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We present the bifurcation results for the difference equation xn+1 � x2
n/(ax2

n + x2
n− 1 + f) where a and f are positive numbers and

the initial conditions x− 1 and x0 are nonnegative numbers. *is difference equation is one of the perturbations of the sigmoid
Beverton–Holt difference equation, which is a major mathematical model in population dynamics. We will show that this
difference equation exhibits transcritical and Neimark–Sacker bifurcations but not flip (period-doubling) bifurcation since this
difference equation cannot have period-two solutions. Furthermore, we give the asymptotic approximation of the invariant
manifolds, stable, unstable, and center manifolds of the equilibrium solutions. We give the necessary and sufficient conditions for
global asymptotic stability of the zero equilibrium as well as sufficient conditions for global asymptotic stability of the
positive equilibrium.

1. Introduction and Preliminaries

In this paper, we consider the difference equation

xn+1 �
x
2
n

ax
2
n + x

2
n− 1 + f

, n � 0, 1, . . . , (1)

where the parameters a and f are positive numbers and the
initial conditions x− 1 and x0 are nonnegative numbers.

Equation (1) can be considered as a nonlinear pertur-
bation of the sigmoid Beverton–Holt difference equation

xn+1 �
x
2
n

x
2
n + f

, f> 0, x0 ≥ 0, n � 0, 1, . . . , (2)

which is a major mathematical model in population dy-
namics and is the simplest model that exhibits Allee’s effect,
see [1, 2]. A related difference equation of the form

xn+1 �
βx

2
n

x
2
n− 1 + 1

, β> 0, n � 0, 1, . . . , (3)

where the initial conditions x− 1 and x0 are nonnegative
numbers considered in [3]. Equation (1) is a square version
of the well-known Pielou difference equation

xn+1 �
xn

xn− 1 + f
, f> 0, x0 ≥ 0, n � 0, 1, . . . , (4)

which is another major model in population dynamics [1, 4].
Equation (4) has the same global dynamics as more general
difference equation

xn+1 �
xn

axn + xn− 1 + f
, a, f> 0, x0 ≥ 0, n � 0, 1, . . . .

(5)

Both equations (4) and (5) exhibit transcritical bifur-
cation, where the zero equilibrium is globally asymptotically
stable up to some critical value where positive equilibrium
appears and assumes global asymptotic stability.

A perturbation of original Beverton–Holt equation is the
difference equation studied in [5]
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xn+1 �
xn

axn + x
2
n− 1 + f

, n � 0, 1, . . . , (6)

where the parameters and initial conditions x− 1 and x0 are
nonnegative numbers exhibiting Naimark–Sacker bifurca-
tion and chaos. Another perturbation of original delayed
Beverton–Holt equation studied in [6]

xn+1 �
xn− 1

ax
2
n + exn− 1 + f

, n � 0, 1, . . . , (7)

where the parameters and initial conditions x− 1 and x0 are
nonnegative numbers, exhibiting transcritical and period-
doubling (flip) bifurcation.

A perturbation of delayed sigmoid Beverton–Holt
equation (2) considered in [7] is

xn+1 �
x
2
n− 1

ax
2
n + cx

2
n− 1 + f

, n � 0, 1, . . . , (8)

where the parameters a, c and f are positive numbers and
the initial conditions x− 1 and x0 are nonnegative numbers.

Equation (2) exhibits a global asymptotic stability of
either zero or positive equilibrium solutions and exchange of
stability or transcritical bifurcation. Equation (8), where all
solutions converge to either an equilibrium or to one of the
three period-two solutions, exhibits the transcritical and
period-doubling bifurcations while equation (6) exhibits
Neimark–Sacker bifurcation and possibly chaos, but not a
period-doubling (flip) bifurcation. In view of*eorem 4.2 in
[8], equation (1) cannot have period-two solution, so period-
doubling (flip) bifurcation is impossible. Related models
with similar dynamics were considered in [1, 2, 9]. If we
search for a model that exhibits Allee’s effect, transcritical
bifurcation, and Neimark–Sacker bifurcation to a periodic
solution, then equation (1) is probably the simplest such
model. *e dynamical difference between equations (1) and
(6) is that equation (6) cannot exhibit Allee’s effect and has at
most two equilibrium solutions. *e dynamical difference
between equations (1) and (8) is that equation (1) exhibits
transcritical and Neimark–Sacker bifurcation while equation
(8) exhibits transcritical and period-doubling bifurcation,
proving this difference is the main objective of this paper.

In this paper, we will show that local asymptotic stability
of the zero equilibrium will also imply its global asymptotic
stability. In the case of the positive equilibrium solution, we
will show that global asymptotic stability holds in some
subspaces of the parametric region of local asymptotic
stability. *e technique used in proving global asymptotic
stability of the positive equilibrium solution is based on
global attractivity results for maps with invariant boxes, see
[10, 11]. Related rational difference equations which exhibit
similar behavior were considered in [5]. Equation (1) is one
of the possible perturbations of the sigmoid Beverton–Holt
difference equation which can exhibit chaos and shows that
models based on such perturbation of the sigmoid Bev-
erton–Holt equation can be used to model any kind of
dynamic behavior from Allee’s effect, flip bifurcations to
Naimark–Sacker bifurcation, and chaos. Consequently, all
these dynamic scenarios can be fitted by appropriate

perturbation of the sigmoid Beverton–Holt equation. For
instance, equation (8) exhibits period-doubling bifurcation
in addition to the transcritical bifurcation, so depending on
the dynamics of the observed data, one can choose one of the
models (1) and (6)–(8) to fit appropriate coefficients. See [12]
and references therein for examples of fitting parameters of
models. Some most recent applications of Neimark–Sacker
bifurcation for differential equations can be found in [13]
and for difference equations in [14]. Some global asymptotic
results for second order difference equations related to the
results from [10], which will be used in the present paper,
can be found in [15].

Now, for the sake of completeness, we give the basic facts
about the Neimark–Sacker bifurcation.

*e Neimark–Sacker bifurcation is the discrete coun-
terpart to the Hopf bifurcation for a system of ordinary
differential equations in two or more dimensions, see
[16–18]. It occurs for such a discrete system depending on a
parameter, λ for instance, along with a fixed point, the Ja-
cobian matrix of which has a pair of complex conjugate
eigenvalues. *ese eigenvalues μ(λ) and μ(λ) will cross the
unit circle at λ � λ0 transversally. When this occurs in the
discrete setting a periodic solution, which will in general be
of an unknown period, will appear and this solution will be
locally stable. To represent this periodic solution, we use the
Murakami computational approach, see [19], to identify an
asymptotic formula for an invariant curve in the phase plane
which is locally attracting.

*e following result is referred to as the Neimark–Sacker
bifurcation theorem, see [16–18].

Theorem 1 (Neimark–Sacker bifurcation). Let

F: R × R
2⟶ R

2
; (λ, x)⟶ F(λ, x), (9)

be a C4 map depending on real parameter λ satisfying the
following conditions:

(i) F(λ, 0) � 0 for λ near some fixed λ0;
(ii) JacF(λ, 0) has two nonreal eigenvalues μ(λ) and μ(λ)

for λ near λ0 with |μ(λ0)| � 1;
(iii) d/dλ|μ(λ)| � d(λ0)< 0 at λ � λ0 (transversality

condition);
(iv) μk(λ0)≠ 1 for k � 1, 2, 3, 4 (nonresonance condition).

*en, there is a smooth λ-dependent change of coor-
dinate bringing F into the form

F(λ, x) � F(λ, x) + O ‖x‖
5

􏼐 􏼑, (10)

and there are smooth functions α(λ), β(λ), and ω(λ) so that
in polar coordinates, the function F(λ, x) is given by

r

θ
􏼠 􏼡 �

|μ(λ)|r + α(λ)r
3

θ + ω(λ) + β(λ)r
2

⎛⎝ ⎞⎠. (11)

If α(λ0)< 0, then the Neimark–Sacker bifurcation at λ �

λ0 is supercritical and there exists a unique closed invariant
curve Γ(λ), which is attracting, and bifurcates from x for
λ< λ0.
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Consider a general map F(λ0, x) that has a fixed point at
the origin with complex eigenvalues μ(λ0) � α(λ0) + iβ(λ0)
and μ(λ0) � α(λ0) − iβ(λ0) satisfying α(λ0)

2 + β(λ0)
2 � 1

and β(λ0)≠ 0. Assume that

F λ0, x( 􏼁 � A λ0( 􏼁x + G λ0, x( 􏼁, (12)

where A is the Jacobian matrix of F evaluated at the fixed
point (0, 0), and

G λ0, x( 􏼁 ≔
g1 λ0, x1, x2( 􏼁

g2 λ0, x1, x2( 􏼁
􏼠 􏼡. (13)

Here, we denote μ(λ0) � μ,A(λ0) � A and
G(λ0, x) � G(x). We let p and q be the eigenvectors of A

associated with μ satisfying

Aq � μq,

pA � μp,

pq � 1,

(14)

and Φ � (q, q). Assume that

G Φ
z

z

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ �
1
2

g20z
2

+ 2g11zz + g02z
2

􏼐 􏼑 + O |z|
3

􏼐 􏼑,

(15)

and

K20 � μ2I − A􏼐 􏼑
− 1
g20,

K11 � (I − A)
− 1g11,

K02 � μ2I − A􏼐 􏼑
− 1
g02.

(16)

Let

G Φ
z

z

⎛⎝ ⎞⎠ +
1
2

K20z
2

+ 2K11zz + K02z
2

􏼐 􏼑⎛⎝ ⎞⎠

�
1
2

g20z
2

+ 2g11zz + g02z
2

􏼐 􏼑

+
1
6

g30z
3

+ 3g21z
2
z + 3g12zz

2
+ g03z

3
􏼐 􏼑 + O |z|

4
􏼐 􏼑,

(17)

then

a λ0( 􏼁 �
1
2
Re pg21μ( 􏼁. (18)

*e next result of Murakami [19] gives an approximate
formula for the periodic solution.

Corollary 1. Assume a(λ0)≠ 0 and λ � λ0 + η where η is a
sufficient small parameter. If x is a fixed point of F, then the
invariant curve Γ(λ) from8eorem 1 can be approximated by

x1

x2
􏼠 􏼡 ≈ x + 2ρ0Re qe

iθ
􏼐 􏼑 + ρ20 Re K20e

2iθ
􏼐 􏼑 + K11􏼐 􏼑, (19)

where

d �
d

dη
|μ(λ)|

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌λ�λ0
,

ρ0 �

����

−
d

a
η

􏽳

, θ ∈ R.

(20)

Here, “Re” represents the real parts of these complex
numbers. *e calculation of a(λ0) is given by [20].

*e rest of the paper is organized as follows; Section 2
gives local and global stability analysis of the zero equilib-
rium and positive equilibrium solutions in some regions of
parameters; Section 3 presents the computation of Nei-
mark–Sacker bifurcation; Section 4 presents the approxi-
mations of stable, unstable, and center manifolds of the
equilibrium solutions of equation (1); finally, Section 5 es-
tablishes that the rate of convergence of the solutions that
converge to the zero equilibrium is quadratic while the rate
of convergence of the solutions that converge to any positive
equilibrium solution is linear.

2. Local and Global Stability

Equation (1) has always the zero equilibrium x0 � 0. *e
positive equilibrium solutions of equation (1) are the positive
solutions of the equation (a + 1)x2 − x + f � 0, that is,

x± �
1 ±

�����������
1 − 4f(a + 1)

􏽰

2(a + 1)
, (21)

when

4f(a + 1)< 1, (22)

and

x �
1

2(a + 1)
, (23)

when

4f(a + 1) � 1. (24)

*e linearized equation associated with equation (1)
about the equilibrium point x is

zn+1 � pzn + qzn− 1, (25)

where
p � fu(x, x),

q � fv(x, x).
(26)

Now, the following results hold.

Lemma 1. For the equilibrium point x0 of equation (1), the
equilibrium is always locally asymptotically stable.

*e proof of the lemma follows from the fact that lin-
earized equation at x0 � 0 is zn+1 � 0.
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Lemma 2. Assume that (22) holds. 8e positive equilibrium
x+ � 1 +

�����������
1 − 4f(a + 1)

􏽰
/2(a + 1) of equation (1) satisfies the

following:

(i) If f> (1 − a)/4, the equilibrium point x+ is locally
asymptotically stable.

(ii) If f< (1 − a)/4, the equilibrium point x+ is a
repeller.

(iii) If 4f(a + 1) � 1, the equilibrium point
x � 1/2(a + 1) is nonhyperbolic of stable type with
eigenvalues 1 and 4f< 1.

Proof
(i) One can see that

p � fu x+, x+( 􏼁 �
a + 2 − a

�����������
1 − 4(a + 1)f

􏽰

a + 1
� 2 1 − ax+( 􏼁,

(27)
and

q � fv x+, x+( 􏼁 � −

�����������
1 − 4(a + 1)f

􏽰
+ 1

a + 1
� − 2x+ < 0,

q − p − 1 �
(a − 1)

�����������
1 − 4(a + 1)f

􏽰
− 2(a + 1)

a + 1
,

q + p − 1 �
1
2

(1 −

�����������

1 − 4(a + 1)f

􏽱

),

q + 1 �
a −

�����������
1 − 4(a + 1)f

􏽰

a + 1
.

(28)
*e rest of the proof follows from*eorem 1.1 [10].
We notice that the linearized equation at any
positive equilibrium is

yn+1 − 2(1 − 2ax)yn + 2xyn− 1 � 0, (29)

and the corresponding characteristic equation is

λ2 − 2(1 − 2ax)λ + 2x � 0. (30)

(iii) In the case (iii), we have that the characteristic
equation at the equilibrium point x � 1/2(a + 1) is

λ2 − 2(1 − 2af)λ + 4f � 0, (31)

which solutions are 1 and 4f. In view of the condition
4f(a + 1) � 1, we have 4f< 1. □

Lemma 3. Assume that (22) holds. 8e positive equilibrium
x− � 1 −

�����������
1 − 4f(a + 1)

􏽰
/2(a + 1) is always a saddle point.

Proof. One can see that

p � fu x− , x−( 􏼁 �
a + 2 + a

�����������
1 − 4(a + 1)f

􏽰

a + 1
, (32)

and

q � fv x− , x−( 􏼁 �
− 1 +

�����������
1 − 4(a + 1)f

􏽰

a + 1
, (33)

which imply

q − p − 1 �
(1 − a)

�����������
1 − 4(a + 1)f

􏽰
− 2(a + 2)

a + 1
,

q + p − 1 �
− 2 +(a + 1)

�����������
1 − 4(a + 1)f

􏽰

a + 1
,

q + 1 �
a +

�����������
1 − 4(a + 1)f

􏽰

a + 1
.

(34)

*e rest of the proof follows from *eorem 1.1 [10].
First, we give the global asymptotic result for zero

equilibrium. □

Theorem 2. Assume that

4f(a + 1)> 1. (35)

*en, the zero equilibrium of equation (1) is globally
asymptotically stable.

Proof. Every solution xn􏼈 􏼉 of equation (1) satisfies

xn+1 �
x
2
n

ax
2
n + x

2
n− 1 + f
≤
1
a

, n � 0, 1, . . . , (36)

and the function

f(u, v) �
u
2

au
2

+ v
2

+ f
(37)

is increasing in u and decreasing in v, with property that it
has an invariant and attracting interval [0, 1/a]. Now, we will
employ *eorem 1.13 from [10]. Consider the system of
equations

f(M, m) � M,

f(m, M) � m,
􏼨 (38)

and prove that M � m. *is system becomes

M
2

aM
2

+ m
2

+ f
� M,

m
2

am
2

+ M
2

+ f
� m,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(39)

which after eliminating M becomes
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m am
2

+ f − m􏼐 􏼑 (a + 1)m
2

− m + f􏼐 􏼑 a
3

− a
2

− a + 1􏼐 􏼑m
2

+ 1 − a
2

􏼐 􏼑m + a
2
f − 2af + f + 1􏼐 􏼑 � 0. (40)

Now, the discriminant of first quadratic polynomial in
(40) is 1 − 4af< 0 in view of (19) and the discriminant of
second quadratic polynomial in (40) is 1 − 4f(a + 1)< 0 in
view of (35). Finally, the discriminant of the third poly-
nomial in (20) is

− (a − 1)
2
(a + 1) 4a

2
f − 8af − a + 4f + 3􏼐 􏼑, (41)

and for a≠ 1 is negative in view of (35). If a � 1, the third
polynomial simply becomes a constant 1. *us, the only
solution of (40) is m � 0. *e same holds for M in view of
symmetry of the considered system. So, m � M � 0, and by
*eorem 1.13 in [10], the zero solution of equation (1) is
globally asymptotically stable. □

As Figure 1 shows the boundary of the basins of at-
traction of two locally asymptotically stable equilibrium
solutions x0 and x+ seem to be the global stable manifold of
the smaller equilibrium solution x− , which is a saddle point
for all values of parameters. In Section 3, we will derive the
asymptotic formulas for both stable and unstable manifolds
based on the functional equations that the two manifolds
satisfy. We will visually compare these manifolds with the
image of the basin of attraction.

Now, we give some results about the basins of attraction
of the positive equilibrium solutions. We will show that local
asymptotic stability of a positive equilibrium will also imply
its global asymptotic stability in a substantial subregion of
the parametric space and within the basins of attraction of
locally stable equilibrium solutions.

Lemma 4. Assume that (14) holds. If xn􏼈 􏼉 is nonzero solution
of equation (1), then the following hold:

(i) If (x− 1, x0) ∈ R1 � (x, y): 0≤y≤x≤x−􏼈 􏼉, then
x1 ≤x0. 8e solution xn􏼈 􏼉 is a decreasing sequence
and so

lim
n⟶∞

xn � 0. (42)

(ii) If (x− 1, x0) ∈ R2 � (x, y): x− ≤ x≤y≤ x+􏼈 􏼉, then
x0 ≤x1. 8e solution xn􏼈 􏼉 is an increasing sequence
and so

lim
n⟶∞

xn � x+. (43)

(iii) If (x− 1, x0) ∈ R3 � (x, y): x+ ≤y≤ x􏼈 􏼉, then x1 ≤ x0.
8e solution xn􏼈 􏼉 is a decreasing sequence and so it
converges to one of the equilibrium solutions.

Proof. Set
G(u) � (a + 1)u

2
− u + f. (44)

*en, the positive equilibrium solutions x± are solutions
of the equilibrium equation G(u) � 0 and G(u)< 0 if and
only if u ∈ (x− , x+).

(i) Now, we have

x1 �
x
2
0

ax
2
0 + x

2
− 1 + f
≤

x
2
0

ax
2
0 + x

2
0 + f

�
x
2
0

x0 + G x0( 􏼁
≤

x
2
0

x0
� x0.

(45)

By using induction, we can prove that the solution
xn􏼈 􏼉 is a decreasing sequence, and since xn <x− , it
can only converge to the zero equilibrium.

(ii) Now, we have

x1 �
x
2
0

ax
2
0 + x

2
− 1 + f
≥

x
2
0

ax
2
0 + x

2
0 + f

�
x
2
0

x0 + G x0( 􏼁
≥

x
2
0

x0
� x0.

(46)

By using induction, we can prove that the solution
xn􏼈 􏼉 is an increasing and bounded sequence, and
since xn >x− , it can only converge to the larger
positive equilibrium x+.

(iii) *e proof is identical to the proof of part (i) and it
will be omitted. □

Remark 1. An immediate consequence of Lemma 4 is that
the set R1 is a part of the basin of attraction of the zero
equilibrium B(0) and R2 is a part of the basin of attraction
of the larger positive equilibrium B(x+), that is,
R1 ⊂B(0), R2 ⊂B(x+). Based on our simulations, we
formulate the following conjecture.

Conjecture 1. R3 � (x, y): x− <x, y<􏼈 x− } � (x − ,∞) ×

[0, x− ) ⊂B(0).

3. The Neimark–Sacker Bifurcation

In this section, we bring the system that corresponds to
equation (1) to the normal form which can be used for the
computation of the relevant coefficients of the Nei-
mark–Sacker bifurcation.

If we make a change of variable yn � xn − x+, then the
transformed equation is given by

yn+1 �
x+ + yn( 􏼁

2

a x+ + yn( 􏼁
2

+ x+ + yn− 1( 􏼁
2

+ f
− x+, n � 0, 1, . . . , .

(47)

Set
un � yn− 1,

vn � yn, for n � 0, 1, . . . ,
(48)

and write equation (1) in the equivalent form:
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un+1 � vn,

vn+1 �
x+ + vn( 􏼁

2

a x+ + vn( 􏼁
2

+ x+ + un( 􏼁
2

+ f
− x.

(49)

Let F be the corresponding map defined by

F
u

v

⎛⎝ ⎞⎠ �

v

x+ + v( 􏼁
2

a x+ + v( 􏼁
2

+ x+ + u( 􏼁
2

+ f
− x+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (50)

*en, F has the unique fixed point (0, 0) and the Ja-
cobian matrix of F at (0, 0) is given by

JacF(0, 0) �

0 1

−

�����������
1 − 4(a + 1)f

􏽰
+ 1

a + 1
a + 2 − a

�����������
1 − 4(a + 1)f

􏽰

a + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (51)

*e eigenvalues of JacF(0, 0) are μ(a) and μ(a) where

μ(a) �

a + 2 − a
�����������
1 − 4(a + 1)f

􏽰
+ i

������������������������������������������

2a
2
(2(a + 1)f − 1) + 2 a

2
+ 4a + 2􏼐 􏼑

�����������

1 − 4(a + 1)f

􏽱􏽲

2(a + 1)
.

(52)

One can prove that for a � a0 � 1 − 4f, we obtain
|μ(a0)| � 1 and

0.0 0.2 0.60.4 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Basins of attraction for equation (1) for parameters a � 0.49 and f � 10.125. Picture is produced by Dynamica 5.
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μ a0( 􏼁 �
1
2

(1 + 4f + i

��������������

(1 − 4f)(4f + 3)

􏽱

),

μ2 a0( 􏼁 � 8f
2

+ 4f −
1
2

+
1
2

i(4f + 1)

��������������

(1 − 4f)(4f + 3)

􏽱

,

μ3 a0( 􏼁 � 32f
3

+ 24f
2

− 1 + 4i(2f + 1)

��������������

(1 − 4f)(4f + 3)

􏽱

f,

μ4 a0( 􏼁 � 128f
4

+ 128f
3

+ 16f
2

− 8f −
1
2

+
1
2

i(4f + 1) 16f
2

+ 8f − 1􏼐 􏼑

��������������

(1 − 4f)(4f + 3)

􏽱

.

(53)

One can see that μk(a0)≠ 1 for k � 1, 2, 3, 4 and

|μ(a)|
2

�

�����������
1 − 4(a + 1)f

􏽰
+ 1

a + 1
. (54)

Furthermore, we get

d a0( 􏼁 �
d|μ(a)|

da

􏼌􏼌􏼌􏼌􏼌􏼌􏼌a�a0

� −
1

4(1 − 4f)
< 0. (55)

*e eigenvectors corresponding to μ(a) and μ(a) are
q(a) and q(a), where

q � q a0( 􏼁 �
1
2

(1 + 4f − i

��������������

(1 − 4f)(4f + 3)

􏽱

), 1􏼒 􏼓
T

.

(56)

For a � a0, we get

F
u

v
􏼠 􏼡 � A

u

v
􏼠 􏼡 + G

u

v
􏼠 􏼡, (57)

where

A � JacF(0, 0)|a�a0
�

0 1

− 1 4f + 1
􏼠 􏼡, (58)

and

G
u

v

⎛⎝ ⎞⎠ ≔

0

(v + 1/2)
2

(1 − 4f)(v + 1/2)
2

+ f +(u + 1/2)
2 − (4f + 1)v + u − 1/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (59)

Hence, for a � a0, system (49) is equivalent to

un+1

vn+1
􏼠 􏼡 � A

un

vn

􏼠 􏼡 + G
un

vn

􏼠 􏼡. (60)

Define the basis of R2 by Φ � (q, q).
Let

u

v

⎛⎝ ⎞⎠ � Φ
z

z

⎛⎝ ⎞⎠ � (qz + qz) �

�

1
2

(4f − i

��������������

(1 − 4f)(4f + 3)

􏽱

+ 1)z +
1
2

(4f + i

��������������

(1 − 4f)(4f + 3)

􏽱

+ 1)z

z + z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(61)

By using this, one can see that
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g20 �
z2

zz2 G Φ
z

z

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0

�

0

16f
2

+(12if − i)

��������������

(1 − 4f)(4f + 3)

􏽱

− 3
⎛⎜⎜⎝ ⎞⎟⎟⎠,

g11 �
z2

zz zz
G Φ

z

z

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0

�
0

− 8f

⎛⎝ ⎞⎠,

g02 �
z2

zz2 G Φ
z

z

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0

�

0

16f
2

+(i − 12if)

��������������

(1 − 4f)(4f + 3)

􏽱

− 3
⎛⎜⎜⎝ ⎞⎟⎟⎠,

(62)

and

K20 � μ2I − A􏼐 􏼑
− 1
g20 �

16f
2

+(12if − i)

��������������

(1 − 4f)(4f + 3)

􏽱

− 3

(2f + 1)(4f − 1) 16f
2

+ 8f + i(4f + 1)

��������������

(1 − 4f)(4f + 3)

􏽱

− 1􏼒 􏼓

16f
2

+ i

��������������

(1 − 4f)(4f + 3)

􏽱

(12f − 1) − 3

4f(4f + 1) − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K11 � (I − A)
− 1g11 �

8f

4f − 1

8f

4f − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K02 � μ2I − A􏼐 􏼑
− 1
g02 � K20.

(63)

By using K20,K11, and K02, we have that

g21 �
z3

zz2zz
G Φ

z

z

⎛⎝ ⎞⎠ +
1
2
K20z

2
+ K11zz +

1
2
K02z

2⎛⎝ ⎞⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌z�0

�

0

− 2i

������
4f + 3
1 − 4f

􏽳

+
20

3 − 12f
−

74
6f + 3

+ 18

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(64)

Next, we have that pA � μp and pq � 1, where

p �
i

��������������
(1 − 4f)(4f + 3)

􏽰 ,
− 4if +

��������������
(1 − 4f)(4f + 3)

􏽰
− i

2
��������������
(1 − 4f)(4f + 3)

􏽰􏼠 􏼡. (65)

One can see that
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α a0( 􏼁 �
1
2
Re pg21μ( 􏼁 � −

1
1 − 4f
< 0. (66)

Theorem 3. Let 0<f< 1/4(1 + a) and

x+ �
1 +

�����������
1 − 4(a + 1)f

􏽰

2(a + 1)
. (67)

*en, there is a neighborhood U of the equilibrium point
x+ and some ρ> 0 such that for

a − a0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< ρ, a0 � 1 − 4f( 􏼁, (68)

and x0, x− 1 ∈ U, the ω-limit set of a solution of equation (1),
with initial conditions x0, x− 1, is the equilibrium point x+ if

a> a0 � 1 − 4f, (69)

and belongs to a closed invariant C1 curve Γ(a) encircling
the equilibrium point x+ if

a< a0 � 1 − 4f. (70)

Furthermore, Γ(a0) � 0 and the invariant curve Γ(a) can
be approximated by

x1

x2
􏼠 􏼡 ≈

x+

x+

􏼠 􏼡 + 2ρ0Re qe
iθ

􏼐 􏼑 + ρ20 Re K20e
2iθ

􏼐 􏼑 + K11􏼐 􏼑,

(71)

where

ρ0 �
1
2

�����������

(1 − 4f) − a

􏽱

. (72)

Proof. *e proof follows from the above discussion and
*eorem 1 and Corollary 1. See Figures 2 and 3 for a
graphical illustration. □

4. The Invariant Manifolds

In this section, we derive the asymptotic formulas for the
local stable and unstable manifolds for the equilibrium point
x− and provide some numerical examples where we compare
visually the local approximations of stable and unstable
manifolds and center manifold, obtained by using Mathe-
matica, with the boundaries of the basins of attraction
obtained by using the software package Dynamica.

From Lemma 3, it follows that (x− , x− ) is a saddle point
if 4f(a + 1)< 1. In order to apply the theorem for the stable
and unstable manifolds, we make a change of variable
yn � xn − x− . *en, the transformed equation is given by

yn+1 �
x− + yn( 􏼁

2

a x− + yn( 􏼁
2

+ x− + yn− 1( 􏼁
2

+ f
− x− , n � 0, 1, . . . .

(73)

Set

un � yn− 1

vn � yn, for n � 0, 1, . . . ,
(74)

and write equation (1) in the equivalent form:

un+1 � vn,

vn+1 �
x− + vn( 􏼁

2

a x− + vn( 􏼁
2

+ x− + un( 􏼁
2

+ f
− x− .

(75)

Let G be the corresponding map defined by

G
u

v

⎛⎝ ⎞⎠ �

f1(u, v)

f2(u, v)

⎛⎝ ⎞⎠ �

v

x− + v( 􏼁
2

a x+ + v( 􏼁
2

+ x− + u( 􏼁
2

+ f
− x−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(76)

We expand f1(u, v) and f2(u, v) as a Taylor series about
(0, 0) to write

f1(u, v) � v

f2(u, v) � − 2ux− − 2 − 1 + ax−( 􏼁v + − 1 + 4x−( 􏼁u
2

+ 4 − 1 + 2ax−( 􏼁uv

+
af 4ax− − 5( 􏼁 − (a + 1)x− + 1

f
v
2

+ 4 1 − 2x−( 􏼁u
3

+
2 x− (− 12af + a + 1) + 2(a + 2)f − 1( 􏼁

f
u
2
v

+
2x− − 12a

2
f + a + 1􏼐 􏼑 + 2(10af − 1)

f
uv

2

+
4a x− − 2a

2
f + a + 1􏼐 􏼑 + 3af − 1􏼐 􏼑

f
v
3

+ O (|u| +|v|)
4

􏼐 􏼑.

(77)
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Assume that the invariant manifold at (0, 0) is locally
represented as the graph of a function v � h(u) such that
h(u) � Au + Bu2 + Cu3 + O(|u|4). *en, from
h(f1(u, h(u))) − f2(u, h(u)) � 0, and by using package
Mathematica, we obtain

A± � 1 − ax− ±
���������������������

x− a ax− − 2( 􏼁 − 2( 􏼁 + 1( 􏼁

􏽱

, (78)

and

B± �
(a + 1)

2 1 − A±( 􏼁x
4
− a 3A± − 1( 􏼁 − A± + 3( 􏼁 − fx

2
− A± (3a − 2)A± + 4( 􏼁 + 1( 􏼁 + A

2
f
2

􏼐 􏼑

x− − (a + 1)f 2ax− + A
2

+ A􏼐 􏼑 + x− (a + 1)A± A± + 1( 􏼁 − 2( 􏼁 + 2f􏼐 􏼑
, (79)

0.0 0.2 0.60.4 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Trajectory of some solutions of equation (1) for parameters a � 0.49 and f � 0.125. Picture is produced by Dynamica 5.

0.0 0.2 0.60.4 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a)
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(b)

Figure 3: (a) Trajectory (black) of a solution of equation (1) and invariant curve (orange) for a � 0.49 and f � 0.125 and where a0 � 0.5.
(b) Trajectory (black) of a solution of equation (1) for a � 0.51 and f � 0.125 and where a0 � 0.5.
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and

C± � C± a, f, A±, B±( 􏼁. (80)

*en, the dynamics restricted to the invariant manifold
are given locally by the equation

un+1 � f1 un, h un( 􏼁( 􏼁 � h un( 􏼁

� A±un + B±u
2
n + C±u

3
n + O un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑.
(81)

Note that the Jacobian matrix of G at (0, 0) is given by

JacG(0, 0) �

0 1

�����������
1 − 4(a + 1)f

􏽰
− 1

a + 1
a + 2 + a

�����������
1 − 4(a + 1)f

􏽰

a + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(82)

and the eigenvalues of JacG(0, 0) are A±.

Theorem 4. Assume that 4f(a + 1)≤ 1. 8en, the equilib-
rium point x− of equation (1) is a saddle point if
4f(a + 1)< 1. 8e stable manifold Ws and unstable manifold
Wu at (x− , x− ) are given by

W
u

� (x, y): y � x− + A+ x − x−( 􏼁 + B+ x − x−( 􏼁
2

+ C+ x − x−( 􏼁
3

+ O x − x−

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑, x> 0, y> 0􏽮 􏽯, (83)

and

W
s

� (x, y): y � x− + A− x − x−( 􏼁 + B− x − x−( 􏼁
2

+ C− x − x−( 􏼁
3

+ O x − x−

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
4

􏼐 􏼑, x> 0, y> 0􏽮 􏽯. (84)

*e equilibrium point (x− , x− ) is nonhyperbolic if
4f(a + 1) � 1, and it is semiasymptotically stable from the
right.

Proof. *eproof of first part of the theorem follows from the
above discussion. If 4f(a + 1) � 1, then a � 1 − 4f/4f> 0
and we obtain A− � 4f< 1, A+ � 1, and B+ � 1 /4f

(4f − 1)< 0. *e rest of the proof follows from the fact that
the dynamics of equation (1) are dynamics restricted to the
center manifold which is given locally by equation (81). See
Figures 4 and 5 for a graphical illustration.

Bifurcation diagram of equation (1) in certain range of
parameters indicate chaos, see Figure 6. □

5. Rate of Convergence

In this section, we will shortly discuss the rate of conver-
gence of solutions of equation (1) that converge to the

equilibrium solutions. We will show that the convergence
toward the zero equilibrium is quadratic and toward any
positive equilibrium is linear.

Assume that limn⟶∞xn � 0 for some solutions of
equation (1). *en, equation (1) implies

xn+1

x
2
n

�
1

ax
2
n + x

2
n− 1 + f

, (85)

and so

lim
n⟶∞

xn+1

x
2
n

�
1
f

, (86)

which shows that the convergence toward the zero equi-
librium is quadratic.

Let limn⟶∞xn � x> 0 for some solutions of equation
(1). *en, we have

xn+1 − x �
x
2
n

ax
2
n + x

2
n− 1 + f

−
x
2

(a + 1)x
2

+ f
�

f x
2
n − x

2
􏼐 􏼑 + x

2
x
2
n − x

2
n− 1􏼐 􏼑

ax
2
n + x

2
n− 1 + f􏼐 􏼑 (a + 1)x

2
+ f􏼐 􏼑

�
f + x

2
􏼐 􏼑 xn + x( 􏼁

ax
2
n + x

2
n− 1 + f􏼐 􏼑 (a + 1)x

2
+ f􏼐 􏼑

xn − x( 􏼁 −
x
2

xn + x( 􏼁

ax
2
n + x

2
n− 1 + f􏼐 􏼑 (a + 1)x

2
+ f􏼐 􏼑

xn− 1 − x( 􏼁

� g0 xn − x( 􏼁 + g1 xn− 1 − x( 􏼁,

(87)

Discrete Dynamics in Nature and Society 11



where

lim
n⟶∞

g0 �
f + x

2
􏼐 􏼑2x

(a + 1)x
2

+ f􏼐 􏼑
2 �

2 f + x
2

􏼐 􏼑

x
� 2(1 − ax),

(88)

and

lim
n⟶∞

g1 � −
x
22x

(a + 1)x
2

+ f􏼐 􏼑
2 �

− 2x
3

x
2 � − 2x. (89)

Setting yn � xn − x, we see that the limiting equation is
exactly the linearized equation (29). Now, in view of
Poincaré-Perron theorem, we conclude that

lim
n⟶∞

yn+1

yn

� lim
n⟶∞

xn+1 − x

xn − x
� λ1,2, (90)

where λ1,2 are roots of the characteristic equation (30), and
[6, 8, 21]. *us, in this case, the convergence is linear since
λ1,2 ≠ 0. See Table 1 for numerical comparison of rates of
convergence to zero equilibrium and positive equilibrium.
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Figure 4: *e local approximation of the stable (red) and unstable manifold (green) of equation (1) for a � 0.49 and f � 0.125
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Figure 5: (a) *e local approximation of the stable (red) and center manifold (green) of equation (1) in nonhyperbolic case, a � 1 and
f � 1/8 � 0.125. (b) Trajectories of some solutions for a � 1 and f � 0.125.
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6. Conclusions

In this paper, we give the global dynamics of the difference
equation xn+1 � x2

n/(ax2
n + x2

n− 1 + f) where a and f are
positive numbers and the initial conditions x− 1 and x0 are
nonnegative numbers in a part of parametric space. We
show that this difference equation exhibits transcritical and
Neimark–Sacker bifurcations but not flip (period-doubling)
bifurcation since this difference equation cannot have pe-
riod-two solutions. Moreover, we give the asymptotic ap-
proximation of the invariant manifolds, stable, unstable, and
center manifolds of the saddle point and nonhyperbolic
equilibrium solution. Finally, we give the rates of conver-
gence toward all equilibrium solutions, proving that the

convergence to the zero equilibrium solution is quadratic
and convergence to the positive equilibrium solution is
linear.

*is difference equation is the simplest perturbation of
sigmoid Beverton–Holt difference equation that exhibits
Allee’s effect, transcritical bifurcation, and Neimark–Sacker
bifurcation, but not a flip bifurcation.
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