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Letu, ;= {umd (t,x), te[0,T],x¢€ Rd} be the solution to the stochastic heat equations (SHEs) with spatially colored noise. We
study the realized power variations for the process u, 4, in time, having infinite quadratic variation and dimension-dependent
Gaussian asymptotic distributions. We use the underlying explicit kernels and spectral/harmonic analysis, yielding temporal
central limit theorems for SHEs with spatially colored noise. This work builds on the recent works on delicate analysis of variations
of general Gaussian processes and SHEs driven by space-time white noise.

1. Introduction

Throughout this work, we will consider the following
d-dimensional stochastic heat equation (SHE):

d ? . 4
Uy X) = 3 @umd (t,x) + U(ua)d (t, x))Wa)d, te,,x € RY,

Uyy(0,x) =w(x), x¢ R,
with & >0 and Gaussian space-time colored noise W, ;. The
noise W, is assumed to have a particular covariance
structure (see [1]):
E[W o (6, AW, (s, B)] = (ms)jAJB Faalx—)dxdy, ts€s,, A B e B,(RY), 2)
Faa (%) = caalxl™ ™, 0<a<d, (3)

where
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with ¢, 4 = 2 *7°T ((d — @)/2)/T (a/2). The initial condi-
tion, w(x), is taken to be bounded and p-Hélder continuous.
We will also assume o to be Lipschitz continuous, and there
exists ¢;>0 such that |o(x)—-0o(y)I<cylx -yl and

Uy 4 (t,x) = JRdG(t, x =Y, 4(0, y)dy + j

for t € R,,x € RY where the above integral is a Wiener
integral with respect to the noise W ; (see, e.g., [2] for the
definition) and G is the Green kernel of the heat equation
given by

2
(2met)” Y2 KD if s 0, x € RY,
G(t,x) = { 4 (5)
0, ift<0,x € R".

Bezdek [11] investigated weak convergence of proba-
bility measures corresponding to the solution of (1) ind = 1.
He showed that probability measures corresponding to u,
weakly converge to those corresponding to the solution to
the SHE with white noise when «T1, that is, the solution of
(1) converges in the appropriate sense to the solution of the
same equation, but with white noise W instead of colored
noise W, as aTl. By that, we mean the solution to

0 e d :
au(t,x) —Eyu(t,x) +o(u(t,x)W,t e R,,x e R,

u(0,x) =w(x), xe€eR,

(6)

where W denotes white noise. SPDEs such as (6) have been
studied in [1, 2, 7, 10, 12, 13] and others.

Among others, Tudor and Xiao [14] investigated the
exact uniform and local moduli of continuity and Chung-
type laws of the iterated logarithm of the process u,, in
time. In fact, they investigated these path properties for a
more wide class, namely, the solution to the linear SHE
driven by a fractional noise in time with correlated spatial
structure. Swanson [13] showed that the solutions of the
SHEs in (6) with € = ¢ = 1, in time, have infinite quadratic
variation and are not semimartingales and also investi-
gated central limit theorems (CLTs) for modifications of
the quadratic variations of the solutions of the SHEs with
white noise. Pospisil and Tribe [12] investigated the quartic
variations of the solutions of the SHEs in (6) withe = 0 = 1,
in time, having Gaussian asymptotic distributions. In-
spired by Swanson [13] and Pospisil and Tribe [12], in this
work, we show that the realized power variations of the
solutions of the SHEs in (1) with colored noise, in time,
have infinite quadratic variation and Gaussian asymptotic
distributions.

For p>0, the p-power variation of a process X, with
respect to a subdivision 7, = {0 =t <t <...<t,,= 1}
of [0,1], is defined to be the sum
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lo(x)|<cy (1 + |x]). Stochastic PDEs (SPDEs) such as (1)
have been studied in [1-6] and others.

It is known (see [1, 7-10]) that (1) admits a unique mild
solution if and only if d <2 + @, and this mild solution is
interpreted as the solution of the following integral equation:

JRdG (t—s,x— y)a(ulx’d (s, )’))sz,d (ds,dy), (4)

> (1) X001 o

For simplicity, consider from now on the case where
t,;=jmforneNand j€{l,...,n}. In this work, we wish
to point out some interesting phenomena when X is the
solution to a SHE with colored noise. In fact, we will also
drop the absolute value (when p is odd). More precisely, we
will consider

Y Ax?, (8)
=

where  AX; =AX(j/n) denotes  the  increment
X (jin) - X ((j = Din)),

The analysis of the asymptotic behavior of quantities of
type (8) is motivated, for instance, by the study of the exact
rates of convergence of some approximation schemes of
scalar stochastic differential equations driven by a Brownian
motion (BM) B (see, e.g., [15-17]), besides, of course, the
traditional applications of quadratic variations to parameter
estimation problems.

Now, let us recall some known results concerning the
p-power variations (for p € N, ), which are today more or
less classical. First, assume that B is the standard BM. Let 1,
denote the p-moment of a standard Gaussian random
variable following an .#/(0,1) law, that is, y,, ; =0 and
tap = 2p = DI = (2p)!l/ (p!2?) for all p € N,. By the scal-
ing property of the BM and using the CLT, it is immediate
that (see, e.g., [17]), as n — oo0:

1 & )
7 2 (P08 =) —7 (0 =) ©)

Assume that H # 1/2, that is, the case where the frac-
tional Brownian motion (FBM) BY has no independent
increments anymore. Then, (9) has been extended by
Corcuera et al. [15], Nourdin [17], Dobrushin and Major
[18], Tagqu [19], Breuer and Major [20], Giraitis and Sur-
gailis [21], Wang [22], and Wang and Wang [23]. Swanson
[13] extended (9) to modifications of the quadratic variation
of the solutions of SHE driven by space-time white noise.
Motivated by (9), in this work, we show that (9) with dif-
ferent mean and variance also holds for the solution to SHE
with colored noise.

Our proofs are based on the method of Swanson [13].
We make use of the product moments of various orders of
the normal correlation surface of two variates in Pearson and
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Young [24] to establish exact convergence rates of variances
of the realized power variation of the process u with respect
to time. This work builds on the recent works on delicate
analysis of variations of general Gaussian processes and
SHEs driven by space-time white noise.

2. Results

In order to state our results, we first introduce some no-
tations. Let X, ;(t) = u,4(t, x), where x € R is fixed. We
consider discrete Riemann sums over a uniformly spaced
time  partition  t; = jAt, where At=n'. Let
AX g = Xoa(t)) - Xucd(t] ) and %, . =E[AX?.]. For

ad;j
any p e N, and n € N, we define

a,d;j

(10)

Here and in the sequel, a] denotes an integer satistying
a-1<lal<aforacR,.

Let 6=60(a,d)=(d- oc)/2 For ] eN,, let
(/1]-:a(oc,d,j):Zjl‘G—(j—l)1 - (j+ 1) For real
number r>1, define b, =b(a,d,r) = ZJ 1‘1] It follows

from (44) below that b, is a positive and finite constant
depending on «,d, and r. For any p € N,, we put

P' LP/ZJ 22ub2

“ > f i ]

ap =+ Ty Z (pil-wl(lpi2l—wiau) ) " PEEen
K{x,d,p E (11)

KP 'P' ‘& 2 b2u+1 if pisodd

| Dad| For T 02 Z (pl2l - wl(lpl2] —wlu+ 1t ) " PI0e

- 1+p(1-0)ym p
where h Vzp(Xoc,d)t — K gt (14)
T(6) o\ d/4 in L? and in probability as n tends to infinity.
Kyg=Keya(6,6) = (dro)i2_di2 <7) >
2 7" T(d/2)(1-6) \¢

(12)

where T'(s) = fgo x* e *dx, s >0, is the gamma function.
We will first show the exact convergence rate of variance
for the realized power variation of the process X ;.

Theorem 1. Fix ¢>0 and xe€R? and assume
a+1<d<a+2. Assume that w =0 and o =1 in (1). Then,
for each fixed t >0 and any p € N,,

n POV (VI(X4),) — Kaaph (13)

P

as n tends to infinity.

By (13), we have the following convergence in proba-
bility for the realized power variation of the process X ;.

Corollary 2. Fix ¢>0 and xeR? and assume
a+1<d<a+2. Assume that w =0 and o0 =1 in (1). Then,
for each fixed t >0 and any p € N,

p(1-6)/2 P
AXE L

( Xy (00—~ Z(

=1

Remark 3. Since V” (X, d)t is monotone, (14) implies that

n P (1-0ym (Xad)t — K? walt2pt uniform convergence in
probability 1n the time interval [0,T] with some T >0.
Moreover, (14) implies that the process X, ; has infinite
quadratic variation.

Example 4. If a1 and d = 2, the 4-th variation, namely, p =
2 in (14), the corresponding constant of the right-hand side
of (14) is equal to 3/ (em).

The CLT for the realized power variation of the process
X, 4 is as follows.

Theorem 2. Fix ¢>0 and xeR? and assume
a+1<d<a+2. Assume that w=0and o =1 in (1). Then,

for any p e N,,

<z
Kfﬁ%)) > (Xpa (0, 5,0, BOD), (15)



as n tends to infinity, where B = {B(t),t € [0,T1} is a BM
independent of the process X, 4, and the convergence is in the
space D ([0, T])* equipped with the Skorokhod topology.

Remark 6. Comparing (15) and (9), we have that the realized

power variations of the process X, ; for & + 1 <d < a + 2 share

similar Gaussian asymptotic properties with those of BM.
Throughout this paper, positive and finite constants are

Discrete Dynamics in Nature and Society

3. Proofs

3.1. Preliminaries. We need the following product moment
of various orders of the normal correlation surface of two
variates, which are equations (9) and (12) in Pearson and

Young [24].
2
Lemma 7. Suppose that (&,1) ~ /V< 0, ( % Pz ) ), where
p 0y

numbered as ¢, 1, €22, ... OF €31, C32, - - . p = (0,0,)" 'E[&y). Then,
/2 2j
PP p pS (2p)" .
010 if piseven,
re Z (pl2=j)!(pl2= N'2))F P
E[EP4P] = 1 (16)
Lp/2] 2j
pp 'l s % (2p)” Lo
U b : : - , if pisodd.
172 Z (Lpl2l - Dilplal - jizj+r P
2m) 4 [ dE
We also derive some needed estimates on the covariance Kyq= ( 1 71) JR"Z% 672, (20)

function and the variance function of increments of X, ,

Lemma 8. Fix &>0 and xeRY and assume
a+1<d<a+2. Assume that w =0 and o =1 in (1). Then,
for all s,t € [0,T],

E[Xpa (0X0q (9] = Ko (t+ 970 =t =97, (17)

et =< [E[(Xa)d (1) - Xa,d(s))z] <yl =50,
(18)
and
‘[E[(Xa,d () - Xo g (s))z] ~ K,y

1-
SN

0+1 (t )

(19)

where K, 4 is given in (12).

Proof. By Proposition 2.3 of Tudor [10], one has that (17)
holds with

By the following integral formula (see Corollary on page
23 in [25]):

< 2 d d _ ﬂd/z 0 di2-1 ( )d
JRdf ;xi Xy xd_r(d/Z) JO y f y)ay,
(21)

the constant K, ; becomes
I'(6)
2R RARE (g10) (1 - 6)

Ka,d = (22)

This is (12) and yields (17).
Equation (18) is cited from Theorem 2.2 in Tudor [10]. It

remains to show (19). To show (19), we define the following
pinned string process in time {Ua)d (t),t> 0} by

t 0
Uga(t) = .[o JRdG(t —u,x = Y)W, 4(du,dy) + Jioo J-Rd (G(t—u,x—y) - G(~u,x — y))W,,(du,dy). (23)

Note that U, 4(0) = 0 and U, 4 (t) can be expressed as

Upa(t) = jRJRd (G((t— ) x — y) = G (<)o x — Y)W g (dut, dy). (24)

In the above, a, = max(a,0). Now for every t >0, one
has the following decomposition:

Xot,d (t) = U(x,d (t) - Yoc,d (t)’ (25)

where
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Yo () = LJ RUG( — ttx — y)gsy — G((-u)yrx — Y)Wy (dus dy). (26)
Following the same lines as the Proof of Theorem 1 of Denote by u(d&) = [£|” “d& the tempered non-negative
Tudor and Xiao [14], for any 0<s<t, measure on R%. Let & ¢ denote the Fourier transform of the

) -0 function u——¢ (u) and f be the Riesz kernel defined in (3).
[E[lUtx,d (t) =Uga (S)l ] =Ko (t=s)". (27) Then, for any ¢,y € S (RY) (see, e.g., [10, 14]),

] ore-yumaxdy =ci!| Fo@FvEua. (28)
R R R

It follows from (28) that for any 0<s<t,

2
E[|Y ot (8) ~ Yoa ()] = E(JRJW (Gt =ty x = Yy — G (5 = thrx = Yo )W o (it dy))
= J duJ J (Gt =, x = Yo, —G(s—t,x = Y),) x (G(t —u,x — y' ),
R R J R4
=G(s—ux =y ), f (v - y)dydy'

= (27'5)_‘71deuJ'Rd‘u(df)f}T (Gt —u,x =)y, — G(s—u,x = ),,,) (29)

EOXxF(Gt—ux— )y, —G(s—u,x —)y,) (&)

2 2 2
_ (zﬂ)fdJ'Rd” (df)JR<e—(t—u)£|E| /210>u _ o (smweld /210>u> du
:um”j/maf &*wwm-awmwﬂﬁu
R _

(o)

Since |1 — e *| <2x for all x>0, one has forall 0<s<t
and € € R,

e selé?/2

|€_ tel€?/2 —e selél?/2

1-e MR < (1 - elgPe 2, (30)

Thus, by (21), for any 0 <s<t,



3.2. Proof of Theorem 1

Proof of Theorem 1. It is sufficient to prove (13) for the even
p case since the odd p case can be proved similarly. For
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0 ) 2N\2
J s J <6—<t—u)s|:| 12 _ (s weld] /z) du
R —00
0 2 2 2 2
_ j d”(df)J ol (e—rsm 12 _ sl /2) du
R —00
. , . (31)
_ —tele2 —ss|E|2/2> dF< (f—s 2J R
gl e R P
dr 2
U (t—s)" [ 6, 24
NG jo xle Fdx <22 (t - 5)’.
Combining (29) and (31), one has It follows from the argument of (29) that
2 C, 6
E[[Yqu(t) = You ()] ] < (t_zss)zs = (32)
|E[[X e (8 = X )] = E[|Ua (8) = Upg O)]| = E[|Y o () = Yo ()], (33)
This, together with (27) and (32), yields (19). The proofof ~ 1<i<j<|[nt], define p,4,;; = (04a00a;) 'E [AX, 4
Lemma 8 is completed. O  X,a;l- Note that for a random variable following an

N (0, 0%) law,

|nt] |nt]

E[&] = u,0f, VpeN,. (34)

By (16) and (34), one has

|nt] 2
=2 [E[<AX§,d;j B ”p"g,d;j) ] +2) ) E[(Axi,d;i - P‘p"ﬁd;i)@xid;j B f‘p"id;j)]

(35)

|nt]

_ 2 2 2p P 2 p p

- Zl< [AXoc}:i]] ﬂp ad1>+zz Z( [AX AXotd]] Aupaoc,d:iatx,d;j>
j=

i=1 j=i+l

22u |nt| |nt]

[nt] | P
p'p! u
= (2~ 143) ]; Oy + ST Z (pl2—w) (pl2 —w)! (2u)! D 2 OeaiOediPaiiy

It follows from (18) that

0p g SCoen T forall 1< j<nt]. (36)

T iml j=ivl

By (19), (36), and Lagrange mean value theorem, it holds

that for any real number >0 and 1< j<|[nt],
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Note that since a+1<d<a+2, one has 1/2<0< 1.
Thus,

1 [nt] 0 t P 2 6
I (VN J K02 g, et—( )72
0 _

j-1
n =)

1P 9)2 ad]_ o= 9)Z< o, ( a

It follows from (17) that

r —1+6\"/2 r-2 — 140\ (r-2)/2
oa,d;j _(Kot,dn ) | SCZ,7<O-0¢,d;j +(K1x,dn ) 0

E[AX, 48X gj] = Kyqn =1+ 0(j+i)1=0— (- i)l -0—(j+i-D1—-0+(j—i+)1-0-(j+i-1)""

+(j—i

which simplifies to
-1 9 1+6
IE[AXoc,d;iAth,d;j] = _sz,d(n " Ajyi- 1+I’l " aj—i)’
(42)

where a; = 2j'7% - (j - 1'%~ (j+ 1), Thus, by bino-
mial expansion, for every 1<u<p/2 and 1<i<j<|nt],

of _ _p-2u _p-2u 2u
lxdl lxdjpadlj oadz aocd] (IE [AX!X)d;iAX%d;j])

of 2u _p-2uf —1+6 —-1+6 2u
Kad adlaa,d:j(n a 1tn aj*i)

w20\ o pa 0 v 0 2u-v
- K u O_P MO_P M(n*1+ a... ) (n71+ a. )
ad v adii Y ad;j jri-1 Jt ’
v=0

JHi—

(43)

If we write a, = f(k-1)- f(k), where
f(x)=(x+ 1'%~ %17 then for each k >2, the Lagrange
mean value theorem gives

|nt] |nt]

D (i) (i)

7
i,d;j _ Kmdn— 1+6 < Cz,g”f 2+(— 1+6)(r—2)/2t;£€1+1)_ (37)
It follows from (37) (with r = 2p) and (38) that
Lnt ]
- ) 2 ~1+6\P
1+p(1 )Z aleji] (Ka,dn 1+ ) | — 0. (39)
i
Hence,
n_1+0)p> +n TPOS 9)(K“)dn_1+0)antJ — Kidt. (40)
(41)
a=1f ' (k={)I=000-0 (k- +8) % for  some
(1, ¢, € [0, 1]. This yields that for all k € N,,
€29
0<ak—k9+17 (44)
and hence for any r>1,
M
Y a,—b, (45)
k=1
with some b, =b(r) >0 as M — oo.
Note that since j+i—12 (j +1i)/2, one has
n 1+0 ﬂ 1 (46)
-1 =" 3 0+1°
Jtt n (tt n t]) +1
Note that (44) gives n‘“ea]_l <cyn 1% and

n’”gaﬁ, 1 <6 10 for all 1<i< j<|nt]. Thus, by (36)
and (46), for every 1<u< p/2 and 1<v<2u,

LntJ [nt] |nt] |nt] 1

71+p(1 0) p-2u p 2uf —1+60 Vi —1+0 2u-v -1+0 2-6
2 D i Oy (7 i) (7 ) s Y 3 (A ) e Y )

i=1 j=i+l

which tends to 7ero as since

f; _[(t) (x+y)” (eﬂ)dxdy < 00.

n— oo

L L 0+1°
i=1 j=i+l (ti + f])

(47)

i=1 j=i+l

We now consider the term v =0 in (43). Let
B = {BH (t),t € R,} be a FBM with index H € (0, 1), which
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is a centered Gaussian process with E[(BH (t) — B (s)?] =
|s — t|* for s,t € R,. Then, for H, = (1 - 6)/2,

(e () = ) (50) -2 ()

(48)
Thus,
0 |nt] |nt] 0 |nt]-1 |nt]
n—1+ Z Z _ —1+ a
i=1 j=i+l i=1 j=i+l
[nt]-1 |nt] . . . .
=2 3 3 e(Be(50) - # () (50) - #()
— L n n n n
i=1 j=i+l
Lnt) 1 Lnt] +1 i+1 i+1 i
P () e )]
n n n n
T/t — i 1’9+ lnt] +1-i\""’ <1>179
= n n n
1-6 1-6
t 1 _
= —(MJ) +<7> +1nt o P
n n
This yields By (36) and (44), for every 1 <u< p/2 and any M >0,
lnt] |nt]
n? Z Z (n_“eaj_i) — t. (50)
i=1 j=i+l
(1-6) \nt]  |nt) > 5 0 o0 @@ ) elnt |nt] 0
—1+p1 p—2u p uf —1+ +1) 2u—1) - -1+
Z Z szdz zxd](n aj—i) Scl M Z Z ( j_i)
i=1 j=i+M+1 i=1 j=i+M+1 51)
@s1)( ) GlntJ |nt] 9 (
1)Qu-1) - -1
e O 0SS (o, )
i=1 j=i+l
This, together with (45), yields
1+p(1-6) LAY 2u _p-2u 1+60 2u (6+1) (2u-1)
- 1+p(1- - - -1+ —(6+1) 2u—
w PN N ob el (7 ) <M t, (52)

i=1 j=i+M+1

which tends to zero by letting M — oco.
By (37) (with r = p—2u), (36), and (48), for every
1<u<p/2,
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1+p(1-6) ) p-2 140\ (P=2W)12| p> 1460 2u 1-20 i el 140
-1+ u — 1+ —2u( —1+ - — 1+
? Z Z Ood;i _( an ) arx,d:,j(” aj—i) NERTL Z 01 ( j-i
i=2 j=i+l 12t,1]1+1
1-6 A 1-60 _
et zel”z” LntJ—z> +(LntJ+1—z) _(1)1 ?
= 2,18
= tf”ll n n
A\ 1-0 A\ 1-0
T (nt] i\ [nt] +1-i\" Lo
< C2’191’l Z —n + 7}1 + cz’zon Z tej
i=2 i=2 by
-0
ol () -1\
<cpyn? <_> L[t b ey T 0/2zt (O+112
n n =
which tends to zero as n — 00 since fgx 0+12qx < 0.
Hence, for every 1 <u< p/2,
|\nt] |nt]
-0 p-2u 140\ (P=2)/12\ pous 140 2u
D) Z( i ~(Kaan ") ey (' Maj) T —0.
i=2 j=i+l
Similarly, for every 1<u< p/2,
|nt] |nt]
_ _ (p-2u)/2 _ _ (p-2w2\ , _ 2
o (-9 Z Z ( 1+9) p-2u X<U£d2»?_(Ko¢,dn 1+9) p-2u )(n 1+9aj7i) “_ 0.
i=2 j=i+l '
For every 1<u< p/2 and any M >0,
|nt] i+M M
_ _ _ -2u, _ nt .
n 1+p(1-6) Z Z (K n 1+9)P “(n 1+6aj7i) Kp ZuL J Z K‘Zdzubzut,

i=2 j=itl

(53)

(54)

(56)

Note that for every 1<u<p/2 and 1<i<j<|nt],

as 1 — 00 and M — o0.

p-2u_p-2u _( p-2u _( 71+e)<P—2u)/2 p-2u (
Ga,d;i a%d;j _(O-a,d;i Ka;dn 0{x>d;j + Ka,dn ad;j

Hence, by (54)-(57), for every 1 <u< p/2,

0 |nt] i+M 0 2

—1+p(1 p-2u p 2uf -1+ p-2u

Z Z Uadz txd]( aj*i) Ku,d qut’
i=2 j=i+l

as n —> 00 and M — oo. It follows from (36) that

- 1+9) v 2u)/2(ap,2u - (Ka,d’”f 1+6) " 2u)l2) + (Ka,d’f 1+0)P_ ",

(57)

(58)
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—1+p(1 6)

+M
_ 2
(TP ZuJP Zu(n 1+9aj71) u —o. (59)

adii * a,d;j
j=2

This, together with (43), (47), and (58), yields for every
1<u<p/2,

" “P““’)Var(V;(Xa,d)t) N Kﬁ,d <M2p _y;

This proves (13).

The Proof of Theorem 1 is
completed. O

—1+p(1-0)/2y pl2
n VP(XM): — Koabpt =

j=1

Obviously, the third term of (62) tends to zero as
n — oo. It follows from (37) (with r = p) and (38) that the
second term of (62) tends to zero as 1 — oo. Thus, by (13),

[E['n’”p(l’g)/zV;(Xa,d)t—K%HP | ] —o. (63)

This proves (14). O

3.3. Proof of Theorem 2. The following lemma is needed to
prove Theorem 2.

F, be normal random variables
j. Put & = F¥—

Pij|>’

Lemma 9. Let Fy,...,
wzth mean zero, [E[F?] =1 and pij = E[F,F
[ 1. Then, for any p € N,

[H£:| <C31(|P12P34| + \/72
1 -pi,

T MaAX
(64)
whenever |p,,| < 1. Moreover,

4

[E|:H fj:| S C3,MAXp ey P1j|~ (65)
=1

Furthermore, there exists ¢ >0 such that
! 2

E [H fj:| < C33MaX iy iy (66)

=1

whenever |p;;| <e forall 1<i# j<4.

_ 1+p(1— 6)/2(V;(Xa,d)

|nt]
p —1+6\P/2 P2 [t ]
Z(Ga,d;j _(Ka,dn " ) ) Kocdtup(n_t

Discrete Dynamics in Nature and Society

lnt] Lnt]

P00 Z Z Ug,d;iaﬁ,d;jpil:i;ij - Kg,deut' (60)
i=1 j=itl
Therefore, by (35), (40), and (60), one has
/2 2u
pip! § 2by,
t. 61
2771 & (pi2 - w)! (p/2 - w)! (2u)! = Fadp (61)

Proof. of Corollary 2. Write

V() ]) g

t p

) (62)

Proof. Following the same lines as the proof of Lemma 3.3
in Swanson [13] with hj (Fj) = Ej, 1< j<4, we get Lemma 9
immediately. U

Proposition 10. Fix £>0 and xe€R% and assume
a+t1<d<a+2. Assume that w=0 and o0 =1 in (1). Fix
r € N,. Put

Lt
- 1/2+7 (1-0)/2 Z(AXM, .“razc,d;i)'

i=1

WH(X%d)t =

r

(67)

Then, for all 0<s<t and all n e N,

2
wd), - WH(X d)s|4]3c3’4(w;l””>. (68)

The sequence {W:‘ (de)} is therefore relatively compact
in the Skorokhod space Dy [0, 00).

[E[|W’;(X

Proof. We follow the method of Proposition 3.5 in Swanson
[13] to prove (68). Let & ={jeNt: [ns]+1<j <...<
js<|nt]}. For j e & and k € {1,2,3}, define hy = ji,q — ji
and let & = {j € & h;, = max{h,, hy, h;}}. Define N = |nt]
—(lns] +1),and fori € {0,1,...,N}, letoFk—{]ecS’k max
{hy, hy, h3} = i}. Further deﬁne Pfi 7’8 ={j € & min
(i hy ksl =€ and 77} =7 = {] 2t med{hl,hz,
hs} = v}, where “med” denotes the median funct10n For
j €S, define

4

_ r
odij H (AX‘XdJk ”ramd;jk)‘
k=1

U (69)

Observe that
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Lnt]
[W2(Xe), - W2 (%) <>E[ S (0N )’
idnt|+1
s (70)
<aln 2O NIE(U, ]| <4t 20N N E[U, 4]
jes k=1 jeS,
and that
2 [E[Vaay]| = Z Y [E[Ueas]|
jeSk i=0 jes!
N i) N
=20 YIEVaa][+ X X Y [E[Vass]| ¥ [E[Unay]) 70
=0 6=0 jegy i=0 8419J+1 j€TL €7y
N %] i
:ZZ Z|[E[Uad1 |+
i=0 ¢=0 v= €]e7/f( i=0 5419J+1 v—
Let Fy p4 = ad]kAthd;jk and By (42) and (44), for all k#1 e N,,
aare = Fogn = E|Foan| = 00a (AX i — #0045 )- cygn e
] nl) S o
Then, It follows from (36) and (74) that
4 4
|E[Uaas]| = <H Uﬁ,d;jk> [E[H fa,d;k} - (73
k=1 k=1
P%d?kl' = IEF(X»d;kFOGdJ' ‘XdJk ‘XdJ1|[E [AX“”I JkAX“dJl” _—’604-1' (75)
ik = Jil
Suppose 0< £<[i?]. Fix v and let j € 7] be arbitrary. If If k=2, then i=max{h;, h,,h3}=h,=j;-j, and
k =1, then i = max{h;, hy,h3} = h; = j, — j;. f k=3, then  &v = h3h; = (j, - j;) (j, — j;). Hence, by (64), (36), (73),
i = max{hy, h,,h;} = hy = j, — j;. In either case, by (65), and (75),
(36), (73), and (75), one has | |
—2r(1-6) E U(x < ( +'>7’12r(19). (77)
'E[U{X’d:j” 363’71/1 - §C3’7< 19+1 +9£1)n_2r(1_0). | [ d]]' (€ )9+1 19+1
' i (en)?1

(76)

20291 O EETI) p ey

=0 v=C je7} =0 v=¢

For the second summation, suppose || + 1<£€<i. In
this case, if j € P]i, then ¢ = min{h,, h,, h;}, so that by (66),
(36), (73), and (75),

Now choose k' #k such that k= £. With k' given, j is
determined by j,. Since there are two possibilities for k" and
N + 1 possibilities for ji, |77 <2(N + 1). Therefore,

Li%)
~2r(1-8 I\ —2(-9 _2r(1-8
00 <oy N+1)z<€g+1 lo)n <oy (N+ 70 (78)

£=0

—2r(1-6)
C3 121

82(9+1) (79)

|[E [Ua,d;j” =

Since Zi:e |771<2(N +1)i and 1/2<0< 1, one has
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i -2r(1-0)

i
D z Z|[E[UM] |<c313(N+1)z Z”gz(Mgcm(Nﬂ)i(J

e4if]+1 V= 4 €7y [9]+1

Thus, using (70), (71), (78), and (80), one has

—2+2r(1-6) &
n E Z (AX

ji=ns|+1

which is (68).

To show that a sequence of cadlag processes {X,} is
relatively compact, it suffices to show that for each T'>1,
there exist constants >0, C >0, and g> 1 such that

Ry (t,h) = [E[|Xn(t +h) - X, 0OF|X, (6 - X, (¢ - h)|ﬁ]

<Ch1,
(82)

forallme N, all t € [0,T], and all h € [0,¢] (see, e.g., The-
orem 3.8.8 in [26]). Taking =2 and using (68) together
with Holder inequality gives

|t + nh] — LntJ)( |nt] —|nt — th)

n n

RW:l (sz,d) (t) h) S C3’17(
(83)
If nh < 1/2, then the right-hand side of this inequality is

- 4,0 (xd]):|

Discrete Dynamics in Nature and Society

(00

~2r(1-) ~2r(1-)
) 2(Gﬂ)dx) <o (N+ D T,

(80)
Lnt] ~Lns]\*
<c316z (N + 1)n? 316(#)’ (81)
i=0
The other factor is similarly bounded, so that
Rsz (sz,d) (t, h) < C3’18h2. D

Proposition 11. Fix £>0 and xe€R% and assume
a+1<d<a+2. Assume that w =0 and o0 =1 in (1). Then,
for any 0<s<t and r e N,

W(Xga), - Wi(Xea), — k2,00 =2, (85)

asn — 00, where N is a standard normal random variable.

Proof. Let {n(j)}}2, be any sequence of natural numbers.
We will Prove that there exists a subsequence { (jm)} such
that W7 Jm) (X — "(J'" (X 4)s converges in law to the
given random Varlable

For each m e N,, choose n(j,) € {n(j)} such that
1) > 1 Ger) and n(j,) =m0 (t —s)"". Let

b=b(m)=n(j,)t-s)m. For 0<k<m, define
zero. Assume nh >1/2. Then, u = n(j,)s + kb, so that
[nt+th—[ntJth+IS3h. (84)
n n
. ‘ 11 (jim )t
Wf(Jm)(Xa,d)t B W:l(]m)(Xa,d)s = n(j,) 1/2+r (1-6)/2 Z (AX —u,0 ad 1)
idn (j,)sl+1 (86)
—1/2+r(1-6)/
(Jm) Ve )22 Z (AX — W0 adz)
k=1i=uy_+1
. . t
Let us now introduce the filtration X, () = J 0 J . Gt - x, Y)W, 4 (dx, dy). (89)

Fy=0{W,a(A): Ac[0,t] xR,A(A) <oo},  (87)

where )1 denotes Lebesgue measure on R Let
7 = n(j,,)" 'uy_,. For each pair (i,k) such that u;_, <i<uy,
define
goc,d;ik = AXoc,d;i -E [AXoc,d;ilgjrk]' (88)
Note that &, ;. is F
F . Recall that

+,,,-measurable and independent of

Also, given constants 0 <7< s<t, one has
T
E[X 4 (OIF,] = jo JRdG(t - X, Y)W,y (dx,dy).  (90)

It follows from (89) and (90) that
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t+7
Xoa(t+1) - [E[Xa)d (t+ Tk)lgrk] = J JRdG(t + T — %, Y)W,y (dx, dy). (91)
Tk
This yields that {E ad: lk} hgs the same law as {AX wdsi-y, } so that {, sk 1 <k<m, are independent and
Now define ¢ ik = [E[fa’dﬂk] O dicu | and
U
Coc,d;mk = Z (E(rx,d;ik - Auro-(rx,d;ik)’ (92)
i=uy_+1
(jm) (jm) 1241 (1 0)/2m
1 (jm 1 (o _ .oN—1/2+r(1-
Wr ’ (Xoc,d>t - Wr ! (th,d)s - n(]m) Z (zx,d;mk + ea,d;m’ (93)
k=1
where
r(-on \0
_ o\« - r r r r
Cadsm = Yl(]m) Z ) Z 1(<AXoc,d;i - /’lro-a,d;i) _(fa,d;ik - A"Lro-a,d;ik))' (94)
k=1 =l +

Since &, 44 and AX, ;.
independent, one has

— ik = [E[AX,x,dﬂng] are

ai,d;i = IE[AXid;i]

= [E[Ei,d;ik] +E “Axa,d;i - 5a,d;ik|2] (95)

= O-gc,d;i—uk,l +E [lAth,dl - fa,d;ik|2]-
This, together with (19), gives
e (in) 140
E[|AX 4 - 5a,d~,ik|2] = O — i,d;i—uk,l 5%‘
(i= wey)
(96)

r—1
|AX;,d;i - E;,d;ikl = C3,25(|Axa,d;i|

Thus, by (97) and Holder inequality,

[E“AX;,d;i - E;,d:ikr] < 63,26([E [lAXa,d;i|4r74] +E [|£a,d;ik|4r74])1/2([E [|AX0c, di —

Similarly, by (96) and Lagrange mean value theorem,

Thus, since AX,, 4.; — &, 4. is Gaussian, by (34) and (96),

RN 6
4 o C320M (jm) e

[E“AXa,d,t - Ea,d:ik| ] = (1 u )29+2 : (97)
- Y1

Note that (34) and (36) give E[|AX,, 17 <
< (-1+6) (2r-2) d [E[If |4 4] <
Cazl%dl C322”(]m) an adiik €323

Outitu, <3241 U )C1+0@r=2) By Tagrange mean value
theorem
-1
+|£w,d;ik|r )lAth,dz - foc,d;ikl' (98)
(1-6)

12 c327n(] ) r
ocdzk| ]) % (99)

( - uk—l)
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r T < | |T—
Oudii ~ Oadiik| = €328\ |Oadsi

Therefore, by (99), (100), and Hélder inequality,

E [Isa,d;m” < n(jm)_ 1/2+r (1-6)/2 i i

k=1 j=uy_,+1

m U
<3501 (fm) Z Z
k=1 Uy

Since uy — uy_; <b, this gives

E “sa,d;ml] < C3,32”(jm)

But since n(j,) was chosen so that n(j,)>m*?

(t—s)"', one has E[le, |l <c553m™ 92t s[> and
€4d:m — 01in L' and in probability. Therefore, by (93), one
needs only to show that

m
. - 17247 (1-6)/2 < i
n(]m) Z (oc,d:mk - Koc,d,rlt -
k=1

sy (103)

in order to complete the proof.

For this, we will use the Lindeberg-Feller theorem (see,
e.g., Theorem 2.4.5 in [27]), which states the following: for
each m, let {, > 1 <k <m, be independent random vari-
ables with E[(, 4,,x] = 0. Suppose

(a) n(jm) =6 Zk:l IE[(a,d;mk] S vz'

(b) For all £>0, limmﬁoon(jm)il
m 2 27-1/2
(1= 0) 2l B UGkl TG v (1-0y210 il >}
— 0. J

)70 S E Gy

<C336€ mb’n ()

which tends to zero as m — 0.

It therefore follows that n(j,,) Y1 Cadimk
—Z 9/ as n —> oo and it remains only to show that
Z;yrlt—slllz. For this, observe that the continuous
mapping theorem implies that [W™ (X, ), - W™ (X,4)l*

< 92 /%, By the Skorokhod representation theorem, one

1/24r(1-0)/2

V=K

? + |0a,d:ik|

- I/Zmb(l— 0)/2

n (jm)71/2+r(179)/2 |[,x)d:mk| Se

2 -2 -1 2
=c336 m (t-5),

Discrete Dynamics in Nature and Society

2 €301 (j ) (-on
r— 2 3,29
) Oudsi ~ 0a,d;ik| S T (100)
(l - kal)
. . 21\ 12 .
<[E|:|Axa)d;,‘ - fa,d;ik' ]) + U0 ad] zx,d;jk'
(101)
m U=l
(6+1)/2 -1/2 -(6+1)2.
- U 1) = C331”(]m) Z Z "
k=1 i=1
_ 63,32m(0+1)/2n(jm)_9/2 (t - 5)(1—9)/2 (102)
Then, n(jm)—1/2+r(l—0)/2 2211 ((x,d;mk _Z 4 as
n — 00.

To verify these conditions, recall that {f‘x’d;ik} and
{AXa’d;i_ukil} have the same law, so that
4]

(104)

U= Upy

[E“(a,d;mk|4] = n(jm)_z+27(1_9)[E|: (AX — #0 adz)

i=1

Hence, by (68),

. o\N— r(1-6 4 .oN—
n(]m) e )[E“Ca,d;mkl ] S‘:3,34(uk _uk—l)zn(]m) 2'
(105)

Jensen inequality now gives m™ 1O YW E(|C, 1)
<C335mbn(j,,) " =cy35(t—s), so that by passing to a
subsequence, one may assume that (a) holds for some v > 0.

For (b), let ¢>0 be arbitrary. Then,

} Ss—Zn(jm)—2+27(l—9) Z E[Ica,d;mkr]
k=1 (106)

may assume that the convergence is a.s. By Proposition 10,
the family [W” (X, ), - W™ (X,,),* is uniformly inte-
grable. Hence, W™ (X, ), ~ W (X, ) > — 4% in LY,
which implies E[|W" (X, 4), — W (Xa,d)slz] — 12, But by
Theorem 1, E[[W" (X, 4), - W™ (Xoa)sl’] — Ko, It = s,

12 |t — 5|2 and the proof is complete. O

SOV =Koy
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Proof. of Theorem 2It is sufficient to prove (15) for the even and define
p case since the odd p case can be proved similarly. Let (]k) n(ie)
{n(])}] , be any sequence of natural numbers. By Propo- Nadin (i) = ( )t -w, (Xa,d)s - (a,d;n(jk)'
sition 10, the sequence {(X“d,W"U (Xad))} is relatively (108)
compact. Therefore, there exists a subsequence {n(i} and a
cadlag process Y, ; such that (X, W” i (Xoa) —7 As in the proof of Proposition 11, #,4.,(;,) — 0 in
(X Yq) Fix0<s; <s,< ... <s,<s< t With notation as probability. It therefore follows that
in Proposition 11, let
(16) ln (jx )]
e\ 24p(1-0)2 P p
((x,d;n(jk) = n(ji) Z (fa,d;ik - [’lpaa,d;ik)’
i={n (ji)sl+2
(107)
w0 (x w0 (x Z (v Y You(H)-Y 109
p ( uc,d)sl’ B 4 ( tx,d)se’ (“,d;n(jk) - ( a,d (51 )’ oo dad (SE)’ a,d (1) a,d (S)) ( )
Note that F (|n( k)$J+1)n(Jk)l and (adn {) are indepen-  vectors v, . € R’ by Vad:j = E[ZaidAde;j]’ and
dent. Hence, (Wn i) (szd) . ]k (Xad)se) RN wzx,d;j = ?(x dled] Lectl f(x,d;é = A‘Xc»c,d;j - wzx,d;jZoc,d’ so that
. and Z, ; are independent.
"(] 9 (X wd)s,) and (o i) are mdependent, which implies fa’d’]])eﬁne wd P
that Yoa(t) =Y, 4(s) and (Y 4(s)),...,Y,4(s,)) are in-

dependent. This yields that the process Y, ; has independent
increments.
By Proposition 11, the increment Y, ;(t) =Y, 4(s) is
normally distributed with mean zero and variance
Kad,plt = sl. Also, X, ;(0) = 0 since W7 (X, 4), = 0 for all n.
Hence, Y, 4 is equal in law to x/7 B, where B is a standard
BM. It remains only to show that X «wq and B are
independent.
Fix 0<s;<s,< ... <s5,<T. Let
Zya= Xoq(s)h s Xoq(sp) and 2, 4 = E[Z, 42T ). Itis
easy to see that X ; is invertible. Hence, one may define the

E [Sup()stsT

P [nt]
<y Z —1/2+v(1-6)/2 Z < [( ad} ad)szl/z B Z o U2 (1612 "Z |[E[X(x,d (Si)AXa,d;j] _

Note that by (36) and Holder inequality, one has
|E[X g (5)AX g1 < €400 S C39m” 792 for all

E [th,d (Si)AXot,d;j] = fod((si + tj)l_o

7y -1/2 1-0)/2
W;(Xa,d)f s Z(fad] #pafx’,d;].) (110)
=)

|Wn(X“’d)t_Wn(Xa,d)t|5 —1/24p(1-6)/2

Z(AXﬁd]

Jj=1

&)

(111)

By (34), binomial expansion, and Hélder inequality,

Lnt]
W;(Xa,d)t_W;(Xa,d) '] <y o V2 (-0)2 Z Z ( [AX?;JZV])1/2([E[(w£,d;jza,d)zv])1/2
=1 j=1

(112)

v

=1 j=1

1<i<¢and 1< j<|[nt], and note that by (17) and Lagrange
mean value theorem, for any 1<i<¢ and 1<j<|nt],

‘(Si”j—l)l_e‘(si‘tj)l_gJ’(Si ‘tj—l)H)

:Ka,d(nl - ) <(s,-+ (j;(1)>_0+<5i_((j—7(2))_0>>g a

2K, 4 (1

O (09)"),

(113)
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where {;,(, € (0,1). Then, for any 1<i<f and 1<v<2p,

Lt ) 1 Lot G-0)\°
n 1/2+v(1-6)/2 Z |[E[Xa,d (Si)AXa,d;j” S63)42’/11/2—1/(1+0)/22 Z (51‘ _ 2 ) ,

j=1

. . T _
which tends to zero as n — 00 since j’o (s; —x) 94x < 0.
Thus,

(Zea Wy(Xea) e Wi(Xea), )

Since Z,, ; and W; (X44) are independent, this gives that
X, and B are independent.

|nt]

1 (1-9)2 /2 n
maXgg T % Z(”P AXg,d;j - Kg,d#p) - Wp(Xoc,d)t
j=1
This finishes the proof. O
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