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In this paper, we study the competition between two firms whose outputs are quantities. &e first firm considers maximization of
its profit while the second firm considers maximization of its social welfare. Adopting a gradient-basedmechanism, we introduce a
nonlinear discrete dynamic map which is used to describe the dynamics of this game. For this map, the fixed points are calculated
and their stability conditions are analyzed. &is includes investigating some attracting set and chaotic behaviors for the complex
dynamics of the map. We have also investigated the types of the preimages that characterize the phase plane of the map and
conclude that the game’s map is noninvertible of type Z4 − Z2.

1. Introduction

Because of the appearance of the wealth theory in [1, 2],
many studies on Cournot and Bertrand games have been
raised. For instance, Singh and Vives introduced a quadratic
utility function that has been used to model and study a
Cournot duopoly game in [3]. &is utility function has been
also adopted in different games by many authors such as
Askar [4–7], Elsadany [8], Naimzada and Tramontana [9],
andMa and Pu [10]. Modelling such games in a discrete time
periods requires some mechanisms such as bounded ra-
tionality, Puu’s approach, naive expectation, and other
adaptive methods.

Several studies have been adopted both bounded ra-
tionality and Puu’s incomplete information. &ey are two
different mechanisms. For the bounded rationality, the
game’s players (or firms) are updating their output pro-
duction depending on discrete time steps and by using a
local estimate of their marginal profits. Furthermore, the
players do not have to possess a complete knowledge of both
demand and cost functions. However, they instead want to
discover whether the market responses to small changes in

production using an estimation of their marginal profits. For
more applications on this mechanism which is sometimes
called a myopic mechanism, one can see [11, 12]. &e so-
called Puu’s mechanism has been introduced in [13]. It is
characterized by its realistic feature that is the firms do not
have to know the profit function in order to get estimation of
the commodity produced at the next period of time. &e
firms only require the commodity and profit at the past two
periods of time. &ere are some other updating mechanisms
that have been reported in the literature. For instance, Long
and Huang [14], Agiza and Elsadany [15], Kopel [16],
Elabbasy et al. [17, 18], Askar and Abouhawwash [19],
Hommes [20], Tremblay et al. [21], Ahmed et al. [22],
Baiardi and Naimzada [23], Fanti et al. [24], Elsadany and
Awad [25], Tremblay and Tremblay [26], Askar and Al-
Khedhairi [27], and Gao and Du [28].

&e majority of the literature has been analyzed for
models of mixed oligopoly on the basis that the game has
been in a static case. Liu et al. [29] investigated the static
game of endogenous horizontal product differentiation in a
mixed duopoly. &e relationship between privatization and
corporate tax policies has been studied in [30]. Nie [31] has
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analyzed the effects of capacity constraints on the mixed
duopoly game.&e strategy for cost-reduction innovation in
the mixed economy has been explored in [32]. All of earlier
papers have not discussed the case of a dynamic mixed
oligopoly model.

&e current paper introduces a dynamic game of
Cournot duopoly on which two firms are competing but
they are different in optimization process. &e first firm
focuses on maximizing its profit that depends on a qua-
dratic production cost. &e second firm is different and
wants to maximize its social welfare using the same qua-
dratic cost form. &e main contribution considers intro-
ducing such optimization problem and dynamic
characteristics emanated from the game’s map. Further-
more, the monopolistic case is studied and is shown that
each firm behaves monopolistically such as the standard
logistic process. In the duopolistic case, the equilibrium
points are calculated and their stability conditions are
analyzed. Indeed, this includes local and global analysis of
the routes by which these equilibrium points can be
destabilized. &e numerical simulation shows that some
attracting sets are born due to both period-doubling and
Neimark–Sacker bifurcations. In addition, the nonlinearity
and noninvertibility of the game’s map give rise to such
complex behaviors.

&e outline of current paper is divided into the following
sections. After the introduction, we give in Section 2 the
description of the game represented by a two-dimensional
discrete dynamic map. In Section 3, we calculate the game’s
fixed points and study their stability. Furthermore, we give
in this section a detailed discussion on themonopolistic case.
In addition, we study by numerical simulation the attracting
sets and chaotic behaviors arise due to the dynamics of the
duopoly case. Moreover, we investigate the critical curves of
the map and categorize the phase plane regions. Finally, we
give our conclusion on the obtained results within this
paper.

2. Cournot Duopoly Game

&e game is constructed based on two competing firms with
quantity-based strategies and differentiated products. &e
quantities produced by the two firms are denoted by q1 and
q2. &eir demand functions are obtained by recalling the
following utility function:

U q1, q2( 􏼁 � a q1 + q2( 􏼁 −
1
2

q
2
1 + 2dqq2 + q

2
2􏼐 􏼑. (1)

More information on this utility is given in [3]. Both a

and d are constants. Supposing the budget constraint
p1q1 + p2q2 � M, we get the following maximization
problem:

MaxU q1, q2( 􏼁,

s.t. p1q1 + p2q2 � M.
(2)

Solving (2) gives

p1 � a − q1 − dq2,

p2 � a − q2 − dq1,
􏼨 (3)

where p1 and p2 denote the retail prices of the two firms’
products, respectively. &e constants a> 0 represent the
maximum price while d ∈ [− 0.5, 1] represents the product
differentiation. d � 1 indicates homogeneous products while
d � 0 means we have two monopolistic firms. Consider the
following cost function:

Ci qi( 􏼁 �
c

2
q
2
i , i � 1, 2, (4)

where c> 0. Now, the profits of the two firms are given by

π1 � p1q1 −
c

2
q
2
1 � 1 − q1 − dq2( 􏼁q1 −

c

2
q
2
1,

π2 � 1 − q2 − dq1( 􏼁q2 −
c

2
q
2
2.

(5)

&e consumer surplus is assumed to be CS � (1/2)(q21 +

q22 + 2dq1q2). &e social welfare is defined as the sum of
consumer surplus and profits as follows: W � CS + π1 + π2.
Now, both firms want to maximize the following payoffs:

π1 � a − q1 − dq2( 􏼁q1 −
c

2
q
2
1,

Π2 � ωπ2 +(1 − ω)W,

(6)

where ω ∈ [0, 1]. We should highlight that lack of market
demand and consumer information bring difficulty for
producers. &erefore, producers estimate the market
demand by adopting the gradient mechanism defined
below:

q1(t + 1) � q1(t) + v1q1
zπ1

zq1
,

q2(t + 1) � q2(t) + v2q2
zΠ2
zq2

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(7)

where vi represents the adjustment speed for the ith firm.
Using (6) in (7), we get the map’s game:

T q1, q2( 􏼁:
q1(t + 1) � q1(t) + ]1q1 a − (2 + c)q1 − dq2􏼂 􏼃,

q2(t + 1) � q2(t) + ]2q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃.
􏼨

(8)

&is map is a quadratic discrete dynamic map, and it is
converted into Fanti’s map [24] at ω � 1.

3. Equilibrium Points and Their Stability

Setting qi(t + 1) � qi(t) � qi, i � 1, 2 in (8), one obtains

q1 a − (2 + c)q1 − dq2􏼂 􏼃 � 0,

q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃 � 0.
􏼨 (9)

Solving algebraically system (9), we get four fixed points
as follows:
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E0 � (0, 0),

E1 �
a

c + 2
, 0􏼒 􏼓,

E2 � 0,
a

c + ω + 1
􏼒 􏼓,

E∗ � q
∗
1 , q
∗
2( 􏼁

�
a + aω + ac − a d

3c + 2ω + cω + c
2

− d
2

+ 2
,

2a + ac − a d

3c + 2ω + cω + c
2

− d
2

+ 2
􏼠 􏼡,

(10)

where E0, E1, E2 are called boundary fixed points while E∗ is
called a Nash equilibrium point. It should be noted that the
equilibrium points E∗ become the same as of Fanti’s
equilibrium point when ω � 1. Studying the stability of these
points requires to calculate the Jacobian matrix of the map:

J �
1 + ]1 a − 2(2 + c)q1 − dq2􏼂 􏼃 − ]1dq1

− ]2dq2 1 + ]2 a − 2(1 + ω + c)q2 − dq1􏼂 􏼃
􏼢 􏼣.

(11)

It has the following characteristic polynomial:

f(λ) � λ2 − tr(J(E))λ + det(J(E)), (12)

where tr(J) and det(J) represent trace and determinant of
(11). &ey are used in Jury conditions [4]. &ese conditions
are given by

f(1) � 1 − tr(J(E)) + det(J(E))> 0,

f(− 1) � 1 + tr(J(E)) + det(J(E))> 0,

det(J)< 1.

(13)

&e above conditions characterize different types of
bifurcations by which the equilibrium points may be un-
stable. &ese types are summarized in the following:

(1 )Period-doubling bifurcation is raised when
f(− 1) � 0

(2) Transcritical or fold bifurcation is raised when
f(1) � 0

(3) Neimark–Sacker bifurcation is raised when det
(J)< 1

Now, we study the stability of the fixed points.

Theorem 1. -e fixed point E0 is unstable point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E0( 􏼁 �
1 + ]1a 0

0 1 + ]2a
􏼢 􏼣. (14)

It is clear that (15) is a diagonal matrix and hence its
eigenvalues become λ1 � 1 + ]1a and λ2 � 1 + ]2a. Because
of the positivity of the parameters a, v1, and v2, we have
|λ1,2|> 1 and so E0 is unstable repelling node. □

Theorem 2. -e fixed point E1 is saddle point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E1( 􏼁 �

1 − ]1a
]1d

c + 2

0 1 + ]2
2a

c + 2
􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

It is clear that (15) is a triangular matrix and hence its
eigenvalues become λ1 � 1 − ]1a and λ2 � 1+ ]2(2a/(c + 2)).
It is simple to see |λ1|< 1 and |λ2|> 1. &erefore, the fixed
point E1 is saddle point. □

Theorem 3. -e fixed point E2 is saddle point.

Proof. &e Jacobian matrix given in (11) at this point
becomes

J E2( 􏼁 �

1 + ]1
a(c + ω + 1 − d)

c + ω + 1
􏼠 􏼡 0

− ]2a d

c + ω + 1
1 − a]2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

It is clear that (16) is a triangular matrix and hence its
eigenvalues become
λ1 � 1 + ]1((a(c + ω + 1 − d))/(c + ω + 1)) and
λ2 � 1 − a]2. Because of the positivity of the parameters
a, v1, v2, and d< 1, we have |λ1|> 1 and |λ2|< 1. &erefore,
the point E2 is saddle point.

For Nash equilibrium point, the Jacobian becomes

J E∗( 􏼁 �

1 −
a(2 + c)(1 + ω + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]1 −

a d(1 + ω + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]1

−
a d(2 + c − d)

2 + 2ω + 3c − d
2

+ cω + c
2]2 1 −

a(2 + c − d)(1 + ω + c)

2 + 2ω + 3c − d
2

+ cω + c
2]2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

whose trace and determinant are given by
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tr J E∗( 􏼁( 􏼁 � 2 −
a(2 + c)(1 + ω + c − d)]1 + a(1 + ω + c)(2 + c − d)]2

2 + 2ω + 3c − d
2

+ cω + c
2 ,

Det J E∗( 􏼁( 􏼁 � 1 +
a
2
(2 + c − d)(1 + ω + c − d)]1]2 − a(1 + ω + c)(2 + c − d)]2 − 2a(2 + c)(1 + ω + c − d)]1

2 + 2ω + 3c − d
2

+ cω + c
2 .

(18)

&e eigenvalues of J(E∗) have a long analytical form, and
instead we discuss the stability of the Nash equilibrium point
by using Jury conditions:

1 − tr J E∗( 􏼁( 􏼁 + Det J E∗( 􏼁( 􏼁> 0,

1 + tr J E∗( 􏼁( 􏼁 + Det J E∗( 􏼁( 􏼁> 0,

1 − Det J E∗( 􏼁( 􏼁> 0,

⎧⎪⎪⎨

⎪⎪⎩
(19)

which can be rewritten in the form

a
2
(2 + c − d)(1 + ω + c − d)]1]2
2 + 2ω + 3c − d

2
+ cω + c

2 > 0,

4 − Φ> 0,

Φ> 0,

Φ �
a(1 + ω + c)(2 + c − d)]2 + 2a(2 + c)(1 + ω + c − d)]1 − a

2
(2 + c − d)(1 + ω + c − d)]1]2

2 + 2ω + 3c − d
2

+ cω + c
2 .

(20)

It is easy to see that the first condition of (20) is always
fulfilled. If the other two conditions are fulfilled, then E∗ is
locally asymptotically stable provided that 0<Φ< 4. On the
other hand, if Φ≥ 4, this means E∗ gets unstable due to the
coexistence of period-doubling bifurcation. In addition, it
becomes unstable due to Neimark–Sacker bifurcation pro-
vided that Φ≤ 0. &e next section gives some insights about
the above analytical analysis. □

3.1. Discussion and Numerical Simulation. Let us now dis-
cuss the monopoly case of map (8). It is easy to see that this
map is trapped to the point (0, 0) which means at q1(t) � 0
or q2(t) � 0, it gives q1(t + 1) � 0 or q2(t + 1) � 0. Setting
q1(t) � 0 or q2(t) � 0 in (8), one gets the following:

q1(t + 1) � q1(t) + ]1q1(t) a − (2 + c)q1(t)􏼂 􏼃,

q2(t + 1) � q2(t) + ]2q2(t) a − (1 + ω + c)q2(t)􏼂 􏼃,
(21)

which can be simplified to

q1(t + 1) � 1 + a]1( 􏼁q1(t) 1 −
]1(2 + c)

1 + a]1
q1(t)􏼠 􏼡,

q2(t + 1) � 1 + a]2( 􏼁q2(t) 1 −
]2(1 + ω + c)

1 + a]2
q2(t)􏼠 􏼡.

(22)

Separately, each part of (22) conjugates the standard
logistic map, yj(t + 1) � μjyj(t)(1 − yj(t)), j � 1, 2. &en,
we have the following linear transformations for (22):
\openup4

q1(t) �
1 + a]1
]1(2 + c)

y1(t),

q2(t) �
1 + a]2

]2(1 + ω + c)
y2(t),

μj � 1 + a]j; j � 1, 2.

(23)

&is implies that the dynamics of (22) are the same as the
logistic map. Each part in (22) is separately a unimodel map.
Both have unique critical points C− 1

q1
and C− 1

q2
with coordi-

nates given by

q
⌣

1 �
1 + a]1

2]1(2 + c)
,

q
⌣

2 �
1 + a]2

2]2(1 + ω + c)
.

(24)

&ese coordinates conjugate the critical points
y1 � (1/2) and y2 � (1/2). In addition, system (22) has the
following fixed points:
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q
O
1 � 0,

q
O1
1 �

a

2 + c
,

q
O
2 � 0,

q
O2
2 �

a

1 + ω + c
,

(25)

which conjugate y1 � 0, y1 � 1 − (1/μ1), y2 � 0, and y2 �

1 − (1/μ2) of the logistic map. It is easy to see that
|(dqi(t + 1))/(dqi(t))|qO

i
�0 � 1 + a]i > 1, i � 1, 2 and then

qO
i , i � 1, 2 is an unstable repelling point. In addition, we can
see that both q

O1
1 and q

O2
2 are stable attracting points under

the condition 0< a]i < 2, i � 1, 2. At a]i > 2, i � 1, 2, the
dynamics of each part in (22) may be a period cycle or a
cyclic chaotic attractor. &ese behaviors are characterized by
basins of attraction that are bounded by the repelling points
qO
1 or qO

2 and their preimages. &ese preimages are obtained
by setting qi(t + 1) � 0, i � 1, 2 in (22) as follows:

q
O− 1
1 �

1 + a]1
]1(2 + c)

,

q
O− 1
2 �

1 + a]2
]2(1 + ω + c)

,

(26)

which conjugate y1 � 1 and y2 � 1 in the logistic map.
&erefore, for the first part of (22), any trajectories starting
out of the interval [0, q

O− 1
1 ] will be divergent to − ∞. &e

same observation is for the second part of (22). In order to
validate the obtained results in the monopoly case, we use
numerical simulation by assuming the following parameters’
values: a � 0.5, c � 0.2. Figure 1(a) shows that q

O1
1 is stable

for all the values of ]1 until the parameter reaches the value
]1 � (2/a) on where the period-2 cycle arises. At ]1 � 3.88,
Figure 1(b) presents the basins of attraction of the stable
point q

O1
1 . It is also obvious that the basins are bounded by

the box defined by [0, q
O− 1
1 ] × [0, q

O− 1
1 ]. At k � 5.9, we give a

situation of unstable q
O1
1 due to a chaotic attractor behavior.

As shown in Figure 1(c), the basins of this chaotic attractor
lie within the box [0, q

O− 1
1 ] × [0, q

O− 1
1 ]. For the second part of

(22), we have the same discussions. Figure 1(d) shows that
q

O2
2 is stable for the values of ]2 until the parameter reaches

(2/a). Reaching this value gives rise to periodic cycle and
chaotic attractor. For instance, at the parameters set
a � 0.5,ω � 0.9, c � 0.2, and ]2 � 3.88, the basins of at-
traction of the stable point q

O2
2 are given in Figure 1(e). As ]2

increases to 5.9, the point q
O2
2 gets unstable and chaotic

attractor appears. &e basins for this chaotic attractor are
given in Figure 1(f ). We can conclude that as ]2 increases
further, any dynamic behavior will be bounded by the box
[0, q

O− 1
2 ] × [0, q

O− 1
2 ].

Now, we carry out some numerical simulations in order
to investigate and analyze the influences of the parameters ]1
and ]2 on the map given in (8). All numerical simulations in
this section are performed at the initial datum (q1(0),

q2(0)) � (0.11, 0.12). Assuming the parameters set, a �

0.5, c � 0.2, d � 0.35, and ω � 0.45. &is gives

E∗ � (0.1853171775, 0.2637205988). Assuming ]1 � 3.5 and
]2 � 4.2, then (18) becomes

J E∗( 􏼁 ≈
− 0.42694 − 0.22701

− 0.38767 − 0.82758
􏼠 􏼡, (27)

which has two real eigenvalues, λ1 ≈ − 0.26930 and
λ2 ≈ − 0.98522. One can see that |λ1,2|< 1 and hence E∗ is a
local stable point. Keeping the parameter set including ]2
fixed and increasing ]1 to 3.65, the Jacobian J(E∗) gets

J E∗( 􏼁 ≈
− 0.48810 − 0.23674

− 0.38767 − 0.82758
􏼠 􏼡, (28)

and then the real eigenvalues become λ1 ≈ − 0.31058 and
λ2 ≈ − 1.0051. &is means that E∗ is changed into an un-
stable saddle point. Now, we perform some numerical
simulation experiments in order to get more insights on the
dynamic of map (8) around the equilibrium point E∗. We
start our analysis by investigating the effects of the adjust-
ment parameters ]1 and ]2 on the map. In Figures 2(a) and
2(b), we present the bifurcation diagram for the influences of
the parameters ]1 and ]2 on the quantities q1 and q2 at the
parameters values, a � 0.5, c � 0.2, d � 0.35, and ω � 0.45.
&ey show that the equilibrium point may be destabilized
due to period-doubling bifurcation. Figure 2(c) confirms the
chaotic behavior of the map by presenting the largest
Lyapunov exponent. In Figures 2(d)–2(h), we give some
different dynamic situations of the map due to varying the
parameter ]1 and keeping the parameter ]2 � 4.2. &ey
present the attractive basins of periodic cycles 2, 4, and 8.
Besides that, we show in Figures 2(g) and 2(h) two different
chaotic attractors for the map around the equilibrium point.
We have two disconnected attractors around the equilib-
rium point given in Figure 2(g) which gather together to
form a one chaotic attractor as given in Figure 2(h).

Now, we study another situation when the parameter ]2
is varied and ]1 becomes constant at the value 5. Figure 3(a)
shows the 1D bifurcation diagram taking ]1 as the bifur-
cation parameter and the other parameters are selected to be
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, and ]2 � 5 while
Figure 3(b)) depicts the bifurcation diagram with respect to
the parameter ]2 and the other parameters’ values are
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, and ]1 � 3. It is clear that
the equilibrium point becomes locally asymptotically stable
till it reaches the point on where it can be destabilized due to
period-doubling bifurcation. Due to a series of period-
doubling bifurcated points, the map becomes chaotic and
enters the chaos region and this is confirmed in Figure 3(c)
which shows the Lyapunov exponent with respect to the
variables ]1 and ]2. Now, we use some numerical experi-
ments to investigate more the dynamics of the map. Setting
the parameters’ values to
a � 0.5, c � 0.2, d � 0.35,ω � 0.45, ]1 � 5, and ]2 � 5, we get
in Figure 3(d)) four closed invariant sets around the equi-
librium point. Further increase in ]2 to 5.2 makes these four
sets convert into four disconnected chaotic attractors as
shown in Figure 3(e) which turn into two chaotic attractors
as ]2 increases to 5.3 as given in Figure 3(f ). At ]2 � 5.4, a
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Figure 3: (a),(b) Bifurcation diagram with respect to q1 and q2 on varying ]1 and ]2. (c) Largest Lyapunov exponents with respect to ]1 and
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period-6 cycle is emerged and plotted in Figure 3(g) with its
attractive basins. Increasing ]2 to 5.55, the dynamics of the
map become chaotic as depicted in Figure 3(h).

3.2. Noninvertible Map. We have previously discussed that
the map T is being trapped in the point (0, 0). &is means
that at q1(t) � 0 or q2(t) � 0, we get q1(t + 1) � 0 or
q2(t + 1) � 0, respectively. So, the point (0, 0) is used to
calculate basins’ boundaries for any attracting set of the map.
Doing that requires setting q1(t + 1) � q

�

1 and q2(t + 1) � q
�

2
in (8) as follows:

T:
q
�

1 � q1(t) + ]1q1 a − (2 + c)q1 − dq2􏼂 􏼃,

q
�

2 � q2(t) + ]2q2 a − (1 + ω + c)q2 − dq1􏼂 􏼃,

⎧⎪⎨

⎪⎩
(29)

where ′ indicates evolution of time. For map (29), if
T− 1: (q

�

1, q
�

2)⟶ (q1, q2) gets unique value for each point in
the range, then we call T an invertible map and then the
point (q

�

1, q
�

2) ∈ R2 is a rank-1 image while (q1, q2) is a rank-
1 preimage. If there exist at least two rank-1 preimages for an
image (q

�

1, q
�

2), then the map T is called a noninvertible map.
Now, we calculate the real rank-1 preimages for the point
(0, 0).

Proposition 4. -e point O � (0, 0) possesses four real rank-
1 preimages,

Proof. Setting q
�

1 � 0 and q
�

2 � 0 in (29) and solving alge-
braically, we get

O
(0)
− 1 � (0, 0),

O
(1)
− 1 �

1 + a]1
]1(2 + c)

, 0􏼠 􏼡,

O
(2)
− 1 � 0,

1 + a]2
]2(1 + c + ω)

􏼠 􏼡,

O
(3)
− 1 �

a]1]2(1 + c + ω − d) +(1 + c + ω)]2 − d]1
]1]2 2 + 2ω + 3c + cω + c

2
− d

2
􏼐 􏼑

,
a]1]2(2 + c − d) +(2 + c)]1 − d]2
]1]2 2 + 2ω + 3c + cω + c

2
− d

2
􏼐 􏼑

⎛⎝ ⎞⎠.

(30)

&is completes the proof. □

&e above proposition indicates that any attracting
set for map (27) has an attractive basin that is bounded by
a quadrilateral shape whose boundaries are defined by
the line segments ξ1 � OO(1)

− 1 , ξ2 � OO(2)
− 1 and their pre-

images ξ− 1
1 and ξ− 1

2 , respectively. &ese preimages are
given by

ξ− 1
1 : q2 �

1 + a]2 − d]2q1
]2(1 + c + ω)

,

ξ− 1
2 : q2 �

1 + a]1 − ]1(2 + c)q1

d]1
.

(31)

Figure 4 displays those line segments and their pre-
images at the parameters’ values: a � 0.5, c � 0.2, d �

0.35,ω � 0.45, ]1 � 5, and ]2 � 5.55.
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Figure 4: &e boundaries of the chaotic attractor given in Figure 3(h).
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In Figure 5, we plot the critical curves LC and LC− 1 at the
parameters set, a � 0.5, c � 0.2, d � 0.35,ω � 0.45, ]1 � 5, and
]2 � 5.55. It is clear that LC divides the phase plane into the two
regionsZ4 andZ2 as shown in Figures 5(a) and 5(b).&erefore,
the map is noninvertible. In addition, the points (0, 0) and the
equilibrium point O are belonging to the region Z4.

4. Conclusion

&e current paper has studied a two-dimensional map that
has described the competition between two Cournot firms
one of which has considered the maximization of social
welfare instead of profit. Based on a gradient-based mech-
anism, the map has been modelled in discrete time steps. It
has been analyzed that when the two firms have become
monopolistic, their dynamics have turned into just like the
standard coupled logistic map.While in the duopolistic case,
the map’s fixed points have been calculated and their sta-
bility conditions have been investigated showing that the
Nash equilibrium point may be unstable due to two types of
bifurcations. &rough some numerical analysis, we have
shown some attracting sets with their basins of attraction
and other chaotic behaviors of the map around the equi-
librium point have been detected. &e critical curves of the
game’s map have been calculated, and the corresponding
preimages regions have been identified. We have shown that
the map is noninvertible and has belonged to Z4 − Z2 type.
For future studies, we plan to investigate more such
adoption of maximization of social welfare on heteroge-
neous players (or firms). We have shown that the model
parameters, in particular the speed of adjustment and the
degree of privatization of the second firm, have an effect on
the long-term dynamic response of the game, which is
important for understanding the functioning of the mixed
duopoly game. &is result allows players to gain a specific
understanding of the mixed oligopoly market and to rec-
ognize that the choice of decision criteria would have a
certain effect on the system’s actions.
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