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In this study, we formulate a noninteger-order mathematical model via the Caputo operator for the transmission dynamics of the
bacterial disease tuberculosis (TB) in Khyber Pakhtunkhwa (KP), Pakistan. /e number of confirmed cases from 2002 to 2017 is
considered as incidence data for the estimation of parameters or to parameterize the model and analysis. /e positivity and
boundedness of the model solution are derived. For the dynamics of the tuberculosis model, we find the equilibrium points and
the basic reproduction number. /e proposed model is locally and globally stable at disease-free equilibrium, if the reproduction
number R0 < 1. Furthermore, to examine the behavior of the various parameters and different values of fractional-order de-
rivative graphically, the most common iterative scheme based on fundamental theorem and Lagrange interpolation polynomial is
implemented. From the numerical result, it is observed that the contact rate and treatment rate have a great impact on curtailing
the tuberculosis disease. Furthermore, proper treatment is a key factor in reducing the TB transmission and prevalence. Also, the
results are more precise for lower fractional order. /e results from various numerical plots show that the fractional model gives
more insights into the disease dynamics and on how to curtail the disease spread.

1. Introduction

Tuberculosis (TB) usually caused by a bacterium called
Mycobacterium tuberculosis bacterium (MTB) is a conta-
gious infectious disease. /is life-threatening disease is still
imposing an alarming situation and health challenge across
the globe, specifically for developing countries. TB is listed in
the topmost death-causing diseases due to the high rate of
mortality. Tuberculosis spread from MTB infects healthy
people through the air, when they sneeze, spit, speak, or
cough. Common symptoms of this disease are high fever
with chills, chronic cough, night sweats, nail clubbing,

weight loss, and fatigue [1]. /e total number of people who
died from TB in the year 2019 is 1.4 million, among which
208000 were reported HIV-positive. According to theWHO,
around 10 million TB cases were estimated worldwide, in
which over 95% has occurred in developing countries [2].

Several mathematical models for the transmission dy-
namics and on how to curtail the disease were developed. In
the study of infectious diseases, the mathematical models
play a key role and provide helpful information on how to
control the spread and disease. /ere are a lot of models
developed by researchers for TB dynamics. In 1962, a TB
model was proposed by Waaler et al. [3], and Revelle et al.
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formulated a TB disease compartmental model [4]. Liu and
Zhang provided a TB model and discussed the effect of
vaccination and treatment [5]. Liu et al. formulated another
model and used statistical data of TB to check the seasonal
effects [6]. /e rabies transmission and control analysis were
proposed in [7]. Wallis explored a TB model with reac-
tivation, while Kim et al. presented a model to reduce the
spread of TB with optimal control strategies in the Philip-
pines [8, 9]. Recently, a TBmodel with slow and fast exposed
classes using real data of Pakistan was proposed by Khan
et al. [10].

All the abovementioned models are formulated via in-
teger-order derivatives. /ese classical models do not pro-
vide information about the learning mechanism and
memory effect and thus have some limitations, while frac-
tional models provide more compatible and realistic results.
Many fractional-order derivatives were proposed in [11, 12]
and have a wide range of applications in the fields of epi-
demiology, physics, engineering, fluid dynamics, and many
others [13–16]. /e fractional TB mathematical model for
children and adults is investigated in [17]. In recent years,
fractional-order models gained much attention due to vast
applications. In biological systems, fractional models are
used for better understanding of the dynamics of various
diseases. Recently, in the current situation of the pandemic,
many fractional-order COVID-19 models and dengue
transmission models were developed in [18–20]. /e frac-
tional calculus using the series approach of the type
(p, q)-Mathieu-type series has been suggested in [21].

Tuberculosis disease is a main cause of mortality and
morbidity and so is a massive health challenge in Pakistan.
Pakistan is at the fifth position in the list of high-burden TB
countries [22]. In Pakistan, the current incidence rate is
more than 0.5 million and more than 50,000 die annually
[23, 24]. TB is considered as a massive burden in the
province Khyber Pakhtunkhwa (KP), Pakistan. A report
issued by the National TB Control Programme showed that
an estimated total of 462920 new cases were reported and
treated in KP, Pakistan, from 2002 to 2017.

Motivated by the abovementioned work and the pre-
vious literature in view, we study the dynamical TB model
with standard incidence rate explored in [10] by considering
Caputo fractional derivatives for more insights into the
disease. We also used the real data from year 2002 to year
2017 of Khyber Pakhtunkhwa (KP) for the parametrization
of the model [25]. /e remaining work is organized as
follows: Section 2 contains preliminaries, and model de-
scription is given in Section 3. /e analysis of the model and
estimation of parameters are given in Section 4, and Section
5 contains the numerical simulation. Finally, the study is
concluded in Section 6.

2. Fractional Basics Concepts

/e basic definitions are presented related to fractional
calculus.

Definition 1. /e derivative for the function w ∈ Cp having
order α in the Caputo operator is defined as [26]

C
D

α
t (w(t)) �

1
Γ(p − α)

􏽚
t

0
w

p
(ε)(t − ε)p− α− 1dε. (1)

Definition 2. For the given function w: R+⟶ R having
fractional order α> 0, the fractional integral is

I
α
t (w(t)) �

1
Γ(α)

􏽚
t

0
(t − ε)α− 1

w(ε)dε, (2)

where Γ(.) denotes the gamma function.

Definition 3. For the Caputo fractional dynamical system,
let (p∗) be the equilibrium point. /en,

C
D

α
t (p(t)) � w(t, p(t)), α ∈ (0, 1), (3)

iff w(t, p∗) � 0.

3. Description of the Model

To analyze the transmission dynamics of TB disease, we
consider the tuberculosis model proposed in [10] for more
insight into the disease dynamics studied via the Caputo
fractional operator. /e model is divided into six compart-
ments: the susceptible compartment S(t), slow and fast ex-
posed compartments E1(t) and E2(t), and I(t), T(t), and
R(t) representing the infected, treated, and recovered com-
partments, respectively. When the susceptible person after
getting infection by interacting with infected individual re-
mains in the incubation period, then it is due to the nature of
infection that the individual goes to fast or slow exposed class.
We assumed that the slow exposed individuals before entering
into the infected compartment must join the fast exposed
individuals./en, the sum of all compartments isN(t), that is,

N(t) � S(t) + E1(t) + E2(t) + I(t) + T(t) + R(t). (4)

/e nonlinear fractional differential system governed by
these assumptions is described as follows [10]:

C
D

α
t S � Δ −

BSI
N

− ]S,

C
D

α
t E1 � ω

BSI
N

− ] + ς1( 􏼁E1 +(1 − ρ)δT,

C
D

α
t E2 � (1 − ω)

BSI
N

+ ς1E1 − ] + ς2( 􏼁E2,

C
D

α
t I � ς2E2 + ρδT − ] + c + σ1( 􏼁I,

C
D

α
t T � cI − ] + δ + σ2 + ϕ( 􏼁T,

C
D

α
t R � ϕT − ]R.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

In model (5), after interaction between susceptible and
infected persons, a ratio ω(0<ω< 1) of susceptible indi-
viduals S(t) joins E1(t) and a fraction (1 − ω) enters into fast
exposed class E2 directly. Δ and ] denote the birth and death
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rates, respectively, while β represents the successful trans-
mission coefficient. /e compartments I- and T-induced
rates due to disease are given by σ1 and σ2, respectively; the
rate of progression from E1 to E2 is ς1 and from E2 to I is ς2.
For the infected individuals, the per capita treatment rate is
represented by c and δ is the rate, where individuals quit the
T(t) compartment due to incomplete treatment. A fraction
of δ that reenters into the infected class I is denoted by ρδT

and the remaining δT(1 − ρ) rejoins the slow exposed class
depending on treatment state of the individuals. /e evo-
lution rate is ϕ, where treated T becomes recovered R. /e
parameter ρ(0< ρ< 0) in (1 − ρ)δ represents the ratio of
drug defiance people in compartment T; let

m1 � ] + ς1( 􏼁,

m2 � ] + ς2( 􏼁,

m3 � ] + c + σ1( 􏼁,

m4 � ] + δ + σ2 + ϕ( 􏼁.

(6)

Model (5) can be written as

C
D

α
t S � Δ −

BSI
N

− ]S,

C
D

α
t E1 � ω

BSI
N

− m1E1 +(1 − ρ)δT,

C
D

α
t E2 � (1 − ω)

BSI
N

+ ς1E1 − m2E2,

C
D

α
t I � ς2E2 + ρδT − m3I,

C
D

α
t T � cI − m4T,

C
D

α
t R � ϕT − ]R,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

subjected to appropriate nonnegative conditions

S(0)≥ 0,

E1(0)≥ 0,

E2(0)≥ 0,

I(0)≥ 0,

T(0)≥ 0,

R(0)≥ 0.

(8)

In model (7), the fractional derivatives α ∈ (0, 1] con-
sidered as in Caputo sense and with biological parameter
values, both estimated and fitted, are displayed in Table 1.

4. Fractional Model Analysis

4.1. Invariant Region and Attractivity. Model (7) is explored
in a feasible region Ξ ⊂ R6

+, such that

Ξ � S(t), E(t), E1(t), T(t), R(t)( 􏼁 ∈ R6
+: N(t)≤

Δ
]

􏼚 􏼛. (9)

Lemma 1. Ξ ⊂ R6
+ is a positively invariant region with

nonnegative initial conditions for model (7) in R6
+.

Proof. /e net population becomes

C
D

α
t N(t) �

C
D

α
t S(t) +

C
D

α
t E1(t) +

C
D

α
t I(t) +

C
D

α
t E2(t) +

C
D

α
t T(t) +

C
D

α
t R(t), (10)

and then, we have

C
D

α
t N(t) + ]N(t)≤Δ. (11)

Now by Laplace transform, we obtained

N(t)≤N(0)Eα,1 ]t
α

( 􏼁 + ΔtαEα,α+1 ]t
α

( 􏼁,

N(t)≤
Δ
]

.

(12)

/us, the model solution with nonnegative conditions in
Ξ remains in Ξ. So, Ξ is positive invariant and hence attracts
all solutions in R6

+. □

Now, for the model solution positivity,
R
6
+ � u ∈ R

6
|z≥ 0􏽮 􏽯 and u(t) � S(t), E(t), E1(t), E2(t), T(t), R(t)􏼈 􏼉

T
.

(13)

Corollary 1 (see [27]). We assumed that j(t) ∈ C[c, d] and
CD

α
t j(t) ∈ (c, d], where α ∈ (0, 1]. If
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CD
α
t j(t)≥ 0, ∀u ∈ (c, d), then j(t)is nondecreasing

CD
α
t j(t)≤ 0, ∀u ∈ (c, d), then j(t) is nonincreasing

4.2. Positivity and Boundedness

Proposition 1. Model (7) solution is nonnegative and
bounded by ∀ (S(0), E1(0), E2(0), I(0), T(0), R(0)) ∈ R6

+,
for t> 0.

Proof. Using the result given in [28], we show the non-
negativity of the proposed model R6

+. System (7) gives
C

D
α
t S|S�0 � Δ> 0,

C
D

α
t E1|E1�0 � ω

βSI

S + E2 + I + T + R
+(1 − ρ)δT≥ 0, δ > ρδ,

C
D

α
t E2|E2�0 � (1 − ω)

βSI

S + E1 + I + T + R
+ ς1E1 ≥ 0,

C
D

α
t I|I�0 � ς2E2 + ρδT≥ 0,

C
D

α
t T|T�0 � cI≥ 0,

C
D

α
t R|R�0 � ϕT≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

So, Corollary 1 gives the required result, and we can say
that the solution is in R6

+.

Ξ � S, E1, E2, I, T, R( 􏼁 ∈ R
6
+: S, E1, E2, I, T, R( 􏼁≥ 0􏽮 􏽯.

(15)

/e sum of all terms is positive; thus, the solution of
model (7) is bounded. □

4.3. Parameter Estimation. In this section, the method of
least-square curve fitting is used to estimate the parameters
from the confirmed cases of tuberculosis in Khyber Pak-
htunkhwa, Pakistan, since 2002 − 2017. /e birth rate Δ and
natural death rate ] are estimated from the literature. /e
other biological parameters are fitted from incidence data.
Figure 1 illustrates the model’s best fitted curve, and the
values of parameter with description are tabulated in Table 1.
/e value of control basic reproductive number is
R0 ≈ 1.38, estimated via fitted parameters. /e curve fitting
is summarized in a few steps for model (7) as follows:

dw

dt
� 5(t, w,Ξ), w t0( 􏼁 � w0. (16)

Let Ξ denote the unknown parameters and w be the
vector-dependent variables. /e objective function is taken
for better possible fit and is given as

􏽢Ξ � 􏽘
n

k�1
wtk

− 􏽥wtk
􏼐 􏼑

2
, (17)

where wtk
and 􏽥wtk

are considered as the model solution and
actual data points at time tk. To obtain model parameters by
minimizing the objective function and for better agreement,
we follow the optimization algorithm as well [29].

4.4. Model Equilibria and Reproduction Number. To get the
equilibria for fractional-order TB model (5), we have

C
D

α
t S �

C
D

α
t E1 �

C
D

α
t E2 �

C
D

α
t I �

C
D

α
t T �

C
D

α
t R � 0.

(18)

Model (7) has two equilibrium points:

(1) /e risk-free or DFE E0 is

E0 �
Δ
]

, 0, 0, 0, 0, 0􏼒 􏼓. (19)

By using the next generation technique given in [30], we
have

Table 1: Descriptions of parameters and their numerical values.

Parameter Description Value (years− 1) Reference
Δ Birth rate ] × N(0) Estimated
] Natural death rate 1/67.7 [23]
β Rate of contact 0.6001 Fitted
c I treatment rate 0.1500 Fitted
ρ Failure of treatment 0.2959 Fitted
σ1 Disease-induced death rate in I 0.2738 Fitted
σ2 Disease-induced death rate during treatment 0.1000 Fitted
ς1 Rate of moving from E1 to E2 0.2738 Fitted
ς2 Transfer rate from E2 to I 0.1000 Fitted
δ Leaving rate of T reentering to I or E 0.0649 Fitted
ω Fraction of S becoming I 0.5259 Fitted
ϕ Recovery rate 0.0100 Fitted
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F �

0 0 ωβ 0

0 0 (1 − ω)β 0

0 0 0 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

V �

m1 0 0 − δ(1 − ρ)

− ς1 m2 0 0

0 − ς2 m3 − ρδ

0 0 − c m4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(20)

/us, the reproductive number R0 is given by

R0 � ρ FV
− 1

􏼐 􏼑 �
βς1ς2ω

m1m2m3
+
βς2(1 − ω)

m2m3

+
cδς1ς2(1 − ρ)

m1m2m3m4
+

cδρ
m3m4

.

(21)

(2) Endemic equilibrium (EE) E1 is given by E1 � (S∗,

E∗1 , E∗2 , I∗, T∗, R∗), where

S
∗

�
N
∗

R0
,

E
∗
1 �

1
m1m4

m4ωβ
R0

+(1 − ρ)cδ􏼠 􏼡I
∗
,

E
∗
2 �

1
ς2m4

m4m3 − ρcδ( 􏼁I
∗
.

T
∗

�
c

m4
I
∗
,

R
∗

�
ϕc

]m4
I
∗
,

I
∗

�
m1m4]ς2 R0 − 1( 􏼁N

∗

m4]ς2ωβ + ] m1 m3m4 − ρcδ( 􏼁 + cς2 m1 +(1 − ρ)δ( 􏼁( 􏼁 + m1ς2 ϕc + m4]( 􏼁( 􏼁R0
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)
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Figure 1: Model fitting (solid blue line) to the TB reported cases (red) from 2002 to 2017.
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It is clear from above that E1 exists only if R0 > 1.

4.5. Stability of the DFE

Theorem 1. Ee DFE (E0) is LAS if the eigenvalues λj of
model (7) satisfy |arg(λj)|> απ/2.

Proof. /e Jacobianmeasure of system (7) evaluated atE0 is
given by

J E0( 􏼁 �

− ] 0 0 − β 0 0

0 − m1 0 βω δ(1 − ρ) 0

0 ς1 − m2 (1 − ω)β 0 0

0 0 ς2 − m3 ρδ 0

0 0 0 c − m4 0

0 0 0 0 ϕ − ]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

We have − ] (twice), while for the others, the following is
shown:

P(λ) � λ4 + c1λ
3

+ c2λ
2

+ c3λ + c4, (24)

where

c1 � m1 + m2 + m3 + m4,

c2 � m2m4 + m1 m2 + m3 + m4( 􏼁

+ m2m3 1 − R2( 􏼁 + m3m4 1 − R4( 􏼁,

c3 � m1 + m2( 􏼁m3m4 1 − R4( 􏼁

+ m1m2m3 1 − R1 + R2( 􏼁( 􏼁

+ m4 m1m2 − βς2(1 − ω)( 􏼁,

c4 � m1m2m3m4 1 − R0( 􏼁.

(25)

It can be observed that the coefficients shown above are
positive, i.e., ci > 0, for i � 1, . . . , 4; furthermore, the
Routh–Hurwitz criteria can be satisfied easily,
c1c2c3 − c21c − 4 − c23 > 0. So, the TB model is locally as-
ymptotic at the DFE when R0 < 1. /us, |arg(λ)|> απ/2 for
all α ∈ [0, 1), i.e., local asymptotic stability. □

4.6. Global Stability of DFE

Theorem 2. Ee fractional tuberculosis model is GAS at risk-
free equilibrium (E0) if R0 < 1.

Proof. /e appropriate Lyapunov function (L(t)) for
global stability of model (7) is defined as

L(t) � l1E1 + l2E2 + l3I + l4T, (26)

where ln > 0, with n � 1, . . . , 4, are positive constants and the
time fractional derivative of L(t) is

C
D

α
t L(t) � l

C
1 D

α
t E1 + l

C
2 D

α
t E2 + l

C
3 D

α
t I + l

C
4 D

α
t T. (27)

Considering fractional system (7), we obtain

C
D

α
t L E1, E2, I, T( 􏼁 � l1 ω

βSI

N
− m1E1 +(1 − ρ)δT􏼨 􏼩

+ l2 (1 − ω)
βSI

N
+ ς1E1 − m2E2􏼨 􏼩

+ l3 ς2E2 + ρδT − m3I􏼈 􏼉 + l4 cI − m4T􏼈 􏼉,

≤ l1 ωβI − m1E1 +(1 − ρ)δT􏼈 􏼉

+ l2 (1 − ω)βI + ς1E1 − m2E2􏼈 􏼉

+ l3 ς2E2 + ρδT − m3I􏼈 􏼉

+ l4 cI − m4T􏼈 􏼉, S≤N.

� l1ωβ + l2(1 − ω)β + l4c − l3m3􏼈 􏼉I

+ l2ς1 − l1m1􏼈 􏼉E1

+ l3ς2 − l2m2􏼈 􏼉E2

+ l1(1 − ρ)δ + l3ρδ − l4m4􏼈 􏼉T,

� l3m3
l1ωβ + l2(1 − ω)β + l4c

l3m3
− 1􏼨 􏼩I

+ l2ς1 − l1m1􏼈 􏼉E1

+ l3ς2 − l2m2􏼈 􏼉E2

+ l1(1 − ρ)δ + l3ρδ − l4m4􏼈 􏼉T.

(28)

Now, we choose

l1 � ς1,

l2 � m1,

l3 �
m1m2

ς2
,

l4 �
ς1ς2(1 − ρ)δ + m1m2ρδ

ς2m4
,

C
D

α
t L(t)≤ l3m3 R0 − 1( 􏼁I.

(29)

/us, CD
α
t L(t)≤ 0 if R0 ≤ 1. /erefore, the variables

and parameters are nonnegative with CD
α
t L(t)≤ 0 iff

E1 � E2 � I � T � 0. Hence, (E1, E2, I, T)⟶ (0, 0, 0, 0) as
t⟶∞. We get S⟶Δ/] and R⟶ 0 as t⟶∞ from
system (7). /us, the solution of model (7) with nonnegative
initial conditions as t⟶∞ approaches E0 according to
the fractional case developed in [31], in the feasible region.
Hence, it complies that the disease-free equilibrium of
system (7) is GAS. □

Lemma 2. Model (7) is unstable at DFE if R0 > 1.
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Figure 2: Numerical visualization of cumulative infected compartments of the TB model when R0 > 1 (a) and R0 < 1 (b).
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Figure 3: Continued.
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5. Numerical Scheme and Simulation

/e numerical iterative method [32] is used for the nu-
merical solution of model (7). A differential system is given
as

D
α
t0

w − w0( 􏼁(t) � F(t, w(t)),

w t0( 􏼁 � w0.

⎧⎨

⎩ (30)

By applying the fractional integral operator, we obtained

w(t) − w t0( 􏼁 �
1
Γ(α)

􏽚
t

t0

(t − Z)
α− 1

F(Z, w(Z))dZ. (31)

By using the trapezoidal quadrature formula,

􏽚
tn+1

t0

tn+1 − Z( 􏼁
α− 1

j(Z)dZ ≈ 􏽚
tn+1

t0

tn+1 − Z( 􏼁
α− 1

jn+1(Z)dZ.

(32)

/e right-hand side of (32) yields

􏽚
tn+1

t0

tn+1 − Z( 􏼁
α− 1

jn+1(Z)dZ � 􏽘
n+1

i�0
ai,n+1j ti( 􏼁, (33)

where
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Figure 3: Numerical results of model (7) for different fractional orders α.
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Figure 4: Continued.
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Figure 4: Behavior of the TB model with an impact of contact rate β at α� 1.
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ai,n+1 � 􏽚
tn+1

t0

tn+1 − Z( 􏼁
α− 1ϕj,n+1(Z)dZ (34)

χi,n+1(Z) �

Z − ti− 1( 􏼁

ti − ti− 1( 􏼁
, if ti− 1 < Z< ti,

ti+1 − Z( 􏼁

ti+1 − ti( 􏼁
, if ti < Z< ti+1,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

When nodes ti � t0 + ih are equispaced, then (34) re-
duces to

ai,n+1(Z) �

g
α

α(α + 1)
n
α+1

− (n − α)(n + 1)
α

􏼐 􏼑, if i � 0,

g
α

α(α + 1)
, if i � n + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai,n+1 �
g
α

α(α + 1)
(n − i + 2)

α+1
− 2(n − i + 1)

α+1
+(n − i)

α+1
􏼐 􏼑.

(36)

/e one-step fractional Adams–Moulton equation is
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Figure 5: Behavior of the TB model with an impact of contact rate β at α � 0.85.
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Figure 6: /e treatment rate c impact on cumulative infected persons (a–c) and variation of ρ on infectious individuals (d–f) for
α � 1, α � 0.95, and α � 0.90.
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wn+1 � w0 +
1
Γ(α)

􏽘

n

i�0
ai,n+1F ti, wi( 􏼁 + an+1,n+1F tn+1, w

P
n+1􏼐 􏼑⎛⎝ ⎞⎠.

(37)

(31) reduces to

􏽚
tn+1

t0

tn+1 − Z( 􏼁
α− 1

j(Z)dZ ≈ 􏽘
n

i�0
bj,n+1j ti( 􏼁, (38)

where now

bi,n+1 � 􏽚
ti+1

ti

tn+1 − Z( 􏼁
α− 1dZ �

1
α

tn+1 − ti( 􏼁
α

− tn+1 − ti+1( 􏼁
α

( 􏼁.

(39)

We have a simplified expression as follows:

bi,n+1 �
g
α

α
(n + 1 − i)

α
− (n − i)

α
( 􏼁. (40)

/us, the predictor wP
n + 1 is determined by

w
P
n+1 � w0 +

1
Γ(α)

􏽘

n

i�0
bi,n+1Fti, w ti, wi( 􏼁. (41)

We explore the dynamics of fractional TB model (7)
numerically by the generalized predictor-corrector of
Adams–Bashforth–Moulton method mentioned above. To
control the disease up to some extent and for memory
effect, we analyze the effect of different parameters by
varying some sensitive parameters and fractional order α.
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Figure 7: Behavior with and without treatment on total infected individuals for α � 1, 0.95, 0.90, 0.85.
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/e infection must be reduced with the help of control
strategies and treatment. To illustrate the effects of sen-
sitive parameters, the population in 2017 of Khyber
Pakhtunkhwa was 30, 523, 371 [33], which is to be con-
sidered as N(0). /e state variables assumed as E1(0), E2
(0), and I(0) are 83000, 50000, and 8010, respectively.
Moreover, no treated or recovered cases are considered
initially, that is, T(0) � R(0) � 0. /en, the susceptible
individuals can be obtained easily as S(0) � 30. /e be-
haviors of cumulative infected people for R0 � 1.38 when
β � 0.6001 andR0 � 0.9300 when β � 0.4001 are shown in
Figure 2. /e dynamical behavior of model (7) is depicted
in Figure 3 for fractional orders α � 1, 0.97, 0.94, 0.91,

0.88, 0.85. Figure 3 shows that only susceptible individuals
increased, while the infected individuals decreased sig-
nificantly by decreasing α. Figures 4 and 5 illustrate the
impact of contact rate β on model (7) for α � 1 and
α � 0.85, respectively. /e decrease is observed in infected
compartments with a decrease in β, and for smaller order,
the impact of α is more pronounced. Also, the behaviors of
cumulative infected people with an impact of treatment
rate and infectious people with variation of failure of
treatment ρ are plotted in Figure 6 for various fractional
orders α. So, by increasing treatment rate c, a decay in
cumulative infected individuals is observed and vice versa
for infective compartments in case of ρ. Finally, the be-
havior of total infected people with and without treatment
is depicted in Figure 7, and results becomemore precise for
smaller values of fractional order α. From numerical re-
sults, we can say that the tuberculosis infection can be
controlled with proper treatment.

6. Conclusion

Tuberculosis has resulted in a lot of infected cases and deaths
in Pakistan. /e government of Pakistan and particularly the
province KP have put many efforts for its minimization by
treating the infected cases and also the relapse cases. To
understand the TB infections in the KP province, we studied a
mathematical model with slow and fast exposed cases and its
effect on the model dynamics. We studied the essential
mathematics involved in the modeling of the fractional-order
model. /en, we investigated the stability of the model and
proved the TB model to be locally as well as globally as-
ymptotically stable. /e stability results were obtained in the
context of Caputo operator. Some discussion on the esti-
mation procedures for the investigations of the model pa-
rameters is considered. We utilized the realistic parameters
and obtained results graphically. We provided an efficient
numerical scheme based on the Adams–Bashforth–Moulton
method and obtained the graphical results. Numerical results
were achieved by considering different parameters and
fractional order values, and we discussed its impact on disease
eradications./e effect of treatment rate and its related results
was explored. Some results with treatment and without
treatment are discussed and shown graphically, which show
the disease can be eliminated by treating the infected people.
While considering the effect of fractional-order parameter
values, there were observed decreases in the infective

compartments. From the analysis, the work shown suggests
that the disease can be minimized more efficiently if the
government takes serious actions by educating the people,
making awareness, etc., and provides better treatment at
doorsteps. Regarding the future of modeling of TB in Paki-
stan, we will explore and extend the results by considering the
cases across the country with vaccinations and relapse model.
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