logrank P = 0:00022), and NPSR1
(HR = 1:21 ð1:02 – 1:42Þ, logrank P = 0:024) were associated
with worse overall survival for NSCLC patients (Figure 3).

3.5. ROC Curve. According to ROC curve analysis, the AUCs
of GNGT1, GNG4, NMU, GCG, TAC1, GAST, GCGR1, and
NPSR1 were 0.9027 (P < 0:0001), 0.8729 (P < 0:0001), 0.9323
(P < 0:0001), 0.559 (P < 0:0432), 0.6822 (P < 0:0001), 0.7426
(P < 0:0001), 0.816 (P < 0:0001), and NPSR1 0.8949
(P < 0:0001), respectively (Figure 4(a)).

3.6. Validating Hub Gene Expression. The Oncomine data-
base was used to validate the expression of hub genes. The
results demonstrated that GNGT1 had high expression in
LUAD (P: 0.024, FC: 1.877) and LUSC (P: 9.77E-6, FC:
3.358). In Bhattacharjee’s study, NMU showed high expres-
sion in LUAD (P: 0.007, FC: 5.186) and LUSC (P: 0.012,
FC: 2.378) (Figure 4(b)).

3.7. Human Protein Atlas. After studying the mRNA expres-
sion of hub genes in NSCLC, we tried to explore the protein
expression of hub genes using the Human Protein Atlas. The
results revealed that NMU protein was not expressed in nor-
mal lung tissues, whereas medium expression of NMU pro-
tein was observed in the NSCLC tissues. However, GNGT1
was not detected in either normal lung tissues or NSCLC tis-
sues (Figure 4(c)).

3.8. Genetic Alteration of Hub Genes. The two hub genes
altered in 22 (4%) of the 584 patients, and the frequency of
alteration of each hub gene, are shown in Figure 5(a).
GNGT1 and NMU were altered most often (2.7% and 1.7%,
respectively), with mutation, amplification, and mRNA
upregulation as the main types of alterations observed
(Figure 5(b)). The expression of GNGTA was correlated with
NMU (Spearman: 0.13, P = 2:415e − 3; Pearson = 0:13, P =
4:821e − 3) (Figure 5(c)). Patients with CYP1A2 and GSTA3
alteration had worse overall survival than patients without
CYP1A2 and GSTA3 alteration (P = 0:465) (Figure 5(d)).

Notably, according to the ROC curve analysis, the AUC
of GNGT1 was 0.903 (P < 0:0001). For NMU, the AUC was
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Figure 1: Identification of DEGs in NSCLC. (a) Workflow for the identification of key pathways and genes between non-small-cell lung
cancer and normal samples. (b) DEGs between LUAD tissue and normal tissue. The volcano plot showed 1,411 DEGs. The red dots
represented the upregulated genes, while the green dots represented downregulated genes. DEGs: differentially expressed genes. (c)
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0.932 (P < 0:0001). The AUC was largest when GNGT1
was combined with NMU (AUC = 0:969, P < 0:0001)
(Figure 5(e)).

4. Discussion

Elucidating the molecular mechanisms of the initiation and
development of NSCLC would benefit the early diagnosis
and targeted therapy efforts [60–63]. In this study, we identi-
fied 1,362 upregulated genes and 49 downregulated genes

and selected GNGT1, GNG4, NMU, GCG, TAC1, GAST
NPSR1, and GCGR as hub genes using Molecular Complex
Detection (MCODE) and cytoHubba. These genes were
primarily enriched in terms of the Ras signaling pathway,
steroid hormone biosynthesis, nicotine addiction, alcohol-
ism, steroid hormone biosynthesis, and systemic lupus
erythematosus.

The Ras signaling pathway is closely related to the occur-
rence and progression of most human tumors [64–67]. The
activation of RAS-RAF-MEK-MAPK in gene transcription
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Figure 4: The expression and prognostic value of four hub genes in NSCLC patients. (a) The ROC curves of hub genes. AUC and P values of
each hub gene are displayed in the plot. ROC: receiver operating characteristic. AUC: area under the curve. (b) Expression levels of significant
genes compared between different types of NSCLC and normal tissues from the Oncomine platform. Fold changes and P values of each hub
gene are displayed in the plot. (c) Immunohistochemical analysis of GNGT1 and NMU in normal tissues and NSCLC tissues from the Human
Protein Atlas.
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Figure 5: The expression and prognostic value of GNGT1 and NMU in NSCLC patients. (a) Genetic alteration of GNGT1 and NMU genes in
NSCLC patients. (b) Illustration of the alteration frequency of GNGT1 and NMU genes in NSCLC patients. (c) Coexpression between
GNGT1 and NMU. (d) Overall survival analysis for GNGT1 and NMU genes in NSCLC patients. (e) Combined diagnosis of GNGT1 and
NMU genes in NSCLC patients.
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regulation can promote proliferation, migration, and angio-
genesis of cancer cells [68–70]. RAS-PI3K interaction is an
important signaling node and potential therapeutic target
in EGFR-mutant lung cancer [71–73]. In addition, steroid
hormones were not previously considered to be involved
with lung function [74–76]. However, numerous studies have
reported that steroid hormones are important in normal lung
development and function [77], as well as in the pathogenesis
of pulmonary diseases, including lung cancer [78–81].

Cigarette smoking is a well-known risk factor for the
occurrence and progression of malignant diseases [82–85].
Nicotine, the major constituent in cigarette smoke, plays
key roles in cancer progression [86–89]. Nicotine likely pro-
motes lung cancer cell proliferation by upregulating HIF-1α
and SOCC components [90–93]. It was demonstrated that
nicotine increased NSCLC cell proliferation through nico-
tinic acetylcholine receptor-mediated signals [94–97]. Nico-
tine can also induce the expression of embryonic stem cell
factor Sox2, which is indispensable for self-renewal and the
maintenance of stem cell properties in NSCLC cells [98–100].

Several studies have been conducted to investigate the
association between alcohol and lung cancer. Some studies
have reported that alcohol is linked to a number of human
diseases, including cancers [101–103]. Interestingly, another
report shows that alcohol has nothing to do with lung cancer
[104]. Thus, conducting further experiments is necessary to
confirm whether lung cancer is attributable to alcohol abuse.
All in all, the findings of these studies are consistent with our
results.

In the current study, the expressions of GNGT1 and
NMU were low both in the Oncomine and TCGA databases,
indicating that GNGT1 and NMU may play a role as onco-
genes. The transducin γ-subunit gene (GNGT1) has been
localized to human chromosome 7 [104] and is associated
with various forms of cancer [105–108]. GNGT1 exerts
effects in different tissues regulating cell proliferation, migra-
tion, adhesion, and apoptosis [109–111]. One study showed
that GNGT1 could serve as a marker of medulloblastoma
[112]. GNGT1 can be utilized to differentiate gastrointestinal
stromal tumor and leiomyosarcoma, two cancers that have
very similar histopathology, but require very different treat-
ments [113–115]. In the current study, GNGT1 was signifi-
cantly upregulated and high mRNA expression of GNGT1
was associated with poor overall survival in NSCLC patients.
Furthermore, KEGG analysis showed that GNGT1 was
involved in the Ras signaling pathway. Therefore, it is reason-
able to regard GNGT1 as a hub gene of NSCLC. Further
studies are needed to better understand GNGT1’s association
with NSCLC.

Neuromedin U (NMU) has been reported to exhibit early
alterations associated with cancer, including lung cancer,
pancreatic cancer, breast cancer, renal cancer, and endome-
trioid endometrial carcinoma, through promoting migration,
invasion, glycolysis, a mesenchymal phenotype, a stem cell
phenotype of cancer cells, and resistance to the antitumor
immune response [116–118]. It is overexpressed in pancre-
atic cancer and increases the cancer invasiveness through
the hepatocyte growth factor c-Met pathway [119–121]. A
role has also been implicated for NMU in human breast can-

cer and endometrial cancer [122–124]. The protein encoded
by NMU can amplify ILC2 to drive allergic lung inflamma-
tion [125]. NMU is regulated by RhoGDI2, a metastasis
inhibitor, which can be used as a target for lung metastasis.
The expression of NMU is negatively correlated with progno-
sis in most types of cancer [126–128]. In the present study,
the higher mRNA and protein expression of NMU were neg-
atively correlated with overall survival. Therefore, our results
are in line with these previous studies, which indicated that
NMU may be directly or indirectly important in NSCLC
development.

Moreover, to explore the predictive ability of GNGT1
and NMU, logistic regression analysis was performed. The
logistic regression analysis showed a probabilistic nonlinear
regression, which has functions in discrimination and pre-
diction. Notably, according to logistic regression analysis,
the AUC of the ROC curve of GNGT1 was 0.903
(P < 0:0001), and the AUC of NMU was 0.932 (P < 0:0001).
Combining the two biomarkers enabled a relatively high
capacity for discrimination between NSCLC and normal
patients, with an AUC of 0.969, indicating that the combined
test of GNGT1 combined with NMU was superior to testing
for either gene individually, with better clinical accuracy and
higher diagnostic value. Therefore, it is of high scientific
value to use a logistic regression model as a diagnostic model
for NSCLC.

In conclusion, our results identified two hub genes,
GNGT1 and NMU, as prognostic target genes, and
highlighted their probable role in NSCLC. Nevertheless, a
few limitations to this study should be acknowledged.
Because all the data analyzed in the current study were
retrieved from the online databases, further independent
experiments are required to validate our findings and to
explore the molecular mechanism of the hub genes in
NSCLC development and progression.
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