Hindawi

Discrete Dynamics in Nature and Society
Volume 2021, Article ID 6622538, 10 pages
https://doi.org/10.1155/2021/6622538

Research Article

Hindawi

Behaviors of the Solutions via Their Closed-Form Formulas for
Two Rational Third-Order Difference Equations

Raafat Abo-Zeid' and Abdul Qadeer Khan (>

'Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo, Egypt
’Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhanl@gmail.com

Received 26 December 2020; Accepted 24 November 2021; Published 9 December 2021

Academic Editor: Seenith Sivasundaram

Copyright © 2021 Raafat Abo-Zeid and Abdul Qadeer Khan. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

In this work, we derive the solution formulas and study their behaviors for the difference equations x,,,, = (ax,x,_s/(=fx,_5 +
cx,_5)),n € Nyand x,,,, = (ax,x,_ 3/ ($x,_5 — cx,_,)),n € N, with real initials and positive parameters. We show that there exist
periodic solutions for the second equation under certain conditions when f8 < 4ay. Finally, we give some illustrative examples.

1. Introduction

In [1-5], the first author ([1] together with Kamal) solved
and studied the solutions for the difference equations

_ XpXn-1
Xnel =
Xn = Xp-2
_ xnxn—l
Xn1 =~ o
—X,+X, 5
ax
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b+cx, 1X,.3
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ax, x
n-n-1
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tbx, | +cx,,
x _ ax, Xy k
+1 = >
! bxn — Xy k-1
X, X
_ n-vn-2
Xny1l =

_ 2
-ax,_; +bx,_,

where n € N, with real initials and positive parameters.
In [6], the authors explored the dynamics of the dif-
ference equation

bxnxn—Z

X, = aX, + ,  neN, (2)

X, +dx, 5

where a,b,c,d and x_;,x_,,x_,x, are positive real num-
bers. They provided the solution of the mentioned equation
whena=1,b=1,c=1,andd = 1.

By virtue of the wide applications in the last few decades,
difference equations turned into one of the major areas of
research. There are many books dealing with difference
equations through the qualitative behavior of nonlinear
equations (see [7-11]).

Closed-form solutions for nonlinear difference are not
available, except for some few equations (see, for example,
[6, 7, 10, 12-26]). In [27], the authors studied the two re-
cursive equations

‘Xxnxn—3

x bl
_ﬁxn—S T YXu-2

n+l =

n € Ny, (3)

OXpXy-3

X =
ﬂxn—S ~ YXn-2

n+l ne NO’ (4)
with real initials and positive parameters. They provided the
solutions for the two mentioned equations when o = § = y.

Motivated by [27], we shall solve, find the forbidden set,
and study (V positive real values of «, 3, y) global behavior of
the admissible solutions for equations (3) and (4) where
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o, B,y are positive real numbers and x_;, x_,, x_;, x, are
nonzero real numbers.

If we set
b
o
(5)
Y_op,
o
then equations (3) and (4) are reduced to
XnXn-3
= 5 > € N >
nel -ax, 5 +bx,_, e (6)
XnXn-3
Xy =————, neN,.
il axXy, 3 — bxn—Z ° (7)
2. The Difference Equation x,,, = (x,x,_5/
(—ax, ;+bx,,))
During this section, we suppose that
A=A
gn = %’ (8)
Va“ +4b
y
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where
L o6 Na'+db
- 2 2 bl
9
a Va’+4b
A, =—+ —

2.1. Solution of Equation (6). According with the
transformation,

xn71 . x73 x72 x71
= , withy , ="y, =" y,=—.
In x, V-2 X, V-1 X Yo %, (10)
Equation (6) becomes
b
Y1 = G+ , n=0,1,.... (11)

Yn-2

By solving equation (11) and after some calculations, the
solution of equation (6) can be obtained.

Theorem 1. Suppose {x,} - . is an admissible solution of
equation (6). The solution of equation (6) is

v

o ((n=1)/3)p_; ((n=1)/3)u_, ((n+2)/3)

n pho ((n=2)/3)p_, ((n+ 1)/3)u_, ((n+1)/3)

v

where v = xyx_1x_,x_5 and

Uzi(m)=bO0,x 5, +6,. x4, wherei=1,2,3andn=0,1,....

(13)
Proof. We can write the solution formula (12) as
X 3 v
T g (mp_y (mp_y (m + 1)’
x = s 14
2 S m, (m+ Dy (m+ 1) (14)
v
X3m+3 =

pho(m+ Dp_y (m+ Vp_, (m+ 1)

The proof is by using the mathematical induction on m.
When m =0,

| po (n/3)p_, (n/3)u_y (n/3)’

n=14,...,
n=25,..., (12)
n=3,6,...,

vV
M e O, (), (1)

XoX_3

= 703
—ax_s +bx_,

v
2 U (O, (), (1)

X, XoX_3

"~ (~ax_, +bx_;) (-ax_; +bx_,)

X1%X_,

—ax_, +bx_;

Y
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_ X 1% XoX_3 Suppose that the equalities (14) are true for m, > 0.
(max_; +bxy) (—ax_, + bx_;) (—ax_; + bx_,) Then,
X X1X_y
= 15
(—ax_; +bxy) (—ax_, +bx_;) (15)
X _ X3myX3my-3
ol —AX3 3 + X3 5
_ (vl (mo)a_y (mo)u_ (o)) (Vg (mg — Dy (my = D, (my — 1)) (16)

Dy (mg -

v

—a(vlyy (my -

Dy (mg = 1)) + b (v (mg —

Du_, (my))

Dy (mg —

™ bty (mo)u_y (my) (—apu_y (mo) + bu_, (my — 1))

But, we can see that

—ap_, (my) +bu_, (my — 1) = p_, (my + 1). (17)
Then,
S ” (18)
ot to (mo)u_y (mo)u_y (mg + 1)
Therefore,
y
X3m+1 = ,» m=0,1,.... (19)

po (M)p_y (m)p_, (m + 1)

Similarly, we can obtain xs,,,, and xs,,,;.
This completes the proof. O

For equation (6), it is clear that if x,=0 and
X_1x_,x_3#0, then x, is not defined. Let x_, =0 and
XoX_,X_3 #0, then x, is not defined. Also, if x_, =0 and
XoX_1X%_3 #0, then x, is not defined. Now, if x_; =0 and
XoX_1X_, #0, then x5 is undefined.

This implies that the point (xg,x_;,x_,,x_3) with
H?:o x_; = 0 belongs to the forbidden point of equation (6).

Theorem 2. Equation (6) has the forbidden set

F= L_3J{(u0,u1,u2, ;) € R u O}U

10
OLE { Uy, Uy th_3) € RY: uy = 5 g’“ul} U
m
(20)
06 R _ 16m+1
U (tgou_1, Uy, u_3) € Uy =gtV
m
16
oLj{uO,ul,uz, ;) € R%: u,=— é"“u,3
m

2.2. Global Dynamics of Equation (6). Here, we illustrate the
global behavior result and provide some examples.

Theorem 3. Assume that {x,},._; is an admissible solution
of equation (6). Then, the following hold:

(1) If a+b>1, then the solution {x,},. , converges to
zero.

(2) If a+ b =1, then the solution {x,},>_, converges to
period-2 solution.

(3) If a+ b< 1, then the solution {x,},._5 is unbounded.

Proof. We can write 8,, = A" ((A,/A_)" — 1)/Va? + 4b).
(1) Ifa+b>1, then |A_| > 1. It follows that |6,,] — oo
and |y_5,; (m)] — 00 as m — oo.
Therefore, {x,},._; converges to zero.
(2) Assume that a+b =1, then A_ = 1.
This implies that

-1
—>

0,,, —_,
2 Va® + 4b

(21)
1

\/a2+4b,

0y0i1 — asm — 00.

Also,

—bx 5, +X_4.;
3+i 4+ =L

\/a2 +4b e (22)

asm — 00,1 =1,2,3.

sy (2m) —

Similarly,

Yz 2m+1) —
a +4b (23)

asm — 00,1 =1,2,3.

Using formula (14), we can write



4
v
X = —
LT g 2m)u_y (2m)u_, (2m +1)
(24)
__r M,
Ll L,
where M = (v/LyL_;L_,).
Similarly, we can get lim,__, Xg,,,; for 2<j<6 in
terms of M.
The result is obtained by noting
2 3/2
a’ +4b) v
M=— " _ . ( ) (25)
LoLyLy [Ty (=bx 5y + X 40t)s
and as m — 00, we have that
{ -M, n=13,5 (26)
X L —
o M, n=246.

(3)If a+b<1, then A_> —1. That is, 6,, — 0 as
m— oo. Also, {u,(m}, o, {u,(m)},, and
{uo (m)}o._, are converging to zero.

This implies that {xs,,}.., are unbounded,

t=0,1,2. O

Example 1. Consider the solution {x,} . , of equation (6)
such that a=0.5, b=0.1 (a+b<1), with initial values
x_3=21,x_,=-1,x_ =0.2,and x, = —1.8. Figure 1 shows
that solution {x,};> , is unbounded.

Example 2. Consider {x,},> ; of equation (6) such that
a=1b=01(@+b>1),withx_3=21,x,=-1,x_, =02,
and x, = —1.8. Figure 2 shows that {x,},._; converges to
zero.

Example 3. Consider {x,},° , of equation (6) such that
a=06, b=04 (a+b=1), with x_;=21, x_,=-1,
x_; =02, and x, = -1.8. Figure 3 shows that {x,} ,

converges to the period-2 solution
{..,M,-M,M,-M, ..}, (27)

where

(a2 + 4b)3/2v

- H?:l (=bX 300 + X_404)

(0.6 +4(0.4))" (-1.8)(0.2) (-1) (2.1)

2x10'8 |

1x108 F n
Al

-1x10'® |
-2x10'8 |
-3%x10'8 |

~4x10'8 |
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FiGure 1: x,,,; = (x,x,_3/(=0.5x,_5 + 0.1x,,_,)).
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FIGURE 2: x,,,; = (x,X,_3/(=X,_3 + 0.1x,,,)).

FIGURE 3: x,,,, = (x,xX,_3/(=0.6x,_5 + 0.4x,,_,)).

(28)

~-0.83513.

T (C0.4(-1.8) + 0.2) (=0.4(0.2) - 1) (—0.4(-1) + 2.1)
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Example 4. Consider {x,} )2 , of equation (6) such that
a=09, b=01 (a+b=1), with x ;=21 x_,=-1,
x_; = 0.2, and x, = —1.8. Figure 4 shows that the solution
{x,}o2_, converges to the period-2 solution

(a + 4b)"

- H?:l (_bx73+t + x—4+t)

(0.9 +4(0.1))" (-1.8) (0.2) (-1) (2.1)

T (C0.1(=1.8)+ 0.2)(<0.1(0.2) = 1) (=0.1(=1) + 2.1)

3. The Difference Equation x,,,, = (x,x,_s/
(ax,_;—bx,_,))
We discuss the behaviors of the solutions of equation (7).

The transformation (10) reduces equation (7) into the re-
cursive equation

V1 =G — , n=0,1,.... (31)

Yn-2

During this section, we suppose that

Va* - 4b

A=2- :
2 2
(32)
a Va’-4b
AZ =5+#.

Clear that A, and A, are the roots of the equation
M-al+b=o. (33)

3.1. Case a® > 4b. In this subsection, we assume that a® > 4b.
Clear that

a b
0<A1<E</12<;<a. (34)

During this subsection, we suppose that
5 oMM
"oV -4

n=0,1,.... (35)

Theorem 4. Assume that {x,},-_; is an admissible solution
of equation (7), then

Vv

Ao (0= D3, (- D3, () "7 0%
= Y n=2,5
7Y Ao ((n=2)B)a ((n+ DB, ((n+1)/3y ~ 777
i =36
o (W13, (n/3)i_, (n13) nES0
(36)

5
{...M,-M,M,-M, ...}, (29)
where
(30)
- 1.18003.
where v = xyX_1X_,X_5 and
Psyi(n) = —b@nx,w- + @nﬂx,m, wherei = 1,2,3and
n=0,1,....
(37)

Proof. 1Its proof is same as the proof of Theorem 1 and is
omitted. O

Theorem 5. Let {x,},° , be an admissible solution of re-
cursive equation (7). Then, the following hold:

(1) If a<b+ 1, then one has the following:

(a) If b< 1, then the solution {x,}.._, is unbounded.
(b) If b> 1, then the solution {x,},._; converges to
zero.

(2) If a =b + 1, then one has the following:

(a) If b< 1, then the solution {x,}.. 5 converges to a
finite limit.

(b) If b> 1, then the solution {x,},> , converges to
zero.

(3) If a>b+1, then the solution {x,},._; converges to
zero.

Proof. We can write 6,, = A5 ((1 - (A,/A,)")/Va? — 4b).
(1) If a<b+ 1, then either A, >1 or A, < 1.

(@) If b<1, then A,<1. That is, 6, — 0 as
m —> oco. This implies that {f_,(m)} .
{a_, (m)}> . and {f, (m)},,, are converging to
zero. Therefore, {x,},°_; is unbounded.

(b) If b>1, then A, >1. That is, 6,, — o0 as
m — oo. This implies that ji_, (m), i_, (m), and
fio(m) are unbounded. Therefore, {x,}. ,
converges to zero.

(2) Suppose that a = b + 1, then either A, =1 or A, = 1.

(a) If b<1, then A, =1. It follows that @m —
(2/Va? —4b) as m —> oo. This implies that



FIGURE 4: x,,,; = (x,%,_3/(=0.9x,_3 + 0.1x,,_,)).

_bx—3+i X ghi _ 7

A— +i (m) — = L7 ti>
s Va® — 4b ’ (38)

asm — 00,i = 1,2,3.

Then,

X = 4 _ 4 - M

T By (A, (ma_, (m+ 1) LL,L,

(39)
where

2 3/2
~ v(a” —4b
M = ( ) (40)

H?:l (=bX 304 + X_g0y)-

PO

Hf:l (=bX 304 + X_41)

((1.3) - 4(0.3))
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Similarly, we can show that x;,,,, — M and

Xymy3 — M as m — oo.

Therefore, {x,},°_; converges to M as m — co.
(b) If b>1, then A, =1. That is, 6,, — 0o as

m — 0.

This implies that {fi_,(m)}. . {#_; (m)}o,, and
{fi, (m)},_, are unbounded.

[00]
Therefore, {x,},”_; converges to zero.

(3) If a>b+1, then A, <1<,. That is, 6,, — oo as
m — 00.

This implies that f_,(m), f_,(m), and p,(m) are
unbounded.
Therefore, {x,},_; converges to zero. O

Example 5. Consider {x,},°_, of recursive equation (7)
where a=1, b=0.2 (a<b+1 and b<1), with x_; =1,
x_, =-3, x_; =-1, and x;, = 1.8. Figure 5 shows the un-
bounded solution {x,}._;.
Example 6. Consider {x,} - , of recursive equation (7) such
that a =12, b=01 (a>b+1), with x_;=1, x_, = -3,
x_; = —1,and x, = 1. Figure 6 shows that {x,},__, converges
to zero.

Example 7. Consider {x,}._; of recursive equation (7) such
that a=13, =03 (a=b+1 and b<1), with x_; = -2,
X_, =-2,x_, =1, and x, = 2. Figure 7 shows that {x,} .,
converges to M where

(41)
31

=2.1304.

T (203(=2) —2)(=0.3(1) —2)(=0.3(2) + 1)

Example 8. Consider {x,} ., of recursive equation (7) such
thata =2.01,b=1.01 (a=b+1and b> 1), with x_; = -2,
x_, =-2,x_; =1, and x; = 2. Figure 8 shows that the so-
lution {x,}>_; converges to zero.

3.2.Casea® = 4b. In this subsection, we assume that a® = 4b.
That is, A, = A, = (a/2).

Theorem 6. Assume that {x,},>_, is an admissible solution
of recursive equation (7). Then,

2

@) -
al 8,((n-1)/3)8_, ((n-1)/3)8_, ((n+2)/3)

8v

Xn =1 <E> fo ((n=2)3)_, ((n+ 1)/3)8_, ((n +1)/3)

) @
al 8,(n/3)6_,(n/3)d_, (n/3)

n=14, N
, n=2,5..., (42)
n=3,6,...,
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x (n)

1.5x10"3

1.0x10"

5.0x1012

20 40 60 80 100

FIGURE 5: x,,,; = (x,%,_3/(x,_3 — 0.2x,,_,)).

x (n)
1 | K
20 40 60 80 100
-1
-2
-3

FIGURE 6: x,,,; = (x,%,_3/(1.2x,_3 — 0.1x,,_,)).

20 40 60 80 100

FIGURE 7: x,,,; = (x,x,_3/(1.3x,_5 — 0.3x,_,)).

where v = xox_1x_yx_5 and

2 3m+1 8y
lx3m+1| = |<;>

8y (m)d_, (m)d_, (m + 1)

2

7
x (n)
. . . . . L
20 40 60 80 100
20 |
-40
-60 |
-80 +
FIGURE 8: x,,,; = (x,x,_3/(2.01x,_; — 1.01x,_,)).
0 5, (n)=—anx_s.+2n+1)x_,,;,
3+i 3+i 4+i (43)
i=1,2,3andn=0,1,....
Proof. It is enough to see that
0 5, (n+1)=264,(n)-6_,5,(n-1),
3+i 3+ 3+i (44)

i=1,2,3andn=0,1,...,

and its proof is same as of Theorem 1 and is omitted. O

Theorem 7. Let {x,},° ; be an admissible solution of re-
cursive equation (7). Then, the following hold:
(1) If a>2, then solution {x,}.._, converges to zero.
(2) If a<2, then {x,},._; is unbounded.

Proof. Clear that |0_;,; (m)| — coasm — 00,i=1,2,3.
(1) If a>2, then (2/a)" — 0 as n — oo. This implies
that the solution {x,} . , converges to zero.
Now, suppose that a = 2. Then,
8y
B S S o (m)d_y (m+ 1)

0, asm — oo.
(45)

Similarly, for x,,,, and x5,,,5.
o0
Therefore, {x,},”_; converges to zero.

(2) If a<2, then (2/a)™ — o0 as m —> co. Then,

(46)
8v

By applying L'Hospital’s rule, we get

3m+1
(E) m3Ht1:0 (—ax_, +2((1/m) + 1)x_,_;) (—a((1/m) + 1)x_, + 2((2/m) + 1)x_3)|.

|x3m+1| — 00, asm — 00. (47)

Similarly, for |x;,,,,| and |xs,,,5|.



Hence, {x,}. 5 is unbounded. O

Example 9. Consider {x,}._; of recursive equation (7) such
that a=1, b=0.25 (a*> =4b and a<2), with x_5=0.2,
=-2, =2, and =-1.2. Fi 9 sh: that th
ilcr_lgboundezlc_slolutioin{xﬁ%o e 7 oo e
nyn=-3*
Example 10. Consider {x,} > , of recursive equation (7)
such that a =2, b=1 (a® = 4b and a>2), with x_; = 0.2,
=-2, =2, and =-1.2. Fi 10 sh that
?3;2}00 cofl_\ierges ti)nzerio o e
nlin=-3 :

3.3. Case a® < 4b. Hereafter, we study the final case when
a* < 4b.
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x (n)

20 20 60 80
-5.0x10% F
-1.0x10%* £
-1.5x10%* £
-2.0x10%* £
-2.5x10%* £

-3.0x10%

FIGURE 9: x,,,, = (x,x,_3/(x,_3 — 0.25x,,_,)).

During this subsection, we suppose that x (n)
2L
a 4b-a’ .
A==- i,
2 2
(48) I
4b - a’
A, = 24 2
2 2 . . "
20 40 60 80 100
That is, [
-1
Ml =] = Vb,
. B 4b-a’ -2
sin ¢ = 2vb (49) FIGURE 10: x,,,; = (x,x,_3/ (2X,_3 — X, _5)).
a
cos ¢ = NG Theorem 8. Let {x,}oo_, be an admissible solution of re-
cursive equation (3). Then,
[ sin® « v
) , n=1,4,...,
b & ((n=1)/3)§_, ((n—1)/3)E_, ((n+2)/3)
x:‘sin3cx v n=125 (50)
T o™ (=238 ((n+ DB, ((n+ D)3y T T
sin® « v 36
> n=>5606,...,
L b(n/z) Eo (n/3)€_1 (n/3)€_2 (n/3)
where v =xpx_1x_5 &.5,;(n)=-Vbx_;,;sinng+x_,,;  Theorem 10. Let {x,} > ; be an admissible solution of re-

sin(n+1)¢, ¢ = tan~ ! (V4b —a?/b) €10, (71/2)[.

Theorem 9. Assume that {x,},._, is an admissible solution
of equation (7). Then, we have the following:

(1) If b> 1, then the solution {x,}.. 5 converges to zero.
(2) If b< 1, then the solution {x,},>_; is unbounded.

Proof. Its proof is direct consequence and is omitted. [

cursive equation (7) and let b=1. If ¢ = (I/k)m (with
0<1< (k/2)), then {x,},>_; is periodic having prime period-
6k.

Proof. Using formula (50), we can write
x = sin’ ¢ Y
Sm3kel = E(m+k)E  (m+k)E,(m+1+k)
(51)

But, for each i = 1,2, 3, we have
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E 5 m+2k) = —x_5,; sin(m + 2k)$ + x_y; sin(m + 2k + 1)¢
= —x_s,; sin (m¢ + 2k¢)
+x_y;sin((m + 1)¢ + 2k¢)
= —X_s,; sin (m¢ + 2Im)
+x_y;sin((m + 1)¢ + 2Im)
= —X_5,; Sin m + x_y,; sin(m + 1)¢
=& 5, (m).
(52)
Then, for m> — 1, we have

.3 v
X3mieks1 = SIN ¢ Eo(m+2k)E_ (m+2k)E_, (m+ 1+ 2k)

v

P e, (m)E, (m+ D)

.3
= Sin

(53)

Similarly, we can show that for m> — 1, we have

X3m6k+2 = X3m+2>

(54)
X3m+6k+3 = X3m+3-

This completes the proof. O

Example 11. Consider {x,},>_, of recursive equation (7)
withx_; =-0.8,x_, =1.1,x_; =-0.9,and x, = -1.2. Ifa =
V2+2,b=1 (a®><4b and ¢ = (n/8)), then {x,} >, is
periodic with prime period 6k = 48 (see Figure 11).

Example 12. Consider {x,}> , of recursive equation (7)
with x_; =-0.5, x_, =2, x_;, =05, and x, =-1.1. If a =
b=1 (a*<4b and ¢ = (7/3)), then {x,},°_; is periodic
having prime period-6k = 18 (see Figure 12).

3.4. Forbidden Sets. In this subsection, we give the forbidden
set of recursive equation (7) when a?>4b, a* = 4b, and
a* < 4b.

Clear that, if x, =0 and x_;x_,x_5#0, then x, is un-
defined. If x_; = 0 and x,x_,x_5 #0, then x; is undefined. If
x_, =0 and xyx_;x_5#0, then x, is undefined. If x_; =0
and x,x_;x_, #0, then x5 is undefined

The following result gives the forbidden sets of equation
(7) for all values of a >0 and b>0.

Theorem 11. We have the following statements:
(1) If a* > 4b, then equation (3) has the forbidden set

x (n)
1.0
0.5
. . . . -
20 40 60 8 0!
-0.5
-1.0 -
FIGURE 11: x,,; = (x,%,3/ (V2 + V2 x,_5 — x,_,)).
F, SJ{(VO,VI,VZ, ) € R%: :O}U
i=0
10
OLj) { Vo Voo Vo V_3) € R vy = — i”*lv_l} u
m=1 b gm
~ (55)
16
U {(vo,v bV vs) ERY v = i”“vz} U
m=1 b 9m
10
U (Vo V_1s Vs v_3) € R%: v, = = 5Ly, 4
m=1 b 9m
(2) If a* = 4b, then equation (3) has the forbidden set
3
F,=U {(vo,v,l,v,z,v,3) eR: v, = 0} U
i=0
21+m
OL(J){(VO,VI,VZ, )R vy =2 v_l}U
m=1 b m
(56)
[L)Jo{vv Vo, v) € RY: v _21t ™, o
W Vo Vo2, Vs e
00 4 21+m }
u s V_15V_os eER:M v, =~ 3
mzl{("o‘%"z 3) Vo =y Vs
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(3) If a® < 4b, then equation (3) has the forbidden set

F; = iéo {(Vo> Vo,V V_3) € R*: v, = 0} U

(VO) V_1,V_2 V_3) € IR4: Vo =

]

1 C8

1 sin(m+l)</>v }U
Va1

m sin m¢

1

4. == —
1{(1/0) V_1-V_2 V_3) ceR™: V= \/E sin m(/) V—Z} U
1

v 1 sin(m+1)¢

m=

) 4 1 sin(m+1)¢
VsV Vi) ERM Y, =— ———"Ty .

Y (Vor V15V 25V 3) Vo2 Vb sin m Vo3
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