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Let uα,d � uα,d(t, x), t ∈ [0, T], x ∈ Rd  be the solution to the stochastic heat equations (SHEs) with spatially colored noise. We
study the realized power variations for the process uα,d, in time, having infinite quadratic variation and dimension-dependent
Gaussian asymptotic distributions. We use the underlying explicit kernels and spectral/harmonic analysis, yielding temporal
central limit theorems for SHEs with spatially colored noise.(is work builds on the recent works on delicate analysis of variations
of general Gaussian processes and SHEs driven by space-time white noise.

1. Introduction

(roughout this work, we will consider the following
d-dimensional stochastic heat equation (SHE):

z

zt
uα,d(t, x) �

ε
2

z
2

zx
2uα,d(t, x) + σ uα,d(t, x)  _Wα,d, t∈+, x ∈ Rd

,

uα,d(0, x) � w(x), x ∈ Rd
,

(1)

with ε> 0 and Gaussian space-time colored noise Wα,d. (e
noise Wα,d is assumed to have a particular covariance
structure (see [1]):

E Wα,d(t, A)Wα,d(s, B)  � (t∧s)
A


B
fα,d(x − y)dxdy, t, s ∈ s+, A, B ∈Bb R

d
 , (2)

where
fα,d(x) � cα,d|x|

− d+α
, 0< α< d, (3)
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with cα,d � 2d− απd/2Γ((d − α)/2)/Γ(α/2). (e initial condi-
tion, w(x), is taken to be bounded and ρ-Hölder continuous.
We will also assume σ to be Lipschitz continuous, and there
exists c0 ≥ 0 such that |σ(x) − σ(y)|≤ c0|x − y| and

|σ(x)|≤ c0(1 + |x|). Stochastic PDEs (SPDEs) such as (1)
have been studied in [1–6] and others.

It is known (see [1, 7–10]) that (1) admits a unique mild
solution if and only if d< 2 + α, and this mild solution is
interpreted as the solution of the following integral equation:

uα,d(t, x) � 
Rd

G(t, x − y)uα,d(0, y)dy + 
t

0

Rd

G(t − s, x − y)σ uα,d(s, y) Wα,d(ds, dy), (4)

for t ∈ R+, x ∈ Rd, where the above integral is a Wiener
integral with respect to the noise Wα,d (see, e.g., [2] for the
definition) and G is the Green kernel of the heat equation
given by

G(t, x) �
(2πεt)− 1/2

e
− |x|2/(2εt)

, if t> 0, x ∈ Rd
,

0, if t≤ 0, x ∈ Rd
.

⎧⎨

⎩ (5)

Bezdek [11] investigated weak convergence of proba-
bility measures corresponding to the solution of (1) in d � 1.
He showed that probability measures corresponding to uα,1
weakly converge to those corresponding to the solution to
the SHE with white noise when α↑1, that is, the solution of
(1) converges in the appropriate sense to the solution of the
same equation, but with white noise W instead of colored
noise Wα,1 as α↑1. By that, we mean the solution to

z

zt
u(t, x) �

ε
2

z
2

zx
2 u(t, x) + σ(u(t, x)) _W, t ∈ R+, x ∈ R,

u(0, x) � w(x), x ∈ R,

(6)

where W denotes white noise. SPDEs such as (6) have been
studied in [1, 2, 7, 10, 12, 13] and others.

Among others, Tudor and Xiao [14] investigated the
exact uniform and local moduli of continuity and Chung-
type laws of the iterated logarithm of the process uα,d in
time. In fact, they investigated these path properties for a
more wide class, namely, the solution to the linear SHE
driven by a fractional noise in time with correlated spatial
structure. Swanson [13] showed that the solutions of the
SHEs in (6) with ε � σ � 1, in time, have infinite quadratic
variation and are not semimartingales and also investi-
gated central limit theorems (CLTs) for modifications of
the quadratic variations of the solutions of the SHEs with
white noise. Pospı́šil and Tribe [12] investigated the quartic
variations of the solutions of the SHEs in (6) with ε � σ � 1,
in time, having Gaussian asymptotic distributions. In-
spired by Swanson [13] and Pospı́šil and Tribe [12], in this
work, we show that the realized power variations of the
solutions of the SHEs in (1) with colored noise, in time,
have infinite quadratic variation and Gaussian asymptotic
distributions.

For p> 0, the p-power variation of a process X, with
respect to a subdivision πn � 0 � tn,0 < tn,1 < . . . < tn,n � 1 

of [0, 1], is defined to be the sum



n

j�1
X tn,j  − X tn,j− 1 




p
. (7)

For simplicity, consider from now on the case where
tn,j � j/n, for n ∈ N and j ∈ 1, . . . , n{ }. In this work, we wish
to point out some interesting phenomena when X is the
solution to a SHE with colored noise. In fact, we will also
drop the absolute value (when p is odd). More precisely, we
will consider


n

j�1
ΔXp

j , (8)

where ΔXj � ΔX(j/n) denotes the increment
X(j/n) − X((j − 1)/n)).

(e analysis of the asymptotic behavior of quantities of
type (8) is motivated, for instance, by the study of the exact
rates of convergence of some approximation schemes of
scalar stochastic differential equations driven by a Brownian
motion (BM) B (see, e.g., [15–17]), besides, of course, the
traditional applications of quadratic variations to parameter
estimation problems.

Now, let us recall some known results concerning the
p-power variations (for p ∈ N+), which are today more or
less classical. First, assume that B is the standard BM. Let μp

denote the p-moment of a standard Gaussian random
variable following an N(0, 1) law, that is, μ2p− 1 � 0 and
μ2p � (2p − 1)!! � (2p)!/(p!2p) for all p ∈ N+. By the scal-
ing property of the BM and using the CLT, it is immediate
that (see, e.g., [17]), as n⟶∞:

1
�
n

√ 

n

j�1
n

p/2ΔBp

j − μp ⟶L N 0, μ2p − μ2p . (9)

Assume that H≠ 1/2, that is, the case where the frac-
tional Brownian motion (FBM) BH has no independent
increments anymore. (en, (9) has been extended by
Corcuera et al. [15], Nourdin [17], Dobrushin and Major
[18], Taqqu [19], Breuer and Major [20], Giraitis and Sur-
gailis [21], Wang [22], and Wang and Wang [23]. Swanson
[13] extended (9) to modifications of the quadratic variation
of the solutions of SHE driven by space-time white noise.
Motivated by (9), in this work, we show that (9) with dif-
ferent mean and variance also holds for the solution to SHE
with colored noise.

Our proofs are based on the method of Swanson [13].
We make use of the product moments of various orders of
the normal correlation surface of two variates in Pearson and
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Young [24] to establish exact convergence rates of variances
of the realized power variation of the process u with respect
to time. (is work builds on the recent works on delicate
analysis of variations of general Gaussian processes and
SHEs driven by space-time white noise.

2. Results

In order to state our results, we first introduce some no-
tations. Let Xα,d(t) � uα,d(t, x), where x ∈ R is fixed. We
consider discrete Riemann sums over a uniformly spaced
time partition tj � jΔt, where Δt � n− 1. Let
ΔXα,d;j � Xα,d(tj) − Xα,d(tj− 1) and σ2α,d;j � E[ΔX2

α,d;j]. For
any p ∈ N+ and n ∈ N+, we define

V
n
p Xα,d 

t
� 

⌊nt⌋

j�1
ΔXp

α,d;j. (10)

Here and in the sequel, ⌊a⌋ denotes an integer satisfying
a − 1< ⌊a⌋≤ a for a ∈ R+.

Let θ � θ(α, d) � (d − α)/2. For j ∈ N+, let
aj � a(α, d, j) � 2j1− θ − (j − 1)1− θ − (j + 1)1− θ. For real
number r≥ 1, define br � b(α, d, r) � 

∞
j�1 ar

j. It follows
from (44) below that br is a positive and finite constant
depending on α, d, and r. For any p ∈ N+, we put

κα,d,p �

K
p

α,d μ2p − μ2p +
p!p!

2p− 1 

⌊p/2⌋

u�1

22u
b2u

(⌊p/2⌋ − u)!(⌊p/2⌋ − u)!(2u)!
⎛⎝ ⎞⎠, if p is even,

K
p

α,d μ2p −
p!p!

2p− 2 

⌊p/2⌋

u�0

22u
b2u+1

(⌊p/2⌋ − u)!(⌊p/2⌋ − u)!(2u + 1)!
⎛⎝ ⎞⎠, if p is odd,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where

Kα,d � Kα,d(θ, ε) �
Γ(θ)

2(d+α)/2πd/2Γ(d/2)(1 − θ)

2
ε

 
d/4

,

(12)

where Γ(s) � 
∞
0 xs− 1e− xdx, s> 0, is the gamma function.

We will first show the exact convergence rate of variance
for the realized power variation of the process Xα,d.

Theorem 1. Fix ε> 0 and x ∈ Rd and assume
α + 1≤ d< α + 2. Assume that w � 0 and σ � 1 in (1). .en,
for each fixed t> 0 and any p ∈ N+,

n
− 1+p(1− θ)Var V

n
p Xα,d 

t
 ⟶ κα,d,pt, (13)

as n tends to infinity.

By (13), we have the following convergence in proba-
bility for the realized power variation of the process Xα,d.

Corollary 2. Fix ε> 0 and x ∈ Rd and assume
α + 1≤ d< α + 2. Assume that w � 0 and σ � 1 in (1). .en,
for each fixed t> 0 and any p ∈ N+,

n
− 1+p(1− θ)

V
n
2p Xα,d 

t
⟶ K

p

α,dμ2pt, (14)

in L2 and in probability as n tends to infinity.

Remark 3. Since Vn
2p(Xα,d)t is monotone, (14) implies that

n− 1+p(1− θ)Vn
2p(Xα,d)t⟶ K

p

α,dμ2pt uniform convergence in
probability in the time interval [0, T] with some T> 0.
Moreover, (14) implies that the process Xα,d has infinite
quadratic variation.

Example 4. If α↑1 and d � 2, the 4-th variation, namely, p �

2 in (14), the corresponding constant of the right-hand side
of (14) is equal to 3/(επ).

(e CLT for the realized power variation of the process
Xα,d is as follows.

Theorem 2. Fix ε> 0 and x ∈ Rd and assume
α + 1≤d< α + 2. Assume that w � 0 and σ � 1 in (1). .en,
for any p ∈ N+,

Xα,d(t),
1
�
n

√ 

⌊nt⌋

j�1
n

p(1− θ)/2ΔXp

α,d;j − K
p/2
α,dμp ⎛⎝ ⎞⎠⟶L Xα,d(t), κ1/2α,d,pB(t) , (15)
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as n tends to infinity, where B � B(t), t ∈ [0, T]{ } is a BM
independent of the process Xα,d, and the convergence is in the
space D([0, T])2 equipped with the Skorokhod topology.

Remark 6. Comparing (15) and (9), we have that the realized
power variations of the process Xα,d for α + 1≤d< α + 2 share
similar Gaussian asymptotic properties with those of BM.

(roughout this paper, positive and finite constants are
numbered as c2,1, c2,2, . . . or c3,1, c3,2, . . ..

3. Proofs

3.1. Preliminaries. We need the following product moment
of various orders of the normal correlation surface of two
variates, which are equations (9) and (12) in Pearson and
Young [24].

Lemma 7. Suppose that (ξ, η) ∼ N 0,
σ21 ρ
ρ σ22

  , where
ρ � (σ1σ2)

− 1E[ξη]. .en,

E ξpηp
  �

p!p!

2p σp
1σ

p
2 

p/2

j�1

(2ρ)
2j

(p/2 − j)!(p/2 − j)!(2j)!
, if p is even,

ρp!p!

2p− 1 σ
p
1σ

p
2 

⌊p/2⌋

j�0

(2ρ)
2j

(⌊p/2⌋ − j)!(⌊p/2⌋ − j)!(2j + 1)!
, if p is odd.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

We also derive some needed estimates on the covariance
function and the variance function of increments of Xα,d.

Lemma 8. Fix ε> 0 and x ∈ Rd and assume
α + 1≤ d< α + 2. Assume that w � 0 and σ � 1 in (1). .en,
for all s, t ∈ [0, T],

E Xα,d(t)Xα,d(s)  � Kα,d (t + s)
1− θ

− (t − s)
1− θ

 , (17)

c2,1|t − s|
1− θ ≤E Xα,d(t) − Xα,d(s) 

2
 ≤ c2,2|t − s|

1− θ
,

(18)

and

E Xα,d(t) − Xα,d(s) 
2

  − Kα,d




t − s

1− θ


≤
c2,3

s
θ+1(t − s)

2
,

(19)

where Kα,d is given in (12).

Proof. By Proposition 2.3 of Tudor [10], one has that (17)
holds with

Kα,d �
(2π)

− d

1 − θ

Rd

dξ
|ξ|

αe
− |ξ|2/2

. (20)

By the following integral formula (see Corollary on page
23 in [25]):


Rd

f 
d

i�1
x
2
i

⎛⎝ ⎞⎠dx1 . . . dxd �
πd/2

Γ(d/2)

∞

0
y

d/2− 1
f(y)dy,

(21)

the constant Kα,d becomes

Kα,d �
Γ(θ)

2(d+α)/2πd/2Γ(d/2)(1 − θ)
. (22)

(is is (12) and yields (17).
Equation (18) is cited from(eorem 2.2 in Tudor [10]. It

remains to show (19). To show (19), we define the following
pinned string process in time Uα,d(t), t≥ 0  by

Uα,d(t) � 
t

0

Rd

G(t − u, x − y)Wα,d(du, dy) + 
0

− ∞

Rd

(G(t − u, x − y) − G(− u, x − y))Wα,d(du, dy). (23)

Note that Uα,d(0) � 0 and Uα,d(t) can be expressed as

Uα,d(t) � 
R


Rd

G (t − u)+, x − y(  − G (− u)+, x − y( ( Wα,d(du, dy). (24)

In the above, a+ � max(a, 0). Now for every t≥ 0, one
has the following decomposition:

Xα,d(t) � Uα,d(t) − Yα,d(t), (25)

where
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Yα,d(t) � 
R
 R

d
(G(t − u, x − y))I0>u − G (− u)+, x − y( Wα,d(du, dy). (26)

Following the same lines as the Proof of (eorem 1 of
Tudor and Xiao [14], for any 0≤ s< t,

E Uα,d(t) − Uα,d(s)



2

  � Kα,d(t − s)
1− θ

. (27)

Denote by μ(dξ) � |ξ|− αdξ the tempered non-negative
measure on Rd. LetFφ denote the Fourier transform of the
function u⟼φ(u) and f be the Riesz kernel defined in (3).
(en, for any φ,ψ ∈ S(Rd) (see, e.g., [10, 14]),


Rd


Rd
φ(x)f(x − y)ψ(y)dxdy � (2π)

− d

Rd
Fφ(ξ)Fψ(ξ)μ(dξ). (28)

It follows from (28) that for any 0≤ s< t,

E Yα,d(t) − Yα,d(s)



2

  � E 
R


Rd

G(t − u, x − y)I0>u − G(s − u, x − y)I0>u( Wα,d(du, dy) 
2

� 
R
du

Rd

Rd

G(t − u, x − y)I0>u − G(s − u, x − y)I0>u(  × G t − u, x − y′( I0>u(

− G s − u, x − y′( I0>uf y − y′( dydy′

� (2π)
− d


R
du

Rd
μ(dξ)F G(t − u, x − ·)I0>u − G(s − u, x − ·)I0>u( 

(ξ) × F G(t − u, x − ·)I0>u − G(s − u, x − ·)I0>u( (ξ)

� (2π)
− d


Rd
μ(dξ)

R
e

− (t− u)ε|ξ|2/2
I0>u − e

− (s− u)ε|ξ|2/2
I0>u 

2
du

� (2π)
− d


Rd
μ(dξ) 

0

− ∞
e

− (t− u)ε|ξ|2/2
− e

− (s− u)ε|ξ|2/2
 

2
du.

(29)

Since |1 − e− x|≤ 2x for all x≥ 0, one has for all 0≤ s< t

and ξ ∈ R,

e
− tε|ξ|2/2

− e
− sε|ξ|2/2



 � e
− sε|ξ|2/2 1 − e

− (t− s)ε|ξ|2/2


≤ (t − s)ε|ξ|
2
e

− sε|ξ|2/2
. (30)

(us, by (21), for any 0< s< t,
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Rd
μ(dξ) 

0

− ∞
e

− (t− u)ε|ξ|2/2
− e

− (s− u)ε|ξ|2/2
 

2
du

� 
Rd
μ(dξ) 

0

− ∞
e

uε|ξ|2
e

− tε|ξ|2/2
− e

− sε|ξ|2/2
 

2
du

� 
Rd

1
|ξ|

α+2 e
− tε|ξ|2/2

− e
− sε|ξ|2/2

 
2
dξ ≤ (t − s)

2

Rd

1
|ξ|

α− 2e
− sε|ξ|2dξ

�
πd/2

Γ(d/2)

(t − s)
2

s
θ+1 

∞

0
x
θ
e

− xdx≤
c2,4

s
θ+1(t − s)

2
.

(31)

Combining (29) and (31), one has

E Yα,d(t) − Yα,d(s)



2

 ≤
c2,5

(t − s)
2s

θ+1
. (32)

It follows from the argument of (29) that

E Xα,d(t) − Xα,d(s)



2

  − E Uα,d(t) − Uα,d(s)



2

 


 � E Yα,d(t) − Yα,d(s)



2

 . (33)

(is, together with (27) and (32), yields (19).(e proof of
Lemma 8 is completed. □

3.2. Proof of .eorem 1

Proof of(eorem 1. It is sufficient to prove (13) for the even
p case since the odd p case can be proved similarly. For

1≤ i< j≤ ⌊nt⌋, define ρα,d;ij � (σα,d;iσα,d;j)
− 1E[ΔXα,d;iΔ

Xα,d;j]. Note that for a random variable ξ following an
N(0, σ2) law,

E ξp
  � μpσ

p
, ∀p ∈ N+. (34)

By (16) and (34), one has

Var V
n
p Xα,d 

t
  � E 

⌊nt⌋

j�1
ΔXp

α,d;j − μpσ
p

α,d;j 
2

⎡⎢⎢⎣ ⎤⎥⎥⎦

� 

⌊nt⌋

j�1
E ΔXp

α,d;j − μpσ
p

α,d;j 
2

  + 2 

⌊nt⌋

i�1


⌊nt⌋

j�i+1
E ΔXp

α,d;i − μpσ
p

α,d;i  ΔXp

α,d;j − μpσ
p

α,d;j  

� 

⌊nt⌋

j�1
E ΔX2p

α,d;j  − μ2pσ
2p

α,d;j  + 2 

⌊nt⌋

i�1


⌊nt⌋

j�i+1
E ΔXp

α,d;iΔX
p

α,d;j  − μ2pσ
p

α,d;iσ
p

α,d;j 

� μ2p − μ2p  

⌊nt⌋

j�1
σ2p

α,d;j +
p!p!

2p− 1 

p/2

u�1

22u

(p/2 − u)!(p/2 − u)!(2u)!


⌊nt⌋

i�1


⌊nt⌋

j�i+1
σp

α,d;iσ
p

α,d;jρ
2u
α,d;ij.

(35)

It follows from (18) that

σ2α,d;j ≤ c2,6n
− 1+θ for all 1≤ j≤ ⌊nt⌋. (36)

By (19), (36), and Lagrange mean value theorem, it holds
that for any real number r> 0 and 1< j≤ ⌊nt⌋,
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σr
α,d;j − Kα,dn

− 1+θ
 

r/2

≤ c2,7 σr− 2
α,d;j + Kα,dn

− 1+θ
 

(r− 2)/2
  σ2α,d;j − Kα,dn

− 1+θ


≤ c2,8n
− 2+(− 1+θ)(r− 2)/2

t
− (θ+1)
j− 1 . (37)

Note that since α + 1≤d< α + 2, one has 1/2≤ θ< 1.
(us,

1
n



⌊nt⌋

j�2
t
− (θ+1)/2
j− 1 ⟶ 

t

0
x

− (θ+1)/2dx �
2

1 − θ
t
− (θ+1)/2

. (38)

It follows from (37) (with r � 2p) and (38) that

n
− 1+p(1− θ)



⌊nt⌋

j�1
σ2p

α,d;j − Kα,dn
− 1+θ

 
p

⟶ 0. (39)

Hence,

n
− 1+p(1− θ)



⌊nt⌋

j�1
σ2p

α,d;j � n
− 1+p(1− θ)



⌊nt⌋

j�1
σ2p

α,d;j − Kα,dn
− 1+θ

 
p

  + n
− 1+p(1− θ)

Kα,dn
− 1+θ

 
p
⌊nt⌋⟶ K

p

α,dt. (40)

It follows from (17) that

E ΔXα,d;iΔXα,d;j  � Kα,dn − 1 + θ(j + i)1 − θ − (j − i)1 − θ − (j + i − 1)1 − θ +(j − i + 1)1 − θ − (j + i − 1)
1− θ

+(j − i − 1)
1− θ

+(j + i − 2)
1− θ

− (j − i)
1− θ

,
(41)

which simplifies to

E ΔXα,d;iΔXα,d;j  � − Kα,d n
− 1+θ

aj+i− 1 + n
− 1+θ

aj− i ,

(42)

where aj � 2j1− θ − (j − 1)1− θ − (j + 1)1− θ. (us, by bino-
mial expansion, for every 1≤ u≤p/2 and 1≤ i< j≤ ⌊nt⌋,

σp

α,d;iσ
p

α,d;jρ
2u
α,d;ij � σp− 2u

α,d;i σ
p− 2u

α,d;j E ΔXα,d;iΔXα,d;j  
2u

� K
2u
α,dσ

p− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj+i− 1 + n
− 1+θ

aj− i 
2u

� K
2u
α,d 

2u

v�0

2u

v
 σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj+i− 1 
v

n
− 1+θ

aj− i 
2u− v

.

(43)

If we write ak � f(k − 1) − f(k), where
f(x) � (x + 1)1− θ − x1− θ, then for each k≥ 2, the Lagrange
mean value theorem gives

ak � |f′(k − ζ1)| � θ(1 − θ)(k − ζ1 + ζ2)
− θ− 1 for some

ζ1, ζ2 ∈ [0, 1]. (is yields that for all k ∈ N+,

0< ak ≤
c2,9

k
θ+1, (44)

and hence for any r≥ 1,



M

k�1
a

r
k⟶ br, (45)

with some br � b(r)> 0 as M⟶∞.
Note that since j + i − 1≥ (j + i)/2, one has

n
− 1+θ

aj+i− 1 ≤
c2,10

n
2

1

ti + tj 
θ+1. (46)

Note that (44) gives n− 1+θaj− i ≤ c2,11n
− 1+θ and

n− 1+θaj+i− 1 ≤ c2,12n
− 1+θ for all 1≤ i< j≤ ⌊nt⌋. (us, by (36)

and (46), for every 1≤ u≤p/2 and 1≤ v≤ 2u,

n
− 1+p(1− θ)



⌊nt⌋

i�1


⌊nt⌋

j�i+1
σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj+i− 1 
v

n
− 1+θ

aj− i 
2u− v
≤ c2,13n

− θ


⌊nt⌋

i�1


⌊nt⌋

j�i+1
n

− 1+θ
aj+i− 1 ≤ c2,14n

− 2− θ


⌊nt⌋

i�1


⌊nt⌋

j�i+1

1

ti + tj 
θ+1,

(47)

which tends to zero as n⟶∞ since


t

0 
t

0 (x + y)− (θ+1)dxdy<∞.
We now consider the term v � 0 in (43). Let

BH � BH(t), t ∈ R+  be a FBM with index H ∈ (0, 1), which
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is a centered Gaussian process with E[(BH(t) − BH(s))2] �

|s − t|2H for s, t ∈ R+. (en, for H0 � (1 − θ)/2,

E B
H0

j + 1
n

  − B
H0

j

n
   B

H0
i + 1

n
  − B

H0
i

n
    � −

1
2

2
j − i

n
 

1− θ
−

j − i − 1
n

 
1− θ

−
j − i + 1

n
 

1− θ
  � −

1
2
n

− 1+θ
aj− i.

(48)

(us,

n
− 1+θ



⌊nt⌋

i�1


⌊nt⌋

j�i+1
aj− i � n

− 1+θ


⌊nt⌋− 1

i�1


⌊nt⌋

j�i+1
aj− i

� − 2 

⌊nt⌋− 1

i�1


⌊nt⌋

j�i+1
E B

H0
j + 1

n
  − B

H0
j

n
   B

H0
i + 1

n
  − B

H0
i

n
   

� − 2 

⌊nt⌋− 1

i�1
E B

H0
⌊nt⌋ + 1

n
  − B

H0
i + 1

n
   B

H0
i + 1

n
  − B

H0
i

n
   

� − 

⌊nt⌋− 1

i�1
−

⌊nt⌋ − i

n
 

1− θ

+
⌊nt⌋ + 1 − i

n
 

1− θ

−
1
n

 
1− θ

⎡⎣ ⎤⎦

� −
⌊nt⌋

n
 

1− θ

+
1
n

 
1− θ

+⌊nt⌋n
− 1+θ

.

(49)

(is yields

n
− θ



⌊nt⌋

i�1


⌊nt⌋

j�i+1
n

− 1+θ
aj− i ⟶ t. (50)

By (36) and (44), for every 1≤ u≤p/2 and any M> 0,

n
− 1+p(1− θ)



⌊nt⌋

i�1


⌊nt⌋

j�i+M+1
σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj− i 
2u
≤ c2,15M

− (θ+1)(2u− 1)
n

− θ


⌊nt⌋

i�1


⌊nt⌋

j�i+M+1
n

− 1+θ
aj− i 

≤ c2,16M
− (θ+1)(2u− 1)

n
− θ



⌊nt⌋

i�1


⌊nt⌋

j�i+1
n

− 1+θ
aj− i .

(51)

(is, together with (45), yields

n
− 1+p(1− θ)



⌊nt⌋

i�1


⌊nt⌋

j�i+M+1
σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj− i 
2u
≤ c2,17M

− (θ+1)(2u− 1)
t, (52)

which tends to zero by letting M⟶∞.
By (37) (with r � p − 2u), (36), and (48), for every

1≤ u≤p/2,
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n
− 1+p(1− θ)



⌊nt⌋

i�2


⌊nt⌋

j�i+1
σp− 2u

α,d;i − Kα,dn
− 1+θ

 
(p− 2u)/2

σ
p− 2u

α,d;j n
− 1+θ

aj− i 
2u
≤ c2,18n

− 1− 2θ


⌊nt⌋

i�2

1
t
θ+1
i− 1



⌊nt⌋

j�i+1
n

− 1+θ
aj− i 

� − 2c2,18n
− 1− 2θ



⌊nt⌋

i�2

1
t
θ+1
i− 1

−
⌊nt⌋ − i

n
 

1− θ

+
⌊nt⌋ + 1 − i

n
 

1− θ

−
1
n

 
1− θ

⎡⎣ ⎤⎦

≤ c2,19n
− θ



⌊nt⌋

i�2
−

⌊nt⌋ − i

n
 

1− θ

+
⌊nt⌋ + 1 − i

n
 

1− θ
⎡⎣ ⎤⎦ + c2,20n

− 2− θ


⌊nt⌋

i�2

1
t
θ+1
i− 1

≤ c2,21n
− θ 1

n
 

1− θ
+

⌊nt⌋ − 1
n

 

1− θ
⎡⎣ ⎤⎦ + c2,22n

− 3/2− θ/2


⌊nt⌋

i�2
t
− (θ+1)/2
i− 1 ,

(53)

which tends to zero as n⟶∞ since 
t

0 x− (θ+1)/2dx<∞.
Hence, for every 1≤ u≤p/2,

n
− 1+p(1− θ)



⌊nt⌋

i�2


⌊nt⌋

j�i+1
σp− 2u

α,d;i − Kα,dn
− 1+θ

 
(p− 2u)/2

 σp− 2u

α,d;j n
− 1+θ

aj− i 
2u
⟶ 0. (54)

Similarly, for every 1≤ u≤p/2,

n
− 1+p(1− θ)



⌊nt⌋

i�2


⌊nt⌋

j�i+1
Kα,dn

− 1+θ
 

(p− 2u)/2
× σp− 2u

α,d;j − Kα,dn
− 1+θ

 
(p− 2u)/2

  n
− 1+θ

aj− i 
2u
⟶ 0. (55)

For every 1≤ u≤p/2 and any M> 0,

n
− 1+p(1− θ)



⌊nt⌋

i�2


i+M

j�i+1
Kα,dn

− 1+θ
 

p− 2u
n

− 1+θ
aj− i 

2u
� K

p− 2u

α,d

⌊nt⌋ − 1
n



M

j�1
a
2u
j ⟶ K

p− 2u

α,d b2ut, (56)

as n⟶∞ and M⟶∞. Note that for every 1≤ u≤p/2 and 1≤ i< j≤ ⌊nt⌋,

σp− 2u

α,d;i σ
p− 2u

α,d;j � σp− 2u

α,d;i − Kα,dn
− 1+θ

 
(p− 2u)/2

 σp− 2u

α,d;j + Kα,dn
− 1+θ

 
(p− 2u)/2

σp− 2u

α,d;j − Kα,dn
− 1+θ

 
(p− 2u)/2

  + Kα,dn
− 1+θ

 
p− 2u

.

(57)

Hence, by (54)–(57), for every 1≤ u≤p/2,

n
− 1+p(1− θ)



⌊nt⌋

i�2


i+M

j�i+1
σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj− i 
2u
⟶ K

p− 2u

α,d b2ut, (58)

as n⟶∞ and M⟶∞. It follows from (36) that
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n
− 1+p(1− θ)



1+M

j�2
σp− 2u

α,d;i σ
p− 2u

α,d;j n
− 1+θ

aj− 1 
2u
⟶ 0. (59)

(is, together with (43), (47), and (58), yields for every
1≤ u≤p/2,

n
− 1+p(1− θ)



⌊nt⌋

i�1


⌊nt⌋

j�i+1
σp

α,d;iσ
p

α,d;jρ
2u
α,d;ij⟶ K

p

α,db2ut. (60)

(erefore, by (35), (40), and (60), one has

n
− 1+p(1− θ)Var V

n
p Xα,d 

t
 ⟶ K

p

α,d μ2p − μ2p +
p!p!

2p− 1 

p/2

u�1

22u
b2u

(p/2 − u)!(p/2 − u)!(2u)!
⎛⎝ ⎞⎠t � κα,d,pt. (61)

(is proves (13). (e Proof of (eorem 1 is
completed. □

Proof. of Corollary 2. Write

n
− 1+p(1− θ)/2

V
n
p Xα,d 

t
− K

p/2
α,dμpt � n

− 1+p(1− θ)/2
V

n
p Xα,d 

t
− E V

n
p Xα,d 

t
   + μpn

− 1+p(1− θ)/2



⌊nt⌋

j�1
σp

α,d;j − Kα,dn
− 1+θ

 
p/2

  + K
p/2
α,dμp

⌊nt⌋

n
− t .

(62)

Obviously, the third term of (62) tends to zero as
n⟶∞. It follows from (37) (with r � p) and (38) that the
second term of (62) tends to zero as n⟶∞. (us, by (13),

E n
− 1+p(1− θ)/2

V
n
p Xα,d 

t
− K

p/2
α,dμpt




2

 ⟶ 0. (63)

(is proves (14). □

3.3. Proof of .eorem 2. (e following lemma is needed to
prove (eorem 2.

Lemma 9. Let F1, . . . , F4 be normal random variables
with mean zero, E[F2

j] � 1 and ρij � E[FiFj]. Put ξj � F
p
j −

E[F
p
j ]. .en, for any p ∈ N+,

E 
4

j�1
ξj

⎡⎢⎢⎣ ⎤⎥⎥⎦




≤ c3,1 ρ12ρ34


 +

1
������

1 − ρ212
 maxi≤2<j ρij




⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(64)

whenever |ρ12|< 1. Moreover,

E 
4

j�1
ξj

⎡⎢⎢⎣ ⎤⎥⎥⎦




≤ c3,2max2≤j≤4 ρ1j



. (65)

Furthermore, there exists ε> 0 such that

E 
4

j�1
ξj

⎡⎢⎢⎣ ⎤⎥⎥⎦




≤ c3,3max1≤i≠j≤4ρ

2
ij, (66)

whenever |ρij|< ε for all 1≤ i≠ j≤ 4.

Proof. Following the same lines as the proof of Lemma 3.3
in Swanson [13] with hj(Fj) � ξj, 1≤ j≤ 4, we get Lemma 9
immediately. □

Proposition 10. Fix ε> 0 and x ∈ Rd and assume
α + 1≤d< α + 2. Assume that w � 0 and σ � 1 in (1). Fix
r ∈ N+. Put

W
n
r Xα,d 

t
� n

− 1/2+r(1− θ)/2


⌊nt⌋

i�1
ΔXr

α,d;i − μrσ
r
α,d;i . (67)

(en, for all 0≤ s< t and all n ∈ N+,

E W
n
r Xα,d 

t
− W

n
r Xα,d 

s




4

 ≤ c3,4
⌊nt⌋ − ⌊ns⌋

n
 

2

. (68)

(e sequence Wn
r(Xα,d)  is therefore relatively compact

in the Skorokhod space DR[0,∞).

Proof. We follow the method of Proposition 3.5 in Swanson
[13] to prove (68). Let S � j ∈ N4

+: ⌊ns⌋ + 1≤ j1 ≤ . . . ≤

j4 ≤ ⌊nt⌋}. For j ∈ S and k ∈ 1, 2, 3{ }, define hk � jk+1 − jk

and let Sk � j ∈ S: hk � max h1, h2, h3  . Define N � ⌊nt⌋

− (⌊ns⌋ + 1), and for i ∈ 0, 1, . . . , N{ }, let Si
k � j ∈ Sk: max

h1, h2, h3  � i}. Further define Tℓ
k � Ti,ℓ

k � j ∈ Si
k: min

h1, h2, h3  � ℓ} and Vv
k � Vi,ℓ,v

k � j ∈ Tℓ
k: med h1, h2,

h3} � v}, where “med” denotes the median function. For
j ∈ S, define

Uα,d;j � 
4

k�1
ΔXr

α,d;jk
− μrσ

r
α,d;jk

 . (69)

Observe that
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E W
n
r Xα,d 

t
− W

n
r Xα,d 

s




4

  � n
− 2+2r(1− θ)

E 

⌊nt⌋

i�⌊nt⌋+1
ΔXr

α,d;i − μrσ
r
α,d;i 

4⎡⎢⎢⎣ ⎤⎥⎥⎦

≤ 4!n
− 2+2r(1− θ)


j∈S

E Uα,d;j 


≤ 4!n
− 2+2r(1− θ)



3

k�1


j∈Sk

E Uα,d;j 


,

(70)

and that


j∈Sk

E Uα,d;j 


 � 
N

i�0


j∈Si
k

E Uα,d;j 




� 
N

i�0


⌊iθ⌋

ℓ�0


j∈Tℓ
k

E Uα,d;j 


 + 
N

i�0


i

ℓ�⌊iθ⌋+1



j∈Tℓ
k

E Uα,d;j 




� 
N

i�0


⌊iθ⌋

ℓ�0


i

v�ℓ


j∈Vv
k

E Uα,d;j 


 + 
N

i�0


i

ℓ�⌊iθ⌋+1



i

v�ℓ


j∈Vv

k

E Uα,d;j 


. (71)

Let Fα,d;k � σ − 1
α,d;jk
ΔXα,d;jk

and

ξα,d;k � F
r
α,d;k − E F

r
α,d;k  � σ − r

α,d;jk
ΔXr

α,d;jk
− μrσ

r
α,d;jk

 .

(72)

(en,

E Uα,d;j 


 � 
4

k�1
σr
α,d;jk

⎛⎝ ⎞⎠ E 
4

k�1
ξα,d;k

⎡⎣ ⎤⎦




. (73)

By (42) and (44), for all k≠ l ∈ N+,

E ΔXα,d;kΔXα,d;l 


≤
c3,5n

− 1+θ

|k − l|
θ+1.

(74)

It follows from (36) and (74) that

ρα,d;kl



 � EFα,d;kFα,d,l


 � σ − 1

α,d;jk
σ − 1
α,d;jl

E ΔXα,d;jk
ΔXα,d;jl

 


≤
c3,6

jk − jl



θ+1. (75)

Suppose 0≤ ℓ ≤ ⌊iθ⌋. Fix v and let j ∈ Vv
k be arbitrary. If

k � 1, then i � max h1, h2, h3  � h1 � j2 − j1. If k � 3, then
i � max h1, h2, h3  � h3 � j4 − j3. In either case, by (65),
(36), (73), and (75), one has

E Uα,d;j 


≤
c3,7n

− 2r(1− θ)

i
θ+1 ≤ c3,7

1
(ℓv)

θ+1 +
1

i
θ+1 n

− 2r(1− θ)
.

(76)

If k � 2, then i � max h1, h2, h3  � h2 � j3 − j2 and
ℓv � h3h1 � (j4 − j3)(j2 − j1). Hence, by (64), (36), (73),
and (75),

E Uα,d;j 


≤ c3,8
1

(ℓv)
θ+1 +

1
i
θ+1 n

− 2r(1− θ)
. (77)

Now choose k′ ≠ k such that hk′ � ℓ. With k′ given, j is
determined by jk. Since there are two possibilities for k′ and
N + 1 possibilities for jk, |Vv

k|≤ 2(N + 1). (erefore,



⌊iθ⌋

ℓ�0


i

v�ℓ


j∈Vv
k

E Uα,d;j 


≤ c3,9(N + 1) 

⌊iθ⌋

ℓ�0


i

v�ℓ

1
(ℓv)

θ+1 +
1

i
θ+1 n

− 2r(1− θ) ≤ c3,10(N + 1) 

⌊iθ⌋

ℓ�0

1
ℓθ+1 +

1
i
θ n

− 2r(1− θ) ≤ c3,11(N + 1)n
− 2r(1− θ)

. (78)

For the second summation, suppose ⌊iθ⌋ + 1≤ ℓ ≤ i. In
this case, if j ∈ Tℓ

k, then ℓ � min h1, h2, h3 , so that by (66),
(36), (73), and (75),

E Uα,d;j 


≤
c3,12n

− 2r(1− θ)

ℓ2(θ+1)
. (79)

Since 
i
v�ℓ |Vv

k|≤ 2(N + 1)i and 1/2≤ θ< 1, one has
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i

ℓ�⌊iθ⌋+1

i

v�ℓ


j∈Vv
k

E Uα,d;j 


≤ c3,13(N + 1)i 
i

⌊iθ⌋+1

n
− 2r(1− θ)

ℓ2(θ+1)
≤ c3,14(N + 1)i 

∞

⌊iθ⌋

1
x
2(θ+1)

dx n
− 2r(1− θ) ≤ c3,15(N + 1)n

− 2r(1− θ)
.

(80)

(us, using (70), (71), (78), and (80), one has

n
− 2+2r(1− θ)

E 

⌊nt⌋

j�⌊ns⌋+1
ΔXr

α,d;j − μrσ
r
α,d;j 

4⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦≤ c3,16 

N

i�0
(N + 1)n

− 2
� c3,16

⌊nt⌋ − ⌊ns⌋

n
 

2

, (81)

which is (68).
To show that a sequence of càdlàg processes Xn  is

relatively compact, it suffices to show that for each T> 1,
there exist constants β> 0, C> 0, and q> 1 such that

RXn
(t, h) � E Xn(t + h) − Xn(t)



β

Xn(t) − Xn(t − h)



β

 

≤Ch
q
,

(82)

for all n ∈ N, all t ∈ [0, T], and all h ∈ [0, t] (see, e.g., (e-
orem 3.8.8 in [26]). Taking β � 2 and using (68) together
with Hölder inequality gives

RWn
r Xα,d( )(t, h)≤ c3,17

⌊nt + nh⌋ − ⌊nt⌋

n
 

⌊nt⌋ − ⌊nt − nh⌋

n
 .

(83)

If nh< 1/2, then the right-hand side of this inequality is
zero. Assume nh≥ 1/2. (en,

⌊nt + nh⌋ − ⌊nt⌋

n
≤

nh + 1
n
≤ 3h. (84)

(e other factor is similarly bounded, so that
RWn

r (Xα,d)(t, h)≤ c3,18h
2. □

Proposition 11. Fix ε> 0 and x ∈ Rd and assume
α + 1≤d< α + 2. Assume that w � 0 and σ � 1 in (1). .en,
for any 0≤ s< t and r ∈ N+,

W
n
r Xα,d 

t
− W

n
r Xα,d 

s
⟶L κ1/2α,d,r|t − s|

1/2
N, (85)

as n⟶∞, whereN is a standard normal random variable.

Proof. Let n(j) 
∞
j�1 be any sequence of natural numbers.

We will prove that there exists a subsequence n(jm)  such
that W

n(jm)
r (Xα,d)t − W

n(jm)
r (Xα,d)s converges in law to the

given random variable.
For each m ∈ N+, choose n(jm) ∈ n(j)  such that

n(jm)> n(jm− 1) and n(jm)≥m2/θ(t − s)− 1. Let
b � b(m) � n(jm)(t − s)/m. For 0≤ k≤m, define
uk � n(jm)s + kb, so that

W
n jm( )
r Xα,d 

t
− W

n jm( )
r Xα,d 

s
� n jm( 

− 1/2+r(1− θ)/2


⌊n jm( )t⌋

i�⌊n jm( )s⌋+1

ΔXr
α,d;i − μrσ

r
α,d;i 

� n jm( 
− 1/2+r(1− θ)/2



m

k�1


uk

i�uk− 1+1
ΔXr

α,d;i − μrσ
r
α,d;i .

(86)

Let us now introduce the filtration

Ft � σ Wα,d(A): A ⊂ [0, t] × R
d
, λ(A)<∞ , (87)

where λ denotes Lebesgue measure on Rd+1. Let
τk � n(jm)− 1uk− 1. For each pair (i, k) such that uk− 1 < i≤ uk,
define

ξα,d;ik � ΔXα,d;i − E ΔXα,d;i|Fτk
 . (88)

Note that ξα,d;ik is Fτk+1
-measurable and independent of

Fτk
. Recall that

Xα,d(t) � 
t

0

Rd

G(t − x, y)Wα,d(dx, dy). (89)

Also, given constants 0≤ τ ≤ s≤ t, one has

E Xα,d(t)|Fτ  � 
τ

0

Rd

G(t − x, y)Wα,d(dx, dy). (90)

It follows from (89) and (90) that
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Xα,d t + τk(  − E Xα,d t + τk( |Fτk
  � 

t+τk

τk


Rd

G t + τk − x, y( Wα,d(dx, dy). (91)

(is yields that ξα,d;ik  has the same law as ΔXα,d;i− uk− 1
 .

Now define σ2α,d;ik � E[ξ2α,d;ik] � σ2α,d;i− uk− 1
and

ζα,d;mk � 

uk

i�uk− 1+1
ξr
α,d;ik − μrσ

r
α,d;ik , (92)

so that ζα,d;mk, 1≤ k≤m, are independent and

W
n jm( )
r Xα,d 

t
− W

n jm( )
r Xα,d 

s
� n jm( 

− 1/2+r(1− θ)/2


m

k�1
ζα,d;mk + εα,d;m, (93)

where

εα,d;m � n jm( 
− 1/2+r(1− θ)/2



m

k�1

uk

i�uk− 1+1
ΔXr

α,d;i − μrσ
r
α,d;i  − ξr

α,d;ik − μrσ
r
α,d;ik  . (94)

Since ξα,d;ik and ΔXα,d;i − ξα,d;ik � E[ΔXα,d;i|Fτk
] are

independent, one has

σ2α,d;i � E ΔX2
α,d;i 

� E ξ2α,d;ik  + E ΔXα,d;i − ξα,d;ik



2

 

� σ2α,d;i− uk− 1
+ E ΔXα,d;i − ξα,d;ik



2

 .

(95)

(is, together with (19), gives

E ΔXα,d;i − ξα,d;ik



2

  � σ2α,d;i − σ2α,d;i− uk− 1
≤

c3,19n jm( 
− 1+θ

i − uk− 1( 
θ+1 .

(96)

(us, since ΔXα,d;i − ξα,d;ik is Gaussian, by (34) and (96),

E ΔXα,d;i − ξα,d;ik



4

 ≤
c3,20n jm( 

− 2+2θ

i − uk− 1( 
2θ+2 . (97)

Note that (34) and (36) give E[|ΔXα,d;i|
4r− 4]≤

c3,21σ4r− 4
α,d;i ≤ c3,22n(jm)(− 1+θ)(2r− 2) and E[|ξα,d;ik|4r− 4]≤ c3,23

σ4r− 4
α,d;i− uk− 1
≤ c3,24n(jm)(− 1+θ)(2r− 2). By Lagrange mean value

theorem,

ΔXr
α,d;i − ξr

α,d;ik



≤ c3,25 ΔXα,d;i



r− 1

+ ξα,d;ik



r− 1

  ΔXα,d;i − ξα,d;ik


. (98)

(us, by (97) and Hölder inequality,

E ΔXr
α,d;i − ξr

α,d;ik




2

 ≤ c3,26 E ΔXα,d;i



4r− 4

  + E ξα,d;ik



4r− 4

  
1/2

E ΔXα,d;i − ξα,d;ik



4

  
1/2
≤

c3,27n jm( 
− r(1− θ)

i − uk− 1( 
θ+1 . (99)

Similarly, by (96) and Lagrange mean value theorem,
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σr
α,d;i − σr

α,d;ik



≤ c3,28 σα,d;i



r− 2

+ σα,d;ik



r− 2

  σ2α,d;i − σ2α,d;ik



≤
c3,29n jm( 

− r(1− θ)/2

i − uk− 1( 
θ+1 . (100)

(erefore, by (99), (100), and Hölder inequality,

E εα,d;m


 ≤ n jm( 

− 1/2+r(1− θ)/2


m

k�1


uk

j�uk− 1+1
E ΔXr

α,d;i − ξr
α,d;ik




2

  
1/2

+ μr σ
r
α,d;j − σr

α,d;jk



 

≤ c3,30n jm( 
− 1/2



m

k�1


uk

i�uk− 1+1
i − uk− 1( 

− (θ+1)/2
� c3,31n jm( 

− 1/2


m

k�1


uk− uk− 1

i�1
i
− (θ+1)/2

.

(101)

Since uk − uk− 1 ≤ b, this gives

E εα,d;m


 ≤ c3,32n jm( 

− 1/2
mb

(1− θ)/2
� c3,32m

(θ+1)/2
n jm( 

− θ/2
(t − s)

(1− θ)/2
. (102)

But since n(jm) was chosen so that n(jm)≥m2/θ

(t − s)− 1, one has E[|εα,d;m|]≤ c3,33m
− (1− θ)/2|t − s|1/2 and

ϵα,d;m⟶ 0 in L1 and in probability. (erefore, by (93), one
needs only to show that

n jm( 
− 1/2+r(1− θ)/2



m

k�1
ζα,d;mk⟶

L
κ1/2α,d,r|t − s|

1/2
N (103)

in order to complete the proof.
For this, we will use the Lindeberg–Feller theorem (see,

e.g., (eorem 2.4.5 in [27]), which states the following: for
each m, let ζα,d;mk, 1≤ k≤m, be independent random vari-
ables with E[ζα,d;mk] � 0. Suppose

(a) n(jm)− 1+r(1− θ) 
m
k�1 E[ζ2α,d;mk]⟶ ]2.

(b) For all ε> 0, limm⟶∞n(jm)− 1

+ r(1 − θ) 
m
k�1 E[|ζ2α,d;mk|2I− 1/2

n(jm)+r(1− θ)/2×|ζα,d;mk|> ε{ }
]

⟶ 0.

(en, n(jm)− 1/2+r(1− θ)/2 
m
k�1 ζα,d;mk⟶L ]N as

n⟶∞.
To verify these conditions, recall that ξα,d;ik  and
ΔXα,d;i− uk− 1

  have the same law, so that

E ζα,d;mk



4

  � n jm( 
− 2+2r(1− θ)

E 

uk− uk− 1

i�1
ΔXr

α,d;i − μrσ
r
α,d;i 





4
⎡⎢⎣ ⎤⎥⎦.

(104)

Hence, by (68),

n jm( 
− 2+2r(1− θ)

E ζα,d;mk



4

 ≤ c3,34 uk − uk− 1( 
2
n jm( 

− 2
.

(105)

Jensen inequality now gives m− 1+r(1− θ) 
m
k�1 E[|ζα,d;mk

2|]

≤ c3,35mbn(jm)− 1 � c3,35(t − s), so that by passing to a
subsequence, one may assume that (a) holds for some ]≥ 0.

For (b), let ε> 0 be arbitrary. (en,

n jm( 
− 1+r(1− θ)



m

k�1
E ζα,d;mk



2
I

n jm( )
− 1/2+r(1− θ)/2 ζα,d;mk| |> ε  ≤ ε− 2

n jm( 
− 2+2r(1− θ)



m

k�1
E ζα,d;mk



4

 

≤ c3,36ε
− 2

mb
2
n jm( 

− 2
� c3,36ε

− 2
m

− 1
(t − s)

2
,

(106)

which tends to zero as m⟶∞.
It therefore follows that n(jm)− 1/2+r(1− θ)/2 

m
k�1 ζα,d;mk

⟶L ]N as n⟶∞ and it remains only to show that
] � κ1/2α,d,r|t − s|1/2. For this, observe that the continuous
mapping theorem implies that |Wm

r (Xα,d)t − Wm
r (Xα,d)s|

2

⟶L ]2N2. By the Skorokhod representation theorem, one

may assume that the convergence is a.s. By Proposition 10,
the family |Wm

r (Xα,d)t − Wm
r (Xα,d)s|

2 is uniformly inte-
grable. Hence, |Wm

r (Xα,d)t − Wm
r (Xα,d)s|

2⟶ ]2N2 in L1,
which implies E[|Wm

r (Xα,d)t − Wm
r (Xα,d)s|

2]⟶ ]2. But by
(eorem 1, E[|Wm

r (Xα,d)t − Wm
r (Xα,d)s|

2]⟶ κα,d,r|t − s|,
so ] � κ1/2α,d,r|t − s|1/2 and the proof is complete. □
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Proof. of(eorem 2It is sufficient to prove (15) for the even
p case since the odd p case can be proved similarly. Let
n(j) 
∞
j�1 be any sequence of natural numbers. By Propo-

sition 10, the sequence (Xα,d, W
n(j)
p (Xα,d))  is relatively

compact.(erefore, there exists a subsequence n(jk)  and a
càdlàg process Yα,d such that (Xα,d, W

n(jk)
p (Xα,d))⟶L

(Xα,d, Yα,d). Fix 0< s1 < s2 < . . . < sℓ < s< t. With notation as
in Proposition 11, let

ζα,d;n jk( ) � n jk( 
− 1/2+p(1− θ)/2



⌊n jk( )t⌋

i�⌊n jk( )s⌋+2

ξp

α,d;ik − μpσ
p

α,d;ik ,

(107)

and define

ηα,d;n jk( ) � W
n jk( )
p Xα,d 

t
− W

n jk( )
p Xα,d 

s
− ζα,d;n jk( ).

(108)

As in the proof of Proposition 11, ηα,d;n(jk)⟶ 0 in
probability. It therefore follows that

W
n jk( )
p Xα,d 

s1
, . . . , W

n jk( )
p Xα,d 

sℓ
, ζα,d;n jk( ) ⟶

L
Yα,d s1( , . . . , Yα,d sℓ( , Yα,d(t) − Yα,d(s) . (109)

Note that F(⌊n(jk)s⌋+1)n(jk)− 1 and ζα,d;n(jk) are indepen-
dent. Hence, (W

n(jk)
p (Xα,d)s1

, . . . , W
n(jk)
p (Xα,d)sℓ

), . . . ,

W
n(jk)
p (Xα,d)sℓ

) and ζα,d;n(jk) are independent, which implies
that Yα,d(t) − Yα,d(s) and (Yα,d(s1), . . . , Yα,d(sℓ)) are in-
dependent. (is yields that the process Yα,d has independent
increments.

By Proposition 11, the increment Yα,d(t) − Yα,d(s) is
normally distributed with mean zero and variance
κα,d,p|t − s|. Also, Xα,d(0) � 0 since Wn

p(Xα,d)0 � 0 for all n.
Hence, Yα,d is equal in law to κ1/2α,d,pB, where B is a standard
BM. It remains only to show that Xα,d and B are
independent.

Fix 0< s1 < s2 < . . . < sℓ ≤T. Let
Zα,d � (Xα,d(s1), . . . , Xα,d(sℓ))

T and Σα,d � E[Zα,dZT
α,d]. It is

easy to see that Σα,d is invertible. Hence, one may define the

vectors vα,d;j ∈ Rℓ by vα,d;j � E[Zα,dΔXα,d;j], and
wα,d;j � Σ− 1α,dvα,d;j. Let ξα,d;j � ΔXα,d;j − wT

α,d;jZα,d, so that
ξα,d;j and Zα,d are independent.

Define

W
n

p Xα,d 
t

� n
− 1/2+p(1− θ)/2



⌊nt⌋

j�1
ξp

α,d;j − μpσ
p

α,d;j . (110)

(en,

W
n
p Xα,d 

t
− W

n

p Xα,d 
t



≤ n
− 1/2+p(1− θ)/2



⌊nt⌋

j�1
ΔXp

α,d;j − ξp

α,d;j 




.

(111)

By (34), binomial expansion, and Hölder inequality,

E sup0≤t≤T W
n
p Xα,d 

t
− W

n

p Xα,d 
t



 ≤ c3,37n
− 1/2+p(1− θ)/2



p

]�1


⌊nt⌋

j�1
E ΔX2p− 2]

α,d;j  
1/2

E w
T
α,d;jZα,d 

2]
  

1/2

≤ c3,38 

p

]�1
n

− 1/2+](1− θ)/2


⌊nt⌋

j�1
E w

T
α,d;jZα,d 

2]
  

1/2
≤ c3,39max1≤i≤ℓ 

p

]�1
n

− 1/2+](1− θ)/2


⌊nt⌋

j�1
E Xα,d si( ΔXα,d;j 




]
.

(112)

Note that by (36) and Hölder inequality, one has
|E[Xα,d(si)ΔXα,d;j]|≤ c3,40σα,d;j ≤ c3,41n

− (1− θ)/2 for all
1≤ i≤ ℓ and 1≤ j≤ ⌊nt⌋, and note that by (17) and Lagrange
mean value theorem, for any 1≤ i≤ ℓ and 1≤ j≤ ⌊nt⌋,

E Xα,d si( ΔXα,d;j  � Kα,d si + tj 
1− θ

− si + tj− 1 
1− θ

− si − tj 
1− θ

+ si − tj− 1 
1− θ

 

�
Kα,d(1 − θ)

n
si +

j − ζ1( 

n
 

− θ

+ si −
j − ζ2( 

n
 

− θ
⎛⎝ ⎞⎠⎛⎝ ⎞⎠≤

2Kα,d(1 − θ)

n
si −

j − ζ2( 

n
 

− θ
⎛⎝ ⎞⎠,

(113)
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where ζ1, ζ2 ∈ (0, 1). (en, for any 1≤ i≤ ℓ and 1≤ ]≤ 2p,

n
− 1/2+](1− θ)/2



⌊nt⌋

j�1
E Xα,d si( ΔXα,d;j 




]
≤ c3,42n

1/2− ](1+θ)/21
n



⌊nt⌋

j�1
si −

j − ζ2( 

n
 

− θ

, (114)

which tends to zero as n⟶∞ since 
T

0 (si − x)− θdx<∞.
(us,

Zα,d, W
n

p Xα,d 
s1

, . . . , W
n

p Xα,d 
sd

 ⟶
L

Zα,d, κ1/2α,d,pB s1( , . . . , κ1/2α,d,pB sℓ(  . (115)

Since Zα,d and W
n

p(Xα,d) are independent, this gives that
Xα,d and B are independent.

We now can complete the proof. Note that by (37) and
(38),

max0≤t≤T
1
�
n

√ 

⌊nt⌋

j�1
n

p(1− θ)/2ΔXp

α,d;j − K
p/2
α,dμp  − W

n
p Xα,d 

t




≤ μpn

− 1/2+p(1− θ)/2


⌊nt⌋

j�1
σp

α,d;j − Kα,dn
− 1+θ

 
p/2

⟶ 0. (116)

(is finishes the proof. □
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