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,is paper investigates the dynamical behaviors of a Stackelberg mixed duopoly game with price competition in the insurance
market, involving one state-owned public insurance company and one private insurance company. We study and compare the
stability conditions for the Nash equilibrium points of two sequential-move games, public leadership, and private leadership
games. Numerical simulations present complicated dynamic behaviors. It is shown that the Nash equilibrium becomes unstable as
the price adjustment speed increases, and the system eventually becomes chaotic via flip bifurcation. Moreover, the time-delayed
feedback control is used to force the system back to stability.

1. Introduction

,e insurance market in most countries has shown typical
characteristics of an oligopoly market. Most of the existing
literature on oligopoly games in the insurance market
concentrates on static games, while less on dynamic games.
,e competition among oligarchs in the insurance market is
mainly reflected in price competition. One of the most fa-
mous price game models is the Bertrand model. For a long
time, the complex dynamics in Bertrand oligopoly games
have been researched widely. For instance, Zhang andMa [1]
investigated a nonlinear Bertrand game of insurance market
wherein one of the oligarchs made the decision only with
bounded rationality without delay, while the other part
made the delayed decision with one period and two periods.
Xu and Ma [2] established a price game model with delay
based on the insurance market and discussed the existence
and stability of equilibrium points. Ahmed et al. [3] analyzed
the dynamic behaviors of a differentiated Bertrand duopoly
game, in which boundedly rational players apply a gradient
adjustment mechanism to update their price in each period.
Ma and Si [4] introduced a continuous Bertrand duopoly

game model with a two-stage delay and investigated the
influence of delay parameters on the dynamic characteristics
of the system. Zhao [5] studied the dynamic properties of a
Bertrand game model with three oligarchs in which enter-
prises have heterogeneous expectations. Askar and Al-
khedhairi [6] introduced two different Bertrand duopoly
models where the first one is the competition of price in
which each player wants to maximize its relative profit, and
the second model is the classic Bertrand competition in
which the players want to maximize their profits. ,ere is
still some literature which studies the Bertrand game theory
and the complexity of the dynamical system; see [7–12]. ,e
above price game models assume that firms play simulta-
neous-move games; however, the competition among oli-
garchs in the real market is mostly a dynamic game or
sequential game. It is well known that the most classical
sequential game is the Stackelberg game. Shi et al. [13]
proposed a price-Stackelberg duopoly game model with
boundedly rational players and studied the complex dy-
namical behaviors. Shah et al. [14] applied the Stackelberg
game with stochastic demand for the vendor-retailer system.
Wang [15] investigated a manufacturer-Stackelberg game in
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a price competition supply chain under a fuzzy decision
environment. Xiao et al. [16] analyzed a nonlinear two-
dimensional duopoly Stackelberg game, including two types
of heterogeneous players which are bounded rational players
and adaptable players. Other interesting works that can be
used to extend the applications of such economic games
have been reported in [17–20].

Most countries have state-owned public firms that have a
substantial influence on their market competitors. ,e
competition in mixed oligopolies, in which a state-owned
public firm competes against a private firm, is widespread in
the real market. Such mixed oligopolies occur in various
industries, such as automobile, postal services, hospitals,
education, banking, and insurance [21]. Analysis of mixed
oligopolies can be dated to 1966 when Merrill and Schneider
first put forward the assumption that a public firm maxi-
mizes welfare (consumer surplus plus firm profits), while
private firms maximize profits [22]. Some discussions of the
mixed oligopolies were presented in [23–25]. In related
works, there are few studies on Stackelberg mixed oligop-
olies. For instance, Wang and Mukherjee [26] showed
welfare under different numbers of private firms under the
assumption of a public firm as the Stackelberg leader and
private firms as Stackelberg followers. Wang and Lee [27]
examined the influence of the order of the firms’ moves on
the social efficiency with foreign ownership and free entry in
a mixed oligopoly market. Tao et al. [28] studied and
compared total welfare in Stackelbergmixed duopolies when
either the public firm or the private firm acts as the leader.
Gelves and Heywood [29] compared the merger between the
public leader and the private follower with unilateral pri-
vatization of the public leader. Hirose and Matsumura [21]
compared welfare and profit under price and quantity
competition in Stackelberg mixed duopolies, wherein a
state-owned public firm competes against a private firm.
,ese studies mainly focus on quantity competition, less on
price competition, and all of them discuss directly the de-
cisions of competitors in Nash equilibrium, and their dy-
namics have not been studied. However, the dynamic
adjustment process converging to Nash equilibrium, and the
stability of Nash equilibrium are important in the real
market.

In this paper, we pay attention to a Stackelberg mixed
duopoly game of price competition between a state-owned
public insurance company and a private insurance company
in the insurance market and study how this duopoly game
evolves to different Nash equilibriums in two sequential-
move games, public leadership and private leadership games.
Simulations of the complicated dynamic behaviors and
chaos control are presented, and the welfare and profit in
Nash equilibrium are also discussed.

,e rest of this paper is organized as follows: in Section 2,
the Stackelberg mixed duopoly game model with price

competition is briefly described. In Section 3, the existence of
equilibrium points, the instability of bounded equilibrium,
and the local stability conditions of Nash equilibrium in two
sequential-move cases are analyzed. In Section 4, numerical
simulations are used to show the dynamic features of the
game, including bifurcation diagram, maximum Lyapunov
exponents, phase portrait, and sensitive dependence on
initial conditions. ,e comparison of welfare and profit in
Nash equilibrium under two sequential-move cases is also
shown by the figures in this section. In Section 5, time-
delayed feedback control is used to suppress the appearance
of chaotic behavior for the proposed system. Finally, the
paper is concluded in Section 6.

2. The Model

We consider the dynamical behaviors of a duopoly price
game in the insurance market with two insurance companies
(ICs), labeled by i � 1, 2. We assume IC1 is a state-owned
public insurance company, while IC2 is a private insurance
company, and the two ICs use different decisional mecha-
nisms. Each ICi chooses a nonnegative real number pi,
which is the price of its own product. ,e strategy profile
p � (p1, p2) results in a corresponding market quantity
demanded q � (q1, q2). We adopt a standard duopoly model
with differentiated products and linear demand [30, 31]. ,e
utility function of the representative consumer is given by

U q1, q2( 􏼁 � α q1 + q2( 􏼁 −
β
2

q
2
1 + 2δq1q2 + q

2
2􏼐 􏼑. (1)

Parameters α and β are positive constants and δ ∈ (0, 1)

measures the degree of horizontal differentiation, where a
smaller δ indicates a larger degree of insurance product
differentiation. ,en, the inverse demand functions are

p1 � α − βq1 − βδq2,

p2 � α − βq2 − βδq1.
􏼨 (2)

According to equation (2), the direct demand functions
can be given by

q1 �
α − αδ − p1 + δp2

β 1 − δ2􏼐 􏼑
,

q2 �
α − αδ − p2 + δp1

β 1 − δ2􏼐 􏼑
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

We denote the marginal cost of ICi with a positive
constant ci, assuming α> c1 ≥ c2. In addition, we assume that
α is sufficiently large and that c1 − c2 is not too large to assure
interior solutions in the following games. Since IC1 is a
public firm, its payoff is the domestic social surplus (welfare)
[21, 28] and is given by

π1 � p1 − c1( 􏼁q1 + p2 − c2( 􏼁q2 + α q1 + q2( 􏼁 −
β q

2
1 + 2δq1q2 + q

2
2􏼐 􏼑

2
− p1q1 − p2q2⎡⎣ ⎤⎦. (4)
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For the convenience of expression, equation (4) can be
simplified to the following form:

π1 � α − c1( 􏼁q1 + α − c2( 􏼁q2 −
β q

2
1 + 2δq1q2 + q

2
2􏼐 􏼑

2
, (5)

and IC2 is a private firm and its payoff is its own profit:

π2 � p2 − c2( 􏼁q2. (6)

In this study, we consider two sequential-move games,
public leadership and private leadership games. To construct
and investigate the dynamic characteristics of the two games,
we assume that both ICs are bounded rational, in which the
players modify their price decisions dynamically according
to the marginal payoff [32]. When ICi (ICj) is the leader
(follower), i≠ j, the dynamic system for two ICs has the
following form:

pi(t + 1) � pi(t) + kipi(t)
zπi pi(t), pj(t)􏼐 􏼑

zpi(t)
,

pj(t + 1) � pj(t) + kjpj(t)
zπj pi(t + 1), pj(t)􏼐 􏼑

zpj(t)
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where ki and kj are positive parameters known as the speed
of price adjustment and t � 0, 1, 2, . . .. At t + 1, the leader ICi

takes the lead in determining the price pi(t + 1). ,en, the

follower ICj chooses pj(t + 1) to maximize its own payoff
after observing pi(t + 1), which can be seen in the second
equation of system (7).

3. Equilibrium Points and Local Stability

3.1. Public Leadership. In this case, we analyze a Stackelberg
model in which IC1 (IC2) is the leader (follower). At t + 1,
the leader IC1 takes the lead in determining the price p1(t +

1) on the basis of marginal payoff.,emarginal payoff of IC1
is

zπ1 p1(t), p2(t)( 􏼁

zp1(t)
�
δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)

4β 1 − δ2􏼐 􏼑
.

(8)

,en, we can get

p1(t + 1) � p1(t) +
k1p1(t)

4β 1 − δ2􏼐 􏼑
δ α(1 − δ) − c2􏼂 􏼃􏼈

+ 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽯.

(9)

,e follower IC2 has an advantage over the leader. IC2
has known the current price of IC1 when it chooses its price
p2(t + 1). Hence, the price of IC2 at period t + 1 is deter-
mined by its own price of period t and IC1’s price of period
t + 1. ,en, the marginal payoff of IC2 is given by

zπ2 p1(t + 1), p2(t)( 􏼁

zp2(t)
�

1
β 1 − δ2􏼐 􏼑

α(1 − δ) + c2 + δp1(t) − 2p2(t)􏼂 􏼃 +
δk1p1(t)

4β2 1 − δ2􏼐 􏼑
2 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯.

(10)

,en, we have

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑
α(1 − δ) + c2 + δp1(t) − 2p2(t)􏼂 􏼃 +

δk1k2p1(t)p2(t)

4β2 1 − δ2􏼐 􏼑
2 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯.

(11)

,us, the duopoly game can be described by a discrete-
time dynamic map as follows:

p1(t + 1) � p1(t) +
k1p1(t)

4β 1 − δ2􏼐 􏼑
δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯,

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑
α(1 − δ) + c2 + δp1(t) − 2p2(t)􏼂 􏼃 +

δk1k2p1(t)p2(t)

4β2 1 − δ2􏼐 􏼑
2 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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When the market structure is stable enough at time t,
pi(t + 1) are approximately equal to pi(t). Setting p1(t +

1) � p1(t) and p2(t + 1) � p2(t) in equation (12), we can get
the following equilibria:

E1 � (0, 0),

E2 � 0,
α(1 − δ) + c2

2
􏼠 􏼡,

E3 �
δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑

4 − 3δ2
, 0⎛⎝ ⎞⎠,

E4 � p
∗
1 , p
∗
2( 􏼁,

(13)

where

p
∗
1 �

δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑

4 − 3δ2
,

p
∗
2 �

2 − δ2􏼐 􏼑 α(1 − δ) + c1δ􏼂 􏼃 + 2c2 1 − δ2􏼐 􏼑

4 − 3δ2
.

(14)

,e points E1, E2, and E3 are known as boundary
equilibrium points while E4 is the Nash equilibrium point.
For the stake of economic significance, the equilibrium
points should be nonnegative. It is easily concluded that E2,
E3, and E4 are all positive according to the conditions that
α, β, c1, and c2 are positive parameters, δ ∈ (0, 1), and
α> c1 ≥ c2. E1 represents that every IC has no price; E2 and
E3 represent the monopolies IC1 and IC2, respectively; and
E4 represents both ICs competing in a duopoly game with
equilibrium prices of p∗1 and p∗2 .

To analyze the local stability of the equilibrium points,
we consider the Jacobian matrix of system (12), which can be
given by

J p1, p2( 􏼁 �
1 + k1μA + k1 3δ2 − 4􏼐 􏼑μp1 0

4k2δμp2 1 + k1μA + k1 3δ2 − 4􏼐 􏼑μp1􏽨 􏽩 1 + 4k2μB − 8k2μp2 + 4k1k2δμ
2
Ap1

⎛⎝ ⎞⎠, (15)

where

A � δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1,

B � α(1 − δ) + c2 + δp1 − 2p2,

μ �
1

4β 1 − δ2􏼐 􏼑
.

(16)

,en, the conditions for a stable equilibrium point can
be obtained based on the following lemma [33, 34].

Lemma 1. Suppose the Jacobian matrix (15) at any fixed
point E(􏽥p1, 􏽥p2) has two eigenvalues λ1 and λ2, then

(i) If |λ1|< 1 and |λ2|< 1, then E(􏽥p1, 􏽥p2) is locally as-
ymptotically stable and E(􏽥p1, 􏽥p2) is called an
attracting node

(ii) If |λ1|> 1 and |λ2|> 1, then E(􏽥p1, 􏽥p2) is an unstable
repelling node

(iii) If |λ1|< 1 and |λ2|> 1 (or |λ1|> 1 and |λ2|< 1), then
E(􏽥p1, 􏽥p2) is an unstable saddle point

(iv) If |λ1| � 1 and |λ2|≠ 1 (or |λ1|≠ 1 and |λ2| � 1), then
E(􏽥p1, 􏽥p2) is a nonhyperbolic point

Theorem 1. !e boundary equilibrium E1 is an unstable
repelling node.

Proof. At E1, the Jacobian matrix takes the form:

J E1( 􏼁 �

1 +
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
0

0 1 +
k2 α(1 − δ) + c2􏼂 􏼃

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

,e eigenvalues of J(E1) are given by
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λ1 � 1 +
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
,

λ2 � 1 +
k2 α(1 − δ) + c2􏼂 􏼃

β 1 − δ2􏼐 􏼑
.

(18)

,ey are both greater than 1, so the point E1 is an
unstable repelling node. □

Theorem 2. !e boundary equilibrium E2 is unstable. More
precisely, we have the following:

(i) If 0< k2 < (β(1 − δ2)/[α(1 − δ) + c2]), then E2 is a
saddle point

(ii) If k2 � (β(1 − δ2)/[α(1 − δ) + c2]), then E2 is a
nonhyperbolic point

(iii) If k2 > (β(1 − δ2)/[α(1 − δ) + c2]), then E2 is a re-
pelling node

Proof. At E2, the Jacobian matrix becomes

J E2( 􏼁 �

1 +
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
0

C 1 −
2k2 α(1 − δ) + c2􏼂 􏼃

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where

C �
k2δ α(1 − δ) + c2􏼂 􏼃

2β 1 − δ2􏼐 􏼑
+

k1k2δ α(1 − δ) + c2􏼂 􏼃 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

8β2 1 − δ2􏼐 􏼑
2 . (20)

,e eigenvalues of J(E2) are given by

λ1 � 1 +
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
,

λ2 � 1 −
2k2 α(1 − δ) + c2􏼂 􏼃

β 1 − δ2􏼐 􏼑
,

(21)

|λ1|> 1 is always satisfied, so E2 is unstable. Simple calcu-
lations show that |λ2|< 1 if 0< k2 < (β(1 − δ2)/[α(1−

δ) + c2]), |λ2| � 1 if k2 � (β(1 − δ2)/[α(1 − δ) + c2]), and
|λ2|> 1 if k2 > (β(1 − δ2)/[α(1 − δ) + c2]). ,is concludes
the proof. □

Theorem 3. !e boundary equilibrium E3 is unstable. More
precisely, we have the following:

(i) If 0< k1 < (8β(1 − δ2)/ δ[α{ (1 − δ) − c2] + 2c1(2−

δ2)}), then E3 is a saddle point
(ii) If k1 � (8β(1 − δ2)/ δ[α(1 − δ) − c2] + 2c1(2−􏼈

δ2)}), then E3 is a nonhyperbolic point
(iii) If k1 > (8β(1 − δ2)/ δ[α(1 − δ) − c2] + 2c1(2−􏼈 δ2)}),

then E3 is a repelling node

Proof. At E3, the Jacobian matrix is

J E3( 􏼁 �

1 −
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
0

0 1 +
2k2 2 − δ2􏼐 􏼑 α(1 − δ) + c1􏼂 􏼃 + 2c1 1 − δ2􏼐 􏼑􏽮 􏽯

β 1 − δ2􏼐 􏼑 4 − 3δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

,e eigenvalues of J(E3) are given by
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λ1 � 1 −
k1 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑􏽮 􏽯

4β 1 − δ2􏼐 􏼑
,

λ2 � 1 +
2k2 2 − δ2􏼐 􏼑 α(1 − δ) + c1􏼂 􏼃 + 2c1 1 − δ2􏼐 􏼑􏽮 􏽯

β 1 − δ2􏼐 􏼑 4 − 3δ2􏼐 􏼑
,

(23)

|λ2|> 1 is always satisfied, so E3 is unstable. Simple calcu-
lations show that |λ1|< 1 if 0< k1 < (8β(1 − δ2)/ δ[α{

(1 − δ) − c2] + 2c1(2 − δ2)}), |λ1| � 1 if k1 � (8β(1 − δ2)/
δ[α(1 − δ) − c2] + 2c1(2 − δ2)􏽮 􏽯), and |λ1|> 1 if k1 > (8β(1−

δ2)/ δ[α(1 − δ) − c2] + 2c1(2 − δ2)􏽮 􏽯). ,is concludes the
proof.

,e boundary equilibrium points correspond to the
situation of one or both ICs going bankrupt. ,at is, the
duopoly market becomes a monopoly, or both of the ICs are
out of the insurance market at the same time. However, from
an economic point of view, we should pay more attention to
the situation of the duopoly market. Hence, we are more
interested in investigating the local stability properties of the
Nash equilibrium point E4. ,e Jacobian matrix at E4 takes
the form:

J E4( 􏼁 �

1 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

4β 1 − δ2􏼐 􏼑
0

k2δp
∗
2

β 1 − δ2􏼐 􏼑
−

k1k2δ 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

4β2 1 − δ2􏼐 􏼑
2 1 −

2k2p
∗
2

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(24)

,e characteristic equation is

λ2 − Tr J E4( 􏼁( 􏼁λ + Det J E4( 􏼁( 􏼁 � 0, (25)

where Tr is the trace and Det is the determinant, which are
given by

Tr J E4( 􏼁( 􏼁 � 2 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

4β 1 − δ2􏼐 􏼑
−

2k2p
∗
2

β 1 − δ2􏼐 􏼑
,

Det J E4( 􏼁( 􏼁 � 1 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

4β 1 − δ2􏼐 􏼑
−

2k2p
∗
2

β 1 − δ2􏼐 􏼑
+

k1k2 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

2β2 1 − δ2􏼐 􏼑
2 .

(26)

,en, we have

Tr J E4( 􏼁( 􏼁
2

− 4Det J E4( 􏼁( 􏼁 �
k1 4 − 3δ2􏼐 􏼑p∗1

4β 1 − δ2􏼐 􏼑
−

2k2p
∗
2

β 1 − δ2􏼐 􏼑
⎛⎝ ⎞⎠

2

,

(27)

which indicates that the eigenvalues are real. According to
Jury conditions [35], the necessary and sufficient conditions
for the local stability of E4 are as follows:

1 − Det J E4( 􏼁( 􏼁> 0,

1 − Tr J E4( 􏼁( 􏼁 + Det J E4( 􏼁( 􏼁> 0,

1 + Tr J E4( 􏼁( 􏼁 + Det J E4( 􏼁( 􏼁> 0.

⎧⎪⎪⎨

⎪⎪⎩
(28)

,e above conditions are, respectively, equivalent to

(i)
k1 4 − 3δ2􏼐 􏼑p

∗
1

4β 1 − δ2􏼐 􏼑
+

2k2p
∗
2

β 1 − δ2􏼐 􏼑
−

k1k2 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

2β2 1 − δ2􏼐 􏼑
2 > 0, (29)

(ii)
k1k2 4 − 3δ2􏼐 􏼑p

∗
1p
∗
2

2β2 1 − δ2􏼐 􏼑
2 > 0, (30)

(iii) 4 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

2β 1 − δ2􏼐 􏼑
−

4k2p
∗
2

β 1 − δ2􏼐 􏼑
+

k1k2 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

2β2 1 − δ2􏼐 􏼑
2 > 0.

(31)

Clearly, the condition (ii) is always satisfied. ,en, the
following result can be obtained from the derivation of
conditions (i) and (iii). □

Theorem 4. !eNash equilibrium point E4 is asymptotically
locally stable if

k1 <
8β 1 − δ2􏼐 􏼑

4 − 3δ2􏼐 􏼑p
∗
1
,

k2 <
β 1 − δ2􏼐 􏼑

p
∗
2

.

(32)

Proof. Inequality (29) can be rewritten as

8β 1 − δ2􏼐 􏼑

k1 4 − 3δ2􏼐 􏼑p
∗
1

+
β 1 − δ2􏼐 􏼑

k2p
∗
2
> 2. (33)

Inequality (31) can be modified as

4 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

2β 1 − δ2􏼐 􏼑
−

4k2p
∗
2

β 1 − δ2􏼐 􏼑
+

k1k2 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

2β2 1 − δ2􏼐 􏼑
2 � 4 1 −

k1 4 − 3δ2􏼐 􏼑p
∗
1

8β 1 − δ2􏼐 􏼑
⎛⎝ ⎞⎠ 1 −

k2p
∗
2

β 1 − δ2􏼐 􏼑
⎛⎝ ⎞⎠> 0. (34)

Inequality (34) holds if and only if the following two
conditions are satisfied:
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k1 <
8β 1 − δ2􏼐 􏼑

4 − 3δ2􏼐 􏼑p
∗
1
,

k2 <
β 1 − δ2􏼐 􏼑

p
∗
2

,

(35)

or

k1 >
8β 1 − δ2􏼐 􏼑

4 − 3δ2􏼐 􏼑p
∗
1
,

k2 >
β 1 − δ2􏼐 􏼑

p
∗
2

.

(36)

It is obvious that the first condition implies inequality
(33). On the other hand, inequality (33) is impossible in the
(k1, k2)-plane determined by the second condition. ,is
concludes the proof.

Condition (32) defines a stability region in the plane of
the price adjustment speed (k1, k2) (see Figure 1(a)). ,e
boundary intersects the axes k1 and k2 at points R1 and R2,
respectively, whose coordinates are

R1 �
8β 1 − δ2􏼐 􏼑

4 − 3δ2􏼐 􏼑p
∗
1
, 0⎛⎝ ⎞⎠,

R2 � 0,
β 1 − δ2􏼐 􏼑

p
∗
2

⎛⎝ ⎞⎠.

(37)

Simple calculations show that if k1 � (8β(1 − δ2)/(4 −

3δ2)p∗1 ) or k2 � (β(1 − δ2)/p∗2 ), one of the absolute values of
eigenvalues is equal to 1. Inequalities (29) and (31) define a
bounded region of stability beyond which a flip bifurcation
and a Neimark–Sacker bifurcation occur, respectively
[33, 36]. According to ,eorem 4, we can get that the Nash
equilibrium point E4 loses its stability only via flip bifur-
cation when one or both values of k1 and k2 are greater than
the boundary values of the stability region.

According to the expressions of the coordinate value of
the boundary points, we can clearly find out the effects of the
changing values of parameters α, β, c1, and c2 on the stability
region, respectively, but it is difficult to directly observe how
parameter δ affects the stability regions from the expression.
By computer work on the stability conditions for four cases
(δ � 0.05, 0.3, 0.5, 0.7), the stability regions in the
(k1, k2)-plane are numerically obtained and are plotted in
Figure 1(a). We can see that increasing δ reduces the stability
region, and the stability of system (12) is more sensitive to
IC2. If k2 is relatively lower, even if k1 is relatively higher,
system (12) is stable. □

3.2. Private Leadership. When IC2 (IC1) is the leader (fol-
lower), we can write system (7) as

p1(t + 1) � p1(t) +
k1p1(t)

β 1 − δ2􏼐 􏼑
c1 − δc2 − p1(t) + δp2(t)( 􏼁

+
δk1k2p1(t)p2(t)

β2 1 − δ2􏼐 􏼑
2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2 − 2 1 − δ2􏼐 􏼑p2(t)􏽨 􏽩,

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑
α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2 − 2 1 − δ2􏼐 􏼑p2(t)􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Setting p1(t + 1) � p1(t) and p2(t + 1) � p2(t) in
equation (38), we have the following equilibria:

E5 � (0, 0),

E6 � 0,
α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2

2 1 − δ2􏼐 􏼑
⎛⎝ ⎞⎠,

E7 � c1 − δc2, 0( 􏼁,

E8 � p
∗∗
1 , p
∗∗
2( 􏼁,

(39)

where

p
∗∗
1 �

δ α(1 − δ) − c2􏼂 􏼃 + 2 − δ2􏼐 􏼑c1

2 1 − δ2􏼐 􏼑
,

p
∗∗
2 �

α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2

2 1 − δ2􏼐 􏼑
.

(40)

Points E5, E6, and E7 are boundary equilibrium points
and E8 is the unique Nash equilibrium point. It is clear that
E6, E7, and E8 are all positive according to the conditions
that α, β, c1, and c2 are positive parameters, δ ∈ (0, 1), and
α> c1 ≥ c2.

,e Jacobian matrix of system (38) can be given by
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J p1, p2( 􏼁 �
1 + k1μ′B′ − k1μ′p1 + k1k2δμ′

2
A′p2 k1δμ′p1 1 + k2μ′A′ − 2k2 1 − δ2􏼐 􏼑μ′p2􏽨 􏽩

0 1 + k2μ′A′ − 2k2 1 − δ2􏼐 􏼑μ′p2

⎛⎜⎝ ⎞⎟⎠, (41)

where

A′ � α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2 − 2 1 − δ2􏼐 􏼑p2,

B′ � c1 − δc2 − p1 + δp2,

μ′ �
1

β 1 − δ2􏼐 􏼑
.

(42)

Theorem 5. !e boundary equilibrium E5 is an unstable
repelling node.

Proof. ,e Jacobian matrix (41) at the point E5 takes the
form:

J E5( 􏼁 �

1 +
k1 c1 − δc2( 􏼁

β 1 − δ2􏼐 􏼑
0

0 1 +
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (43)

,e eigenvalues of J(E5) are given by

λ1 � 1 +
k1 c1 − δc2( 􏼁

β 1 − δ2􏼐 􏼑
,

λ2 � 1 +
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑
.

(44)

It is clear that they are both greater than 1, so the point
E5 is an unstable repelling node. □

Theorem 6. !e boundary equilibrium E6 is unstable. More
precisely, we have the following:

(i) If 0< k2 < (2β(1 − δ2)/[α(1 − δ) + δc1 + (1 − 2δ2)
c2]), then E6 is a saddle point

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1 2 3 0 1 2 3
k1

k2

k2 k2

k2

k1

0 1 2 3
k1

0 1 2 3
k1

δ = 0.05 δ = 0.3

δ = 0.5 δ = 0.7

(a)

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1 2 3 0 1 2 3

k2 k2

k2 k2

k1 k1

0 1 2 3
k1

0 1 2 3
k1

δ = 0.05 δ = 0.3

δ = 0.7δ = 0.5

(b)

Figure 1: (a),e stability regions in the (k1, k2)-plane of Nash equilibrium point E4 for system (12) with different levels of δ. (b),e stability
regions in the (k1, k2)-plane of Nash equilibrium point E8 for system (38) with different levels of δ. ,e other values of the parameters are
α � 0.7, β � 0.2, c1 � 0.13, and c2 � 0.1.
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(ii) If k2 � (2β(1 − δ2)/[α(1 − δ) + δc1 + (1 − 2δ2)c2]),
then E6 is a nonhyperbolic point

(iii) If k2 > (2β(1 − δ2)/[α(1 − δ) + δc1 + (1 − 2δ2)c2]),
then E6 is a repelling node

Proof. At E6, the Jacobian matrix becomes

J E6( 􏼁 �

1 +
k1 2c1 − δc2 + αδ(1 − δ)􏼂 􏼃

2β 1 − δ2􏼐 􏼑
2 0

0 1 −
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

,e eigenvalues of J(E6) are given by

λ1 � 1 +
k1 2c1 − δc2 + αδ(1 − δ)􏼂 􏼃

2β 1 − δ2􏼐 􏼑
2 ,

λ2 � 1 −
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑
,

(46)

|λ1|> 1 is always satisfied, so E6 is unstable. Simple calcu-
lations show that |λ2|< 1 if 0< k2 < (2β(1 − δ2)/
[α(1 − δ) + δc1 + (1 − 2δ2)c2]), |λ2| � 1 if k2 � (2β(1−

δ2)/[α(1 − δ) + δc1 + (1 − 2δ2)c2]), and |λ2|> 1 if k2 >
(2β(1 − δ2)/[α(1 − δ) + δc1 + (1 − 2δ2)c2]). ,is concludes
the proof. □

Theorem 7. !e boundary equilibrium E7 is unstable. More
precisely, we have the following:

(i) If 0< k1 < (2β(1 − δ2)/(c1 − δc2)), then E7 is a
saddle point

(ii) If k1 � (2β(1 − δ2)/(c1 − δc2)), then E7 is a non-
hyperbolic point

(iii) If k1 > (2β(1 − δ2)/(c1 − δc2)), then E7 is a repelling
node

Proof. At E7, the Jacobian matrix is

J E7( 􏼁 �

1 −
k1 c1 − δc2( 􏼁

β 1 − δ2􏼐 􏼑

k1δ c1 − δc2( 􏼁

β 1 − δ2􏼐 􏼑
+

k1k2δ c1 − δc2( 􏼁 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β2 1 − δ2􏼐 􏼑
2

0 1 +
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (47)

,e eigenvalues of J(E7) are given by

λ1 � 1 −
k1 c1 − δc2( 􏼁

β 1 − δ2􏼐 􏼑
,

λ2 � 1 +
k2 α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2􏽨 􏽩

β 1 − δ2􏼐 􏼑
,

(48)

|λ2|> 1 is always satisfied, so E7 is unstable. Simple calcu-
lations show that |λ1|< 1 if 0< k1 < (2β(1 − δ2)/(c1 − δc2)),
|λ1| � 1 if k1 � (2β(1 − δ2)/(c1 − δc2)), and |λ1|> 1 if
k1 > (2β(1 − δ2)/(c1 − δc2)). ,is concludes the proof.

Next, we investigate the local stability properties of the
Nash equilibrium point E8. ,e Jacobian matrix at the point
E8 takes the form:

J E8( 􏼁 �

1 −
k1p
∗∗
1

β 1 − δ2􏼐 􏼑

k1δp
∗∗
1

β 1 − δ2􏼐 􏼑
−
2k1k2δp

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑

0 1 −
2k2p
∗∗
2

β

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)

,e trace and determinant of J(E8) are

Tr J E8( 􏼁( 􏼁 � 2 −
k1p
∗∗
1

β 1 − δ2􏼐 􏼑
−
2k2p
∗∗
2

β
,

Det J E8( 􏼁( 􏼁 � 1 −
k1p
∗∗
1

β 1 − δ2􏼐 􏼑
−
2k2p
∗∗
2

β
+
2k1k2p

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑
.

(50)
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,en, we have

Tr J E8( 􏼁( 􏼁
2

− 4Det J E8( 􏼁( 􏼁 �
k1p
∗∗
1

β 1 − δ2􏼐 􏼑
−
2k2p
∗∗
2

β
⎛⎝ ⎞⎠

2

.

(51)

It indicates that the eigenvalues are real. According to
Jury conditions, the necessary and sufficient conditions for
the local stability of E8 can be given by

(i)
k1p
∗∗
1

β 1 − δ2􏼐 􏼑
+
2k2p
∗∗
2

β
−
2k1k2p

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑
> 0, (52)

(ii)
2k1k2p

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑
> 0, (53)

(iii) 4 −
2k1p
∗∗
1

β 1 − δ2􏼐 􏼑
−
4k2p
∗∗
2

β
+
2k1k2p

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑
> 0. (54)

Clearly, condition (ii) is always satisfied. According to
conditions (i) and (iii), we have the following result. □

Theorem 8. !eNash equilibrium point E8 is asymptotically
locally stable if

k1 <
2β 1 − δ2􏼐 􏼑

p
∗∗
1

,

k2 <
β

p
∗∗
2

.

(55)

Proof. Inequality (52) can be rewritten as

2β 1 − δ2􏼐 􏼑

k1p
∗∗
1

+
β

k2p
∗∗
2
> 2. (56)

Inequality (54) can be modified as

4 −
2k1p
∗∗
1

β 1 − δ2􏼐 􏼑
−
4k2p
∗∗
2

β
+
2k1k2p

∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑

� 4 1 −
k1p
∗∗
1

2β 1 − δ2􏼐 􏼑
⎛⎝ ⎞⎠ 1 −

k2p
∗∗
2
β

􏼠 􏼡> 0.

(57)

We complete the proof by imitating the discussions in
,eorem 4.

,e stability region for the Nash equilibrium point E8 is
defined by the inequalities in condition (55). ,e boundary
curve intersects the axes k1 and k2 at points R3 and R4,
respectively, whose coordinates are

R3 �
2β 1 − δ2􏼐 􏼑

p
∗∗
1

, 0⎛⎝ ⎞⎠,

R4 � 0,
β

p
∗∗
2

􏼠 􏼡.

(58)

Simple calculations show that if k1 � (2β(1 − δ2)/p∗∗1 )

or k2 � (β/p∗∗2 ), one of the absolute values of eigenvalues is
equal to 1. According to,eorem 8, we can get that the Nash
equilibrium point E8 is stable inside the stability region, and
loses its stability through flip bifurcation. By computer work
on the stability conditions for four cases
(δ � 0.05, 0.3, 0.5, 0.7), the stability regions of Nash equi-
librium point E8 in the (k1, k2)-plane are shown in
Figure 1(b). Comparing Figures 1(a) and 1(b), we see that
when the parameter δ is close to zero, the stability regions of
Nash equilibrium points E4 and E8 are similar, but the
difference between them becomes larger with the increase of
the parameter δ. □

4. Numerical Simulation

In this section, we perform some numerical simulations for
the complex dynamical behaviors of systems (12) and (38)
and show how the systems evolve under different levels of
parameters. Such simulations include a bifurcation diagram,
maximum Lyapunov exponents, phase portrait, and sensi-
tive dependence on initial conditions to further study the
unpredictable behavior of the game. In all numerical sim-
ulations, parameters α, β, δ, c1, and c2 are commonly set as
α � 0.7, β � 0.2, δ � 0.5, c1 � 0.13, and c2 � 0.1. We perform
numerical simulations for the following two situations,
respectively.

4.1. Public Leadership. In a real insurance market, the de-
mand function and their marginal costs are relatively cer-
tain, so the price adjustment speed is regarded as an
important strategy for ICs to pursue profit maximization. In
this case, we show by numerical simulations how system (12)
evolves under different levels of the parameter k1, the price
adjustment speed of IC1. We fix the parameter k2 � 0.5, and
the bifurcation diagram with respect to the fact that pa-
rameter k1 is plotted in Figure 2(a). It shows that the
equilibrium point begins stable; increasing the value of k1
gives the appearance of a stable 2-cycle period through flip
bifurcation, then increasing the value of k1 further shows a
sequence of period-doubling bifurcations followed by cycles
with high periodicity; and chaotic scenario occurs in the end.
,e corresponding maximum Lyapunov exponents are
plotted in Figure 2(b) to show bifurcation and chaos, where
positive values show the chaotic behaviors.

,e observations from Figure 2(a) tell that system (12)
becomes unstable through the period-doubling bifurcation
when the parameter takes suitable values. About the case in
Figure 2, five two-dimension phase portraits for different
values of k1 are shown in Figure 3, which give a more
detailed description of the orbits of system (12). ,e phase
portraits show a flip bifurcation process, where chaos occurs
when k1 takes its value big enough, and strange attractors
can be seen in the fifth phase portrait in Figure 3.,e strange
attractor reflects the complexity of ICs’ dynamic price
competition in chaos.

,e sensitivity to initial conditions is also one of the
important characteristics of chaos. Figure 4 reflects the case
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that the initial state p1 ranges from 0.1785 to 0.1786 with
other parameters keeping fixed. Figures 4(a) and 4(b) show
the orbits of IC1’s price and IC2’s price, respectively, where
the blue ones (labeled by superscript (1)) start from the
initial point (p1

1(0), p1
2(0)) � (0.1785, 0.2696) and the red

ones (labeled by superscript (2)) start from the initial point
(p2

1(0), p2
2(0)) � (0.1786, 0.2696). After a series of itera-

tions, great impacts will emerge in both ICs’ prices, even
though the initial price of IC1 alters a little.

4.2. Private Leadership. In this case, the numerical simu-
lations show the effect of the parameter k2 and the price
adjustment speed of IC2, on the stability of system (38).

Figures 5(a) and 5(b) show the bifurcation diagram with
respect to k2 and the corresponding maximum Lyapunov
exponents of system (38), respectively. Figure 6 shows five
situations of phase portraits with different k2 of system (38).
We can see system (38) loses its stability through flip bi-
furcation, and chaotic attractors occur after the accumula-
tion of a period-doubling cascade. ,e results demonstrate
that the insurance market is stable for relatively small values
of k2, and a faster adjustment speed is disadvantageous for
system (38) to keep the stability. Figure 7 shows the sensitive
dependence on the initial conditions of system (38) when
k1 � 0.7 and k2 � 0.95. Figures 7(a) and 7(b) show the orbits
of IC1’s price and IC2’s price, respectively, where the blue
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Figure 2: Bifurcation diagram and MLEs for system (12) with respect to parameter k1 when k2 � 0.5.
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ones (labeled by superscript (1)) start from the initial point
(p1

1(0), p1
2(0)) � (0.2351, 0.3101) and the red ones (labeled

by superscript (2)) start from the initial point
(p2

1(0), p2
2(0)) � (0.2351, 0.3102). We can see that the dif-

ference between the orbits with slightly deviated initial
values builds up rapidly after a series of iterations, although
their states are indistinguishable at the beginning.

4.3. !e Comparison of Welfare and Profit for Two Games.
We now compare the welfare and profit levels for the above
two sequential-move games (public leadership and private
leadership). Keeping fixed α � 0.7, β � 0.2, δ � 0.5,
c1 � 0.13, and c2 � 0.1, Figure 8(a) shows the values of the
welfare of IC1, and Figure 8(b) shows the values of the profit
of IC2. ,e values of the welfare and profit in the Nash

equilibrium state of both games are marked, where the red
points refer to the welfare and profit at the Nash equilibrium
point E4 of the game (12), and the blue points refer to the
welfare and profit at the Nash equilibrium point E8 of the
game (38). We can see that the values of the welfare and
profit at the two Nash equilibrium points are positive, where
π1(E4) is greater than π1(E8) and π2(E4) is less than π2(E8).
,e results show that an IC, whether public or private, is
more profitable in the Nash equilibrium state when it is the
leader in the price competition game.

5. Chaos Control

As can be seen from the above numerical simulations that
price adjustment speeds have a great influence on the sta-
bility of systems (12) and (38), the dynamical behaviors of
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Figure 5: Bifurcation diagram and MLEs for system (38) with respect to parameter k2 when k1 � 0.7.
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both two systems will be chaotic when the parameters fail to
locate in the stable region. In practical application, the
appearance of chaos is not expected, we hope that the

occurrence of chaos can be avoided or controlled, and the
insurance market can be controlled to a balance when it runs
irregularly. In this section, we use the time-delayed feedback
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control method to control the chaotic phenomenon [37–40].
Similar to the fourth section, we divide the following two
cases for numerical simulations.

5.1. Public Leadership. We modify the equations of system
(12) by inserting the control action ϕ(pi(t) − pi(t + 1)),
where ϕ> 0 is the controlling coefficient. ,en, the con-
trolled system can be given by

p1(t + 1) � p1(t) +
k1p1(t)

4β 1 − δ2􏼐 􏼑
δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯 + ϕ p1(t) − p1(t + 1)( 􏼁,

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑
α(1 − δ) + c2 + δp1(t) − 2p2(t)􏼂 􏼃

+
δk1k2p1(t)p2(t)

4β2 1 − δ2􏼐 􏼑
2 δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯 + ϕ p2(t) − p2(t + 1)( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

which can be rewritten as

p1(t + 1) � p1(t) +
k1p1(t)

4β 1 − δ2􏼐 􏼑(1 + ϕ)
δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯,

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑(1 + ϕ)
α(1 − δ) + c2 + δp1(t) − 2p2(t)􏼂 􏼃

+
δk1k2p1(t)p2(t)

4β2 1 − δ2􏼐 􏼑
2
(1 + ϕ)

δ α(1 − δ) − c2􏼂 􏼃 + 2c1 2 − δ2􏼐 􏼑 + 3δ2 − 4􏼐 􏼑p1(t)􏽮 􏽯.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

It is easy to see that the controlled system (60) has the
same Nash equilibrium point E4 as the original system (12).
At E4, the Jacobian matrix of system (60) takes the form
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Figure 8: ,e welfare of IC1 and the profit of IC2.
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J E4( 􏼁 �

1 −
k1 4 − 3δ2􏼐 􏼑p

∗
1

4β 1 − δ2􏼐 􏼑(1 + ϕ)
0

k2δp
∗
2

β 1 − δ2􏼐 􏼑(1 + ϕ)
−

k1k2δ 4 − 3δ2􏼐 􏼑p
∗
1p
∗
2

4β2 1 − δ2􏼐 􏼑(1 + ϕ)
1 −

2k2p
∗
2

β 1 − δ2􏼐 􏼑(1 + ϕ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (61)

Figure 2(a) shows that chaotic behavior of the original
system (12) occurs when parameter values are fixed as
(α, β, δ, c1, c2, k1, k2) � (0.7, 0.2, 0.5, 0.13, 0.1, 3, 0.5). By a
similar approach in Section 3 to get the stability conditions
(i)-(iii) for the original system (12), we can get that all the
eigenvalues of the matrix (61) will lie within the unit circle
provided that ϕ> 0.45, when the other parameters take
above values. In other words, when ϕ> 0.45, the controlled
system (60) will be asymptotically locally stable. ,is result
can be numerically shown by Figure 9.

Figure 9(a) is the bifurcation diagram with respect to ϕ,
where we see that, with the value of ϕ increasing, the system

is gradually controlled from the chaotic state, 8, 4, 2-period
bifurcation to a stable state. Figure 9(b) shows the stable
behaviors of the orbits of the controlled system (60) be-
ginning from the initial state (p1(0), p2(0)) � (0.19, 0.27)

for different levels of ϕ. We can see that the larger the
feedback value is, the faster the system tends to be stable.

5.2. Private Leadership. Adding control action ψ(pi(t) −

pi(t + 1)) to system (38) and simplifying the system, we get
the following form of the controlled system:

p1(t + 1) � p1(t) +
k1p1(t)

β 1 − δ2􏼐 􏼑(1 + ψ)
c1 − δc2 − p1(t) + δp2(t)( 􏼁

+
δk1k2p1(t)p2(t)

β2 1 − δ2􏼐 􏼑
2
(1 + ψ)

α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2 − 2 1 − δ2􏼐 􏼑p2(t)􏽨 􏽩,

p2(t + 1) � p2(t) +
k2p2(t)

β 1 − δ2􏼐 􏼑(1 + ψ)
α(1 − δ) + δc1 + 1 − 2δ2􏼐 􏼑c2 − 2 1 − δ2􏼐 􏼑p2(t)􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

It is obvious that the controlled system (62) has the same
Nash equilibrium point E8 as the original system (38). At E8,
the Jacobian matrix of system (62) becomes

J E8( 􏼁 �

1 −
k1p
∗∗
1

β 1 − δ2􏼐 􏼑(1 + ψ)

k1δp
∗∗
1

β 1 − δ2􏼐 􏼑(1 + ψ)
−

2k1k2δp
∗∗
1 p
∗∗
2

β2 1 − δ2􏼐 􏼑(1 + ψ)

0 1 −
2k2p
∗∗
2

β(1 + ψ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (63)

As has been shown in Figure 5(a), the chaotic behavior of
the original system (38) occurs when parameter values are
fixed as (α, β, δ, c1, c2, k1, k2) � (0.7, 0.2, 0.5, 0.13, 0.1, 0.7,

0.95). By computer work on the Jury stability conditions, we
can infer that when the other parameters take the above
values, the controlled system (62) will be asymptotically
locally stable provided that ψ > 0.4725. As shown in
Figure 10(a), with the value of ψ increasing, the system
gradually gets out of chaos and achieves stability when
ψ > 0.4725. When ψ � 0.52, 0.55, and 0.58, the stable

behaviors of the orbits of the controlled system (62) be-
ginning from the initial state (p1(0), p2(0)) � (0.24, 0.32)

are plotted in Figure 10(b). From Figure 10, we can see that
the chaotic system is controlled at the fixed point when the
controlling coefficient ψ is properly large.

In a real insurance market, we can consider the control
action as the regulation on the price adjustment speed, and
we can also consider the control action as the learning ability
or adaptability of the market [40]. ,e time-delayed feed-
back control method can be used to make the system from a
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chaotic state to stable state, which ensures that the insurance
market develops in an orderly way.

6. Conclusion

In this paper, we have studied the complex dynamic be-
haviors of a Stackelberg mixed duopoly game with price
competition in an insurance market, wherein a public in-
surance company competes against a private insurance
company. We investigated this problem in two different
sequential-move scenarios, public leadership and private

leadership games. ,e equilibrium points including the
Nash equilibrium point have been obtained as functions of
the system parameters in two cases, and the conditions for
the stability of equilibria have been found. We have made
some numerical simulations for the system evolution, in-
cluding stability region, bifurcation diagram, maximal
Lyapunov exponents, phase portrait, and sensitive depen-
dence on initial conditions. ,ey show that the price ad-
justment speeds have a great influence on the system
stability, and while varying the values of the price adjustment
speeds, complex dynamic behaviors would occur, such as
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Figure 9: (a) Bifurcation diagram for system (60) with respect to the controlling factor ϕ. (b) Evolutions for system (60) with various values
of ϕ.
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period bifurcations and chaos. Meanwhile, we have com-
pared the welfare and profit levels for two sequential-move
games. When an insurance company, whether public or
private, is the Stackelberg leader in the price competition
game, it yields greater welfare (or profit) than as the follower.
In addition, we have also shown that the time-delayed
feedback control method can be used to force the system
back to its stable state from chaos.
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