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+e purpose of this research is to introduce a Jungck–S iterative method with (m, h1, h2)–convexity and hence unify different
comparable iterative schemes existing in the literature. A Jungck–S orbit is constructed, and escape radius is derived with our
scheme. A new escape radius is also obtained for generating the fractals. Julia and Mandelbrot set are visualized with the help of
proposed algorithms based on our iterative scheme. Moreover, we present some complex graphs of Julia and Mandelbrot sets
using the derived orbit and discuss their nature in detail.

1. Introduction

+e word fractal originating from Latin language means to
divide or break.+is is tantamount to self-similar patterns in
the complex graphics. +e fractal theory has many appli-
cations in mathematics and different related disciplines. In
biological sciences, this theory is being applied successfully
to understand certain biologic phenomena, for example,
growth culture for the microorganism, like bacteria or
amoeba, and to study and analyze the fibre pattern of nerve
and so forth. In physical sciences, fractals are used to de-
termine and understand the turbulent flows in fluid me-
chanics. In telecommunication, fractals are used to
manufacture antennae. Moreover, computer networking,
radar system, and architectural models also fall into the
domain of applications of fractals theory.

In 1975, Mandelbrot generated a sequence of iterates for
a complex polynomial z2 + c [1] under some restrictions. He
observed a chain of self-similar patterns on a graph and
hence named it fractal. He claimed that the obtained image
was the sequence of connected Julia sets. After his valuable
work, the researcher generalized the fractals in many dif-
ferent ways. It is worth mentioning that complex graphical
shapes, fractals, were discovered as the fixed points of certain

set maps. So, the fixed point theory plays a vital role in the
investigation of fractals. Different iterative schemes, mainly
used to approximate the fixed points of certain mappings,
can be employed to sketch some beautiful natural scenes of
sunset, lighting, rainbow, galaxies, deserts, mountains, and
so forth. +ese aesthetic patterns depend on the iterative
algorithms and hence provide a good source of motivation to
apply mathematical models in art and designs. +e gener-
alized form of the Mandelbrot set was given in [2].

Some logarithmic, rational, exponential, and trigono-
metric functions were investigated in [3]. +e bicomplex,
tricomplex, and quaternions functions were utilized in [4–6]
to create some generalized versions of fractals. +e study of
fractals using fixed point theory attracted the attention of
several researchers after the work of Rani et al. in [7, 8].
Some types of fractals via different explicit iterations were
analyzed in [9–13].

In this paper, we define the orbit of generalized Jungck-S
iterative scheme with (m, h1, h2)–convexity for fractals. We
derive a new escape radius for complex polynomials and
develop the algorithms for fractals visualization and draw
some complex graphs of Julia and Mandelbrot sets using
computer software. +e paper is organized as follows: in
Section 2, some known concepts and iterative schemes are
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given. Section 3 contains the Jungck–S orbit with
(m, h1, h2)–convexity (JSOmhh) and the derivation of es-
cape radius for Jungck–S iterative scheme with
(m, h1, h2)–convexity for general complex polynomial. In
Section 4, we visualize some quadratic and cubic complex
graphs of Julia and Mandelbrot sets. Characteristics of Julia
and Mandelbrot sets are also discussed in this section. In
Section 5, the summary of our present work and the plan of
our future work are presented.

2. Preliminaries

Consistent with [14, 15], the following definitions will be
needed in the sequel.

Definition 1 (see [14]). Let f: C⟶ C be a complex
polynomial of degree ≥2 with complex coefficients and
fp(x) the pth iterate of x. +e behavior of the iterate fp(x)

for large p determines the Julia set. +e set Ff, called filled
Julia set, is the set of all those points ofC for which the orbits
|fp(z)|}∞p�0↛∞ are as p⟶∞; that is,

Ff � z ∈ C: f
p
(z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯
∞
p�0 is bounded􏼚 􏼛. (1)

+e boundary of the filled Julia set is called simply Julia
set.

Mandelbrot [15] extended the concept of a Julia set and
presented the notion of fractals. He investigated the
graphical behavior of connected Julia sets and plotted them
for complex function, fc(x) � x2 + c, where x ∈ C is a
variable and c ∈ C is the input.

Definition 2 (see [15]). +e set which consists of all those
points (parameters) of C for which the Julia sets are con-
nected is called Mandelbrot set M; that is,

M � c ∈ C: Ff is connected􏽮 􏽯. (2)

Equivalently, the Mandelbrot set can be defined as
follows [16]:

M � c ∈ C: f
p
(0)􏼈 􏼉 does not tend to∞ asp⟶∞􏼈 􏼉.

(3)

Different algorithms have been employed to generate
Julia sets. Some popular algorithms to visualize the Julia sets
are distance estimator [17], escape time [18], and potential
function algorithms [19]. +e escape time algorithms have
been used in this paper.

We established escape time algorithms, namely, Algo-
rithms 1 and 2 with derived escape radius to generate the
fractals.

Let us refer to some iterative algorithms: the Jungck
iteration was studied in [20], the Jungck–Mann iteration
with s-convexity was studied in [21], the Jungck–Ishikawa
iteration with s-convexity was studied in [21], the following
Jungck-S iteration was studied in [20] and Kwun et al.[22]
used a convex combination to define the Jungck-S iterative

scheme with s-convexity. We define the Jungck-S iterative
scheme with (m, h1, h2)-convexity (JSOmhh) in the fol-
lowing manner:

Definition 3 (JSOmhh). Suppose that P, Q: C⟶ C, where
P is one to one. Let z0 ∈ C be an initial point. +e Jungck–S
iterative scheme with (m, h1, h2)–convexity is defined as
follows:

P zk+1( 􏼁 � mh1(α)Q zk( 􏼁 + h2(α)Q yk( 􏼁,

P yk( 􏼁 � mh1(β)P zk( 􏼁 + h2(β)Q zk( 􏼁,
􏼨 (4)

where h1(t) � (1 − t)− s and h2(t) � t− s, also
α, β, s, m ∈ (0, 1], and k � 0, 1, 2, . . ..

It is important to mention here that our scheme gen-
eralizes many of the above-mentioned schemes.

3. Main Results

In this section, we first introduce the Jungck–S iterative
scheme with (m, h1, h2)–convexity (JSOmhh) and then
prove escape criteria to determine the escape radius induced
by (JSOmhh).

In the following theorem, we use (JSOmhh) to establish
the escape criteria for f(z) � 􏽐

p
i�0 aiz

i, where p≥ 2, ai ∈ C,
for i � 0, 1, 2, . . . , p and |ap|>􏽐

p− 1
i�2 |ai| with choices Q(z) �

􏽐
p
i�2 aiz

i + a0 and P(z) � a1z to generate fractals.

Theorem 1. Suppose that |z|≥ |a0|> (2(1 + m|a1|)/
sα(ϕ − φ))1/(p− 1) and |z|≥ |a0|> (2(1 + m|a1|)/sβ
(ϕ − φ))1/(p− 1) where ϕ � |ap|,φ � 􏽐

p− 1
2 |ai|, where

α, β, s ∈ (0, 1], and zk􏼈 􏼉k∈N is defined as

P zk+1( 􏼁 � mh1(α)P zk( 􏼁 + h2(α)Q yk( 􏼁,

P yk( 􏼁 � mh1(β)P zk( 􏼁 + h1(β)Q zk( 􏼁,
􏼨 (5)

where s, t, m ∈ (0, 1], h1(t) � (1 − t)− s, h2(t) � t− s and
k � 0, 1, 2, . . .. %en, |zk|⟶∞ as k⟶∞.

Proof. Since f(z) � 􏽐
p
i�0 aiz

i, where ai ∈ C for
i � 0, 1, 2, . . . , p, z0 � z, and y0 � y. Handling f as f � Q −

P with choice Q(z) � 􏽐
p

i�2 aiz
i + a0 and P(z) � a1z, then

P y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(β)P(z) + h2(β)Q(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − β)
− s

a1z + β− s
􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
a1y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(6)

Because (1 − β)− s � 1 + βs + · · · > 1 and β− s � 1 + s(1 −

β) + · · · > βs for all s, m, β ∈ (0, 1], therefore

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− sβ a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (7)

Since |z|≥ |a0| and sβ< 1, we have
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a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− |z| − m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

� |z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(8)

Since (1 + m|a1|)> |a1|, then

y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
sβ 􏽐

p
i�2 aiz

i− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎝ ⎞⎠

≥ |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽐
p− 1
i�2 ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ|z|.

(9)

Because |z|≥ |a0|> (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)

where ϕ � |ap|,φ � 􏽐
p− 1
2 |ai|, this produced the situation

|z|((|z|p− 1(sβ(ϕ − φ))/(1 + m|a1|)) − 1)> |z|≥ sβ|z|. For the
last step, we have

P z1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(α)Q z0( 􏼁 + h2(α)Q y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − α)
− s

z
p

+ d2( 􏼁 + α− s
y

p
+ d2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ m 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠ + sα 􏽘

p

i�2
aiy

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(10)

Since m> 0, then we get

a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sα 􏽘

p

i�2
aiy

i
+ a0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ sα 􏽘

p

i�2
aiy

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ |z| s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘

p− 1

i�2
ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠ − 1

⎧⎨

⎩

⎫⎬

⎭.

(11)

Input: f(z) � 􏽐
p

i�0 aiz
i where p≥ 2, ai ∈ C for i � 0, 1, 2, . . . , p–polynomial of complex variable, ϕ,φ, α, β, s, m – involved

parameters, A � [xmin, xmax] × [ymin, ymax] –occupied area, K – fixed number of iterates, colourfunction [0..n − 1] – colour
function with n colours.
Output: a Julia set.

(1) for a0 ∈ C do
(2) R � Max[|a0|, (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1), (2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1)] the escape radius
(3) k � 0
(4) z0 � a0–initial guess for f

(5) while k≤K do
(6) zk+1 � fc(zk)

(7) if |zk+1| >R then
(8) break
(9) k � k + 1
(10) c � ⌊(n − 1)(k/K)⌋

(11) colour z0 with colourfunction [c].

ALGORITHM 1: Complex graph of Julia set.

Input: f(z) � 􏽐
p
i�0 aiz

i where p≥ 2, ai ∈ C for i � 0, 1, 2, . . . , p– polynomial of complex variable, ϕ,φ, α, β, s, m – involved
parameters, A � [xmin, xmax] × [ymin, ymax] –occupied area, K – fixed number of iterates, colourfunction [0..n − 1] – colour
function with n colours.
Output: a Mandelbrot set.

(1) for a0 ∈ C do
(2) R � Max[|a0|, (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1), (2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1)]–the escape radius
(3) k � 0
(4) z0 � 0–initial guess for f

(5) while k≤K do
(6) zk+1 � f(zk)

(7) if |zk+1|>R then
(8) break
(9) k � k + 1
(10) c � ⌊(n − 1)(k/K)⌋

(11) colour a0 with colourfunction [c].

ALGORITHM 2: Complex graph of Mandelbrot.
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Hence,

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡. (12)

Since |z|> (2(1 + m|a1|)/sα(ϕ − φ))1/(p− 1) and |z|>
(2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1), so |z|p− 1 > 2(1 + m|d1|)

/s2αβ and this implies ((s2αβ(ϕ − φ)|z|p− 1)/(1 + m

|d1|)) − 1> 1. +erefore, there exists δ > 0 such that
(s2αβ(ϕ − φ)|z|p− 1/(1 + m|d1|)) − 1> 1 + δ. Consequently,
|z1|> (1 + δ)|z|. In particular, |z1|> |z|. So, we may iterate to
find |zi|> (1 + δ)i|z|. Hence, the orbit of z tends to infinity
and this completes the proof. □

Theorem 2. Suppose that zi􏼈 􏼉i∈N is a sequence of points in
JSOmhh for complex polynomial f(z) � 􏽐

p

i�0 aiz
i, where

p≥ 2, ai ∈ C, for i � 0, 1, 2, . . . , p, ϕ � |ap|, and φ � 􏽐
p− 1
i�2 |ai|

with ϕ>φ such that |zi|⟶∞ as i⟶∞; then
|z|≥ |a0|> (2(1 + m|d1|)/sα(ϕ − φ))1/(p− 1) and |z|≥ |a0|>
(2(1 + m|d1|)/sβ(ϕ − φ))1/(p− 1) where α, β, s ∈ (0, 1].

Proof. Since zi􏼈 􏼉i∈N is the sequence of points in JSOmhh for
complex polynomial f(z) � 􏽐

p
i�0 aiz

i where p≥ 2, ai ∈ C for
i � 0, 1, 2, . . . , p, ϕ � |ap| and φ � 􏽐

p− 1
i�2 |ai| with ϕ>φ such

that |zi|⟶∞ as i⟶∞, therefore there exists δ > 0 such
that

zi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌>(1 + δ)

i
|z|. (13)

For i � 1, we get

z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ (1 + δ)|z|. (14)

Since f(z) � 􏽐
p
i�0 aiz

i, where ai ∈ C for i � 0, 1, 2, . . . , p,
z0 � z and y0 � y. Handling f as f � Q − P with choice
Q(z) � 􏽐

p

i�2 aiz
i + a0 and P(z) � a1z, then

P y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(β)P(z) + h2(β)Q(z)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − β)
− s

a1z + β− s
􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
a1y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(15)

Because (1 − β)− s � 1 + βs + · · · > 1 and β− s � 1 + s(1 −

β) + · · · > βs for all s, m, β ∈ (0, 1], therefore

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− sβ a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ma1z

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (16)

Since for fractal generation it must be true |z|≥ |a0|. Also,
sβ< 1, and we obtain

a1y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sβ 􏽘

p

i�2
aiz

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− |z| − m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌|z|

� |z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠ y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�
1
a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|z| sβ 􏽘

p

i�2
aiz

i− 1
􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(17)

Since (1 + m|a1|)> |a1|, then

y0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
sβ 􏽐

p

i�2 aiz
i− 1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎝ ⎞⎠≥ |z|

sβ z
p− 1􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽐
p− 1
i�2 ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼒 􏼓

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� |z|
sβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡 y0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ sβ|z|.

(18)

Since fractals are bounded, therefore
((sb|zp− 1|/(1 + |d1|)) − 1)≥ 1. For the last step, we have

P z1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � mh1(α)Q z0( 􏼁 + h2(α)Q y0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� m(1 − α)
− s

z
p

+ d2( 􏼁 + α− s
y

p
+ d2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ m 􏽘

p

i�2
aiz

i
+ a0

⎛⎝ ⎞⎠ + sa 􏽘

p

i�2
aiy

i
+ a0

⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(19)

Since m> 0, then we get

a1z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ sα 􏽘

p

i�2
aiy

i
+ a0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≥ sα 􏽘

p

i�2
aiy

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− a0

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≥ |z| s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ap

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − 􏽘

p− 1

i�2
ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠ − 1

⎧⎨

⎩

⎫⎬

⎭.

(20)

Hence,
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z1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≥ |z|
s
2αβ z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌(ϕ − φ)

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1􏼠 􏼡. (21)

Comparing (14) and (21), we have

s
2αβ(ϕ − φ) z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1 � 1 + δ

s
2αβ(ϕ − φ) z

p− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

1 + m a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
− 1

> 1,

(22)

because δ > 0. +is implies

|z|>
2 1 + m a1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

s2αβ(ϕ − φ)
⎛⎝ ⎞⎠

1/(p− 1)

. (23)

As a result, we obtain |z|> (2(1 + m|a1|)

/sα(ϕ − φ))1/(p− 1) and |z|> (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)

where p≥ 2 and α, β, m, s ∈ (0, 1]. To visualize complex
fractal, |z|≥ |a0| must exist because, for any given point
|z|< |a0|, we have to compute the JSOmhh of z. If, for some i,
|zi| lies outside the circle of radius max |a0|, (2(1 + m|a1|)/􏼈

sα(ϕ − φ))1/(p− 1), (2(1 + m|a1|)/sβ(ϕ − φ))1/(p− 1)}, we ob-
served that JSOmhh escapes. Hence, z is neither in Julia sets
nor in Mandelbrot sets, but |zi| is bounded to obey |z|≥ |a0|;
then |zi| lies in JSOmhh. Hence, it is the desired result. □

4. Application of Fractals

In this section, we use our developed algorithms and derived
escape radius for JSOmhh to draw some attractive and
inspiring Julia and Mandelbrot sets using the framework of
Mathematica. +roughout this section, we use K � 100 (for
maximum iterates).

4.1. Julia Sets. Figures 1–6 are quadratic Julia sets at dif-
ferent involved parameters. We obverse that each graph of
quadratic Julia set is different from the other. We use the
same complex polynomial and involved parameters except
for a0 for Figures 1 and 2 and analyze that due to a very
small change in a0, the nature of graphs changes drasti-
cally. Also, for Figures 3–6, we have the same arguments.
We also observe that the correspondence between the
points of quadratic Julia sets creates the artful patterns and
self-similarity in points of quadratic Julia sets show that
the drawn graphs are the fractals. +e involved parameters
for complex graphs of quadratic Julia sets 1–6 were as
follows:

Figure 1: p � 2, a0 � 0.0248 + 0.0084i, a1 � 1/2, a2 � 2,
a, b, s, m � 0.1, A � [− 0.27, 0.27] × [− 0.37, 0.37].
Figure 2: p � 2, a0 � − 0.084, a1 � 1/2, a2 � 2, a, b, s,

m � 0.1, A � [− 0.37, 0.37] × [− 0.2, 0.2].
Figure 3: p � 2, a0 � 0.0015 + 0.00007i, a1 � 1/2, a2 �

100, a, b, s, m � 0.5, A � [− 0.007, 0.005] × [− 0.0025,

0.0025].

Figure 4: p � 2, a0 � 0.0015 + 0.00001i, a1 � 1/2, a2 �

100, a, b, s, m � 0.5, A � [− 0.007, 0.005] × [− 0.0025,

0.0025].
Figure 5: p � 2, a0 � 0.0071 + 0.0014i, a1 � 2, a2 � 1,
a, b, s, m � 0.9, A � [− 0.053, 0.053] × [− 0.035, 0.035].
Figure 6: p � 2, a0 � 0.006i, a1 � 2, a2 � 1, a, b, s, m �

0.9, A � [− 0.053, 0.053] × [− 0.037, 0.037].

In Figures 7–12, cubic Julia sets are presented. Again,
we use the same complex cubic polynomial and involved
parameters except for a0 for Figures 7 and 8. We observe
that, due to a very small change in a0, the nature of cubic
Julia graphs also changes drastically. We have made the
same augments for Figures 9–12, respectively. Further-
more, we observe that the correspondence between the
points of cubic Julia sets creates the aesthetic patterns and
self-similarity in points of cubic Julia sets show that the
drawn graphs of cubic Julia sets are also fractals. +e in-
volved parameters for complex graphs of cubic Julia sets
7–12 were as follows:

Figure 7: p � 3, a0 � 0.00122, a1 � 1 + i, a2 � 1, a3 �

50, a, b, s, m � 0.9, A � [− 0.01, 0.01] × [− 0.01, 0.01].
Figure 8: p � 3, a0 � 0.001019, a1 � 1 + i, a2 � 1, a3 �

50, a, b, s, m � 0.9, A � [− 0.012, 0.01] × [− 0.012, 0.01].
Figure 9: p � 3, a0 � 0.000085i, a1 � 1 + i, a2 � 45, a3 �

50, a, b, s, m � 0.9, A � [− 0.00007, 0.00007]×

[− 0.00007, 0.00007].
Figure 10: p � 3,, a1 � 1 + i, a2 � 45, a3 � 50, a, b, s, m

� 0.9, A � [− 0.00009, 0.00009] × [− 0.00004, 0.00004].
Figure 11: p � 3, a0 � 0.09956 + 0.27i, a1 � 2, a2 � 1,

a3 � 3, a � 0.1, b � 0.9, s, m � 0.5, A � [− 0.8, 0.6]×

[− 0.6, 0.7].
Figure 12: p � 3, a0 � 0.0489 + 0.366i, a1 � 2, a2 � 1,

a3 � 3, a � 0.1, b � 0.9, s, m � 0.5, A � [− 0.8, 0.6]×

[− 0.6, 0.7].

4.2. Mandelbrot Sets. Figures 13–24 execute the quadratic
complex polynomial for different involved parameters in
JSOmhh. Figures 13–16 represent the quadratic Mandel-
brot sets. Each quadratic Mandelbrot set has a main car-
dioid type body, one large bulb, and two small bulbs are
seen on cardioid type body. +e bulbs are self-similar and
contain a large number of more small bulbs. Due to a small
change in the involved parameters, the size of bulbs and
main cardioid changes. Figures 17 and 18 are Mandelbrot
sets for quadratic polynomial, but both figures are not like
the usual quadratic Mandelbrot set. Some parts of both
images are like the quadratic, cubic, and quadric Man-
delbrot sets. It is observed that the values of ai’s are in the
inverse proportion to the area A; that is, the larger the
values of ai’s, the smaller the area A. +e involved pa-
rameters for quadratic Mandelbrot sets were taken as
follows:

Figure 13: p � 2, a1 � 1/2, a2 � 2, a, b, s, m � 0.1,
A � [− 0.17, 0.05] × [− 0.1, 0.1].
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Figure 14: p � 2, a1 � 3, a2 � 10, a, m � 0.5,

b � 0.9, s � 0.8, A � [− 0.17, 0.05] × [− 0.07, 0.07].
Figure 15: p � 2, a1 � 2, a2 � 100, a � 0.5, b � 0.9,

s � 0.8, m � 0.9, A � [− 0.0081, 0.0005] × [− 0.001,

0.001].
Figure 16: p � 2, a1 � 100, a2 � 1, a, b � 0.5, s � 0.9,

m � 0.7, A � [− 4200, 501] × [− 1201, 1201].
Figure 17: p � 2, a1 � 1, a2 � (a0 − 1), a, b � 0.5,

s � 0.9, m � 0.7, A � [− 0.15, 0.7] × [− 0.4, 0.4].
Figure 18: p � 2, a1 � 2/3, a2 � 1, a, b, s, m � 0.9,
A � [− 0.001, 0.002] × [− 0.001, 0.001].

Some Mandelbrot sets for cubic complex polynomial are
presented here. In Figures 19–24, the graphs for cubic
Mandelbrot sets are analyzed in JSOmhh. Figures 21 and 24
demonstrate the usual cubic while Figure 23 reflects the
quadratic Mandelbrot sets for cubic complex polynomial.

Figure 1: Quadratic Julia set in JSOmhh.

Figure 2: Quadratic Julia set in JSOmhh.

Figure 3: Quadratic Julia set in JSOmhh.

Figure 4: Quadratic Julia set in JSOmhh.

Figure 5: Quadratic Julia set in JSOmhh.
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Figure 6: Quadratic Julia set in JSOmhh.

Figure 7: Cubic Julia set in JSOmhh.

Figure 8: Cubic Julia set in JSOmhh.
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Figure 9: Cubic Julia set in JSOmhh.

Figure 10: Cubic Julia set in JSOmhh.

Figure 11: Cubic Julia set in JSOmhh.
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Figure 12: Cubic Julia set in JSOmhh.

Figure 13: Quadratic Mandelbrot set in JSOmhh.

Figure 14: Quadratic Mandelbrot set in JSOmhh.

Figure 15: Quadratic Mandelbrot set in JSOmhh.

Figure 16: Quadratic Mandelbrot set in JSOmhh.

Figure 17: Quadratic Mandelbrot set in JSOmhh.
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Figure 18: Quadratic Mandelbrot set in JSOmhh.

Figure 19: Cubic Mandelbrot set in JSOmhh.

Figure 20: Cubic Mandelbrot set in JSOmhh.

Figure 21: Cubic Mandelbrot set in JSOmhh.

Figure 22: Cubic Mandelbrot set in JSOmhh.

Figure 23: Quadratic Biomorph generated in Jungck-S orbit with
s-convexity.
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Figure 19 is multishaped, Figure 20 is like semiquadratic
semicubic, and Figure 23 is like Hexic Mandelbrot sets,
respectively. +e involved parameters were as follows:

Figure 19: p � 3, a1 � 2/3, a2 � 1, a3 � 3, a, b, s,

m � 0.9, A � [− 0.001, 0.0045] × [− 0.0015, 0.0015].
Figure 20: p � 3, a1 � 2, a2 � 1, a3 � 3(a0 − 1), a, b,

m, s � 0.5, A � [− 0.9, 1.05] × [− 0.9, 0.9].
Figure 21: p � 3, a1 � 1, a2 � 1, a3 � 30, a, b � 0.9,

m, s � 0.5, A � [− 0.03, 0.025] × [− 0.045, 0.045].
Figure 22: p � 3, a1 � 1/2, a2 � 3a2

0, a3 � 3a3
0, a, b,

m � 0.9, s � 0.5, A � [− 0.2, 0.2] × [− 0.2, 0.2].
Figure 23: p � 3, a1 � 1 + i, a2 � 45, a3 � 50, a, b, s,

m � 0.9, A � [− 0.0001, 0.0001] × [− 0.0002, 0.0001].
Figure 24: p � 3, a1 � 1 + i, a2 � 1, a3 � 50, a, b, s,

m � 0.9, A � [− 0.0022, 0.0017] × [− 0.0015, 0.0015].

5. Conclusions

Fractals can be used to capture images of these complex
structures. In addition, fractals are used to predict or analyze
various biological processes or phenomena such as the
growth pattern of bacteria and the pattern of situations such
as nerve dendrites. We established the Jungck–S orbit with
(m, h1, h2)–convexity and derived the new escape criteria for
the execution of fractals. We introduced two algorithms in
this paper for Julia and Mandelbrot sets. Some examples of
quadratic and cubic fractals (i.e., Julia and Mandelbrot sets)
were presented in detail. We observed the following char-
acteristics of fractals in JSOmhh:

A very small change in the involved parameters caused
the drastic change in fractals.
For large values of ai’s, area of the image will be small.
Self-similarity is observed in each image of Julia and
Mandelbrot sets. Hence, the visualized complex graphs
were the fractals.

In our future research work, we intend to obtain the
escape radius for other Jungck-type iterative schemes with

(m, h1, h2)–convexity. We believe this paper will attract
researchers who work on the investigations of different types
of fractals [23, 24].
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