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In this paper, we explore local stability, attractor, periodicity character, and boundedness solutions of the second-order nonlinear
difference equation. Finally, obtained results are verified numerically.

1. Introduction

For decades, the qualitative analysis of difference equations
has been steadily increasing. ,is is due to the fact that
difference equations appear as mathematical models in
statistical problems, queuing theory, combinatorial analysis,
electrical networks, genetics in biology, probability theory,
economics, psychology, stochastic time series, sociology,
geometry, number theory, etc. Precisely, there is an in-
creasing interest in the qualitative analysis of difference
equations. For instance, Devault et al. [1] have explored
boundedness, existence of unbounded solutions, persis-
tence, and global attractivity results for following nonau-
tonomous difference equation:

xn+1 � pn +
xn− 1

xn

, (1)

where pn is a positive bounded sequence and initial con-
ditions are positive. Amleh et al. [2] have explored global
stability, periodic nature, and boundedness character of the
following difference equation:

xn+1 � α +
xn− 1

xn

, (2)

where α ∈ (0,∞) and x− 1 andx0 are positive constants.
DeVault et al. [3] have explored boundedness, periodic

character, and global stability of the following difference
equation:

xn+1 � p +
xn− k

xn

, (3)

where k ∈ 2, 3, . . . ,{ }, p is positive, and initial conditions are
arbitrary positive numbers. Berenhaut and Stević [4] have
explored the behaviour of the following difference equation:

xn+1 � A +
xn− 2

xn− 1
 

p

, (4)

where p andA ∈ (0,∞), p≠ 1, and x− 1 andx0 ∈ (0,∞).
Stević [5] has explored the behavior of the following dif-
ference equation:

xn+1 � a +
xn− 1

xn

, (5)

where α is a negative number. For more results on the
behavior of the difference equation, we refer the reader to
recent published articles [6–10] and books [11–13]. Moti-
vated from aforementioned studies, we explore the behavior
of the following difference equation:

xn+1 � an +
x

p
n

x
p
n− 1

, n � 0, 1, . . . , (6)
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where p is a nonnegative real number. Moreover, initial
conditions x− 1 andx0 are positive real numbers, and an  is a
nonnegative periodic sequence with

an �
α, if n is even,

β, if n is odd,
 (7)

where α and β ∈ (0,∞).

2. Dynamics of Solutions of Equation (6)

In this study, we consider the following three cases of the
function an.

2.1. Case 1: an � a ∈ R+. In this case, (6) becomes

xn+1 � a +
x

p
n

x
p
n− 1

, n � 0, 1, . . . . (8)

It is easy to see that x � a + 1 is the only positive fixed
point of (8).

Now, the function f: (0,∞)2⟶ (0,∞) is defined by

f(x, y) � a +
x

p

y
p. (9)

,erefore,

zf(x, y)

zx
�

px
p− 1

y
p ,

zf(x, y)

zy
� −

px
p

y
p+1.

(10)

Now,

zf(x, x)

zx
�

p

a + 1
,

zf(x, x)

zy
� −

p

a + 1
.

(11)

So, the linearized equation of (8) about x � a + 1 is

yn+1 −
p

a + 1
yn +

p

a + 1
yn− 1 � 0. (12)

Theorem 1.
(i) If p< a + 1, then x � a + 1 of (8) is locally asymp-

totically stable, and so it is also called a sink
(ii) If p> a + 1, then x � a + 1 of (8) is unstable and is

called a repeller
(iii) If p � a + 1, then x � a + 1 of (8) is unstable and is

called a nonhyperbolic point

Proof
(i) We set p1 � (p/(a + 1)) and p2 � − (p/(a + 1)).

Now,

p1


< 1 − p2⟺
p

a + 1
< 1 +

p

a + 1
⟺0< 1, (13)

and also,

1 − p2 < 2⟺
p

a + 1
< 1, (14)

which is valid if

p< a + 1. (15)

So, by ,eorem 1.1.1 (a) and (c) of [13], one can
obtain that x � a + 1 is locally asymptotically stable
when p< a + 1.

(ii) Again,

p2


 − 1 �
p

a + 1
− 1> 0⟺

p

a + 1
> 1,

p1


 − 1 − p2


 �
p

a + 1
− 1 −

p

a + 1
� − 1< 0,

(16)

and then, |p1|< |1 − p2|. ,us, by ,eorem 1.1.1 (d)
of [13], x � a + 1 is unstable (repeller point) when
p> a + 1.

(iii) Note that

p2 � − 1⟺ −
p

a + 1
� − 1⟺ − p � − (a + 1)⟺p � a + 1,

p1


 − 2≤ 0⟺
p

a + 1
− 2≤ 0⟺p≤ 2(a + 1).

(17)

,us, by ,eorem 1.1.1 (e) of [13], x � a + 1 is
unstable (repeller point) when p � a + 1. □

Theorem 2. Positive solution of (8) is bounded and persists if
0<p< 1.

Proof. We obtain from (8) that

xn+1 > a, ∀n≥ 0. (18)

Hence, xn  persists.,en, again, from (8), it follows that

x2n+1 ≤ a +
x2n

a
 

p

, n � 0, 1, . . . , . (19)

Now considering

yn+1 � a +
yn

a
 

p

, ∀n≥ 0. (20)

If the solution of (20) with y0 � x0 is yn , then

x2n+1 ≤yn+1, Resp. x2n+2 ≤yn+1( . (21)

Now, we have to show that yn  is bounded. Let

f(x) � a +
x

p

a
p, (22)

and then,

2 Discrete Dynamics in Nature and Society



f′(x) �
1
a

p px
p− 1 > 0,

f″(x) �
1
a

p p(p − 1)x
p− 2 < 0.

(23)

,erefore, f is nondecreasing and concave. ,erefore,
one gets y∗ as the unique fixed point of f(y) � y. Moreover,
f also satisfies

(f(y) − y) y − y
∗

( < 0, y ∈ (0,∞). (24)

By ,eorem 2.6.2 of [14], y∗ is a global attractor for all
positive solutions of (20), and hence, it is bounded. So, from
(8), xn  is also bounded. □

Theorem 3. Let p≥ 4, and then, (8) has unbounded
solutions.

Proof. It is noted that following holds:

xn+1 >
x

p
n

x
p
n− 1

, n ∈ N, (25)

for every solution xn 
∞
n�− 1 of (8). Let yn � ln xn. ,en, it

follows from (25) that

yn+1 >pyn − pyn− 1. (26)

Now, roots of

p(λ) � λ2 − pλ + p, (27)

are given by

λ1, λ2 �
p ±

�������

p
2

− 4p



2
. (28)

Since p≥ 4, we have that λ1 > 1 and

λ2 �
2p

p +

��������

− 4p + p
2

 . (29)

,erefore, both roots of p(λ) are positive if p≥ 4.
Moreover, (26) can also written as

yn+1 − λ1yn − λ2 yn − λ1yn− 1( > 0. (30)

,en, we see that

xn+1

x
λ1
n

>
xn

x
λ1
n− 1

⎛⎝ ⎞⎠

λ2

. (31)

It follows that

xn

x
λ1
n− 1

>
xn− 1

x
λ1
n− 2

⎛⎝ ⎞⎠

λ2

> · · · >
x1

x
λ1
0

⎛⎝ ⎞⎠

λ2

>
x0

x
λ1
− 1

⎛⎝ ⎞⎠

λ2

. (32)

Choose x− 1 and x0 so that

x0 > 1,

x0 � x
λ1
− 1.

(33)

It follows from this and (32) that

xn >
x0

x
λ1
− 1

⎛⎝ ⎞⎠

λ2

x
λ1
n− 1 � x

λ1
n− 1 > · · · >x

λn
1
0 , (34)

and consequently,

xn > x
λn
1
0 , n ∈ N. (35)

It follows by letting n⟶∞ in (35) that xn⟶∞ as
n⟶∞, and hence, it follows from this result. □

Theorem 4. Let a≥ 1 and 0<p< 1; then, x � a + 1 of (8) is
globally asymptotically stable.

Proof. By ,eorem 1 (i), x � a + 1 is a sink. Hence, it is
enough to prove further that xn 

∞
n�− 1 of (8) tends to

x � a + 1. Recall that xn 
∞
n�− 1 of (8) is bounded by ,eorem

2. ,us,

a≤ s � lim inf xn,

S � lim supxn <∞.
(36)

,en, from (8), we get

S≤ a +
S

p

s
p ,

s≥ a +
s

p

S
p.

(37)

Now, claiming that S � s, otherwise, S> s. From (37), we
obtain

s
p
S< s

p
a + S

p
,

sS
p > S

p
a + s

p
.

(38)

Since 0<p< 1 holds, then

s
1− p < S

1− p
, (39)

or equivalently

sS
p < Ss

p
. (40)

It follows from (38) and (40) that

S
p
a + s

p ≤ s
p
a + S

p
. (41)

Hence,

S
p
(a − 1)≤ s

p
(a − 1), (42)

which is impossible for a≥ 1. ,is is contradiction, and
hence, the result follows. □

Theorem 5. Every positive solution of (8) oscillates about a +

1 � x with semicycles of length two or three, and extreme of
every semicycle occurs at the first or the second term.
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Proof. Let the positive solution of (8) is xn 
∞
n�− 1. First, we

prove that every positive semicycle except possibly the first
term has two or three terms. Assuming xσ− 1 < x and xσ ≥ x

for some σ ∈ N, we obtain from (8) that

xσ+1 � a +
x

p
σ

x
p
σ− 1
> a + 1 � x. (43)

If xσ+1 >xσ , then we have

xσ+2 � a +
x

p
σ+1

x
p
σ
> a + 1 � x. (44)

On the contrary, since p ∈ (0, 1], we see that

xσ+2 � a +
x

p
σ+1

x
p
σ
≤ a +

x
p
σ+1

x
p ≤ a +

x
p
σ+1

a + 1
≤ xσ+1. (45)

So, x< xσ+2 <xσ+1. ,erefore,

xσ+3 � a +
x

p
σ+2

x
p
σ+1
< a + 1 � x. (46)

□

Theorem 6. Equation (8) has no periodic solution having
prime period two.

Proof. Let

. . . , η1, η2, η1, η2, . . . , (47)

be a periodic solution of period two of (8). It follows that

η1 � a +
η2
η1

 

p

,

η2 � a +
η1
η2

 

p

,

(48)

which implies that

η2 � a +
1

η1 − a
. (49)

Substituting from (49) into (48) and after some calcu-
lation, we get

η1 − a( 
p+1ηp

1 � a η1 − a(  + 1( 
p
. (50)

From (50), one has

f η1(  � (p + 1)ln η1 − a(  + p ln η1
− p ln a η1 − a(  + 1  � 0.

(51)

Obviously, η1 � a + 1 is a solution of (51). But one has to
prove that this is the unique solution of (51). Now,

f′ η1(  �
η1 − a(  aη1 + p a η1 − a(  + 1( (  +(p + 1)η1

η1 η1 − a(  a η1 − a(  + 1( 
.

(52)

,us, f′(η1)> 0 for η1 ∈ (a,∞). ,is implies that, on
(a,∞), f is strictly nondecreasing. Hence, x � a + 1 is the
unique solution of (51), and consequently, (a + 1, a + 1) is
the unique solution of (48) completing the theorem’s
proof. □

2.2. Case 2: an be a Function of Period Two. We will explore
dynamics of equation (6) when an is a periodic sequence
having period two with α and β ∈ (0,∞) and α≠ β. Consider
a2n � α and a2n+1 � β. ,en, we have

x2n+1 � α +
x

p
2n

x
p
2n− 1

, n � 0, 1, . . . ,

x2n+2 � β +
x

p
2n+1

x
p
2n

, n � 0, 1, . . . , .

(53)

By separating the even-indexed and odd-indexed terms,
equation (6) now becomes

un+1 � α +
u

p
n

v
p
n

vn+1 � β +
v

p
n

u
p
n

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, n � 0, 1, . . . , (54)

where (u, v) � (α + 1, β + 1) is the unique fixed point of
system (54).

Theorem 7. If p< (((β + 1)(α + 1))/((α + 1)p + (β + 1)p)),
then E(u,v) � (α + 1, β + 1) of (54) is a sink.

Proof. We consider themapT on [0,∞) × [0,∞)), which is
described as follows:

T(u, v) �
T1(u, v)

T2(u, v)

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

α +
u

p

v
p

α +
v

p

u
p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (55)

,en,

zT1

zu
� −

pu
p− 1

v
p

u
p

( 
2 ,

zT1

zv
�

pv
p− 1

u
p ,

zT2

zu
�

pu
p− 1

v
p ,

zT2

zv
� −

pv
p− 1

u
p

v
p

( 
2 .

(56)
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,erefore, the Jacobian matrix of T evaluated at E(u,v) �

(α + 1, β + 1) is

J E(u,v)  �

−
pu

p− 1
v

p

u
p

( 
2

pv
p− 1

u
p

pu
p− 1

v
p −

pv
p− 1

u
p

v
p

( 
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (57)

and the auxiliary equation associated with (u, v) is

λ2 − λp
(β + 1)

p− 1

α + 1
+

(α + 1)
p− 1

β + 1
 , (58)

and then, we obtain

λ1 � 0,

λ2 � p
(β + 1)

p− 1

α + 1
+

(α + 1)
p− 1

β + 1
 .

(59)

It follows by Corollary 1.3.1 of [14] that (u, v) � (α +

1, β + 1) of (54) is locally stable if

p<
(β + 1)(α + 1)

(α + 1)
p

+(β + 1)
p. (60)

,en, the proof is completed. □

2.3. Case 3: A Positive Bounded Sequence is an. We assume
that an  is positive bounded with

lim
n⟶∞

inf an � a≥ 0,

lim
n⟶∞

sup an � b<∞,
(61)

for some real constants a and b.

Theorem 8. xn 
∞
n�− 1 of (6) is bounded and persists if

0<p< 1.

Proof. Its proof is same as proof of,eorem 2, and hence, it
is omitted. □

Lemma 1. Assume (61) is satisfied, and if

λ � lim
n⟶∞

inf xn,

η � lim
n⟶∞

supxn,
(62)

then

ab − 1
b − 1
≤ λ≤ η≤

ab − 1
a − 1

. (63)

Proof. Let ε> 0 for n≥N0(ε), and we get

λ − ε≤ xn ≤ μ + ε,

a − ε≤ an ≤ b + ε.
(64)

,erefore,

xn+1 ≥ a − ε +
λ − ε
η + ε

 

p

. (65)

Taking the limn⟶∞inf for (65), we obtain

λ≥ a − ε +
λ − ε
η + ε

 

p

. (66)

Since ε> 0 is arbitrary, it follows that

λ≥ a +
λ
η

 

p

. (67)

Similarly,

η≤ b +
η
λ

 
p

. (68)

We get from inequalities (67) and (68) that

ληp ≥ aηp
+ λp

,

ηλp ≤ bλp
+ ηp

.
(69)

Since 0<p< 1 holds, we get

λ1− p ≤ η1− p
, (70)

or equivalently

ληp ≤ ηλp
. (71)

It follows from equation (69) that

aηp
+ λp ≤ bλp

+ ηp
. (72)

So,

ηp
(a − 1)≤ λp

(b − 1), (73)

and one has

η
λ

 
p

≤
b − 1
a − 1

,

λ
η

 

p

≥
a − 1
b − 1

.

(74)

We have from (67), for all n>N0(ε),

λ≥ a +
λ
η

 

p

≥ a +
a − 1
b − 1

�
ab − 1
b − 1

. (75)

Similarly, we obtain from (68) that

η≤
ab − 1
a − 1

. (76)

,is completes the proof.
Now, we will explore attractively of solutions of equation

(6).
Let xn  represent the arbitrary positive solution of (6).

Now, one can find appropriate conditions such that xn 

attracts all positive solutions of (6), that is,
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lim
n⟶∞

xn

xn

� 1. (77)

Now, define yn :

yn �
xn

xn

, n � − 1, 0, 1, . . . , (78)

and then, equation (6) becomes

yn+1 �
an + xn/xn− 1( 

p
yn/yn− 1( 

p

an + xn/xn− 1( 
p . (79)

□

Lemma 2. Let xn  be a positive solution of (6), and then,

(i) y � 1 is the positive fixed point of (79).
(ii) If for some n and yn− 1 ≥yn, then yn+1 < 1. Moreover,

if for some n and yn− 1 <yn, then yn+1 ≥ 1.
(iii) Every semicycle, except first one, of any oscillatory

solution of (79) contains exactly one term.

Proof
(i) ,e proof of (i) is trivial.
(ii) If yn− 1 ≥yn, then (yn/yn− 1)< 1 and

yn+1 �
an + xn/xn− 1( 

p
yn/yn− 1( 

p

an + xn/xn− 1( 
p <

an + xn/xn− 1( 
p

an + xn/xn− 1( 
p � 1.

(80)

In a similar way, the case is the same when yn− 1 <yn

is proven.
(iii) Let yn  be an eventually oscillatory solution of (27)

such that yn− 1 < 1 and yn ≥ 1. It follows from part (ii)
that yn+1 < 1. So, the positive semicycle has exactly
one term. In similar way, one can prove for the
negative semicycle. □

Lemma 3. Every nonoscillatory solution of (79) converges to
1.

Proof. Assuming yn  be a nonoscillatory solution of (79).
We may assume, without losing generality, that yn < 1, for
n≥N0. Clearly, for n≥N0, one has yn+1 <yn; otherwise,
there exists k>N0 such that yk− 1 ≤yk, and it follows by
Lemma 1 (ii) that yk+1 ≥ 1, that is, not possible. As yn  is
decreasing and yn < 1, it converges. Assume

lim
n⟶∞

yn � τ, (81)

where 0< τ ≤ 1. We have to prove that τ � 1. Since

lim
n⟶∞

yn

yn− 1
� 1, (82)

for ε> 0 and n, the sufficiently large one has

yn

yn− 1
 

p

− 1



< ε. (83)

Hence,

yn+1 − 1


 �
xn/xn− 1( 

p

an + xn/xn− 1( 
p





yn

yn− 1
 

p

− 1



≤

yn

yn− 1
 

p

− 1



< ε.

(84)

So, we obtain limn⟶∞yn � 1. □

Lemma 4. If yn  is a positive solution of (79) and suppose
that there exists m ∈ 1, 2, . . . ,{ }, s.t.,

y2m− 1 < 1,

y2m ≥ 1,
(85)

then

y2n− 1 ≥ 1,

yn < 1, n � m, m + 1, . . . , .
(86)

Moreover, if

y2m− 1 ≥ 1,

y2m < 1,
(87)

then

y2n− 1 < 1,

yn ≥ 1, n � m, m + 1, . . . , .
(88)

Proof. If yn  be a solution of (79) such that (85) holds for
m ∈ 1, 2, . . . ,{ }, then we obtain

y2m− 1 �
an + xn/xn− 1( 

p
yn/yn− 1( 

p

an + xn/xn− 1( 
p ≥

an + xn/xn− 1( 
p

an + xn/xn− 1( 
p � 1,

(89)

and by working inductively, one can prove that (86) is
satisfied.

In similar way, one can prove that if (87) holds for
m ∈ 1, 2, . . . ,{ }, then (88) is satisfied. □

Theorem 9. If xn  is a particular positive solution of (6) and
yn  is a positive solution of (79) and suppose that
0<p≤ (1/2) or (1/2)<p< 1, a> 1, and a(a − 1)> b − 1,
then

lim
n⟶∞

yn � 1. (90)

Proof. If yn  is a solution of (79), then it is enough to prove
that

lim
n⟶∞

yn � 1. (91)

Assuming there exists m ∈ 1, 2, . . . ,{ } such that (86) or
(88) hold. We may also assume that (86) holds for
m ∈ 1, 2, . . . ,{ }, and 0<p≤ (1/2) holds. Let
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μ � lim
n⟶∞

inf yn,

θ � lim
n⟶∞

supyn,
(92)

and also, let

k1 � lim
n⟶∞

inf xn,

k2 � lim
n⟶∞

supxn,

(93)

k �
k2

k1
. (94)

Now, considering

F(x, y, z) �
x + y

p
z

p

x + y
p , (95)

for x, y, and z> 0, then one has

zF

zx
�

y
p 1 − z

p
( 

x + y
p

( 
2 ,

zF

zy
�

pxy
p− 1

z
p

− 1( 

x + y
p

( 
2 .

(96)

,us, it can be observed that

(i) F is nonincreasing in x and nondecreasing in y if z> 1
(ii) F is nonincreasing in y and nondecreasing in x if z< 1

Let n≥m. Using (79), one has

y2n+1 � F a2n,
x2n

x2n− 1
,

y2n

y2n− 1
 ,

y2n+2 � F a2n+1,
x2n+1

x2n

,
y2n+1

y2n

 .

(97)

Since (85) holds, so by Lemma 4, one can obtain
y2n− 1

y2n

< 1,

y2n

y2n− 1
≥ 1, n≥m.

(98)

Using (61) and (92)–(95) and the monotone properties
of F, we get

θ ≤F a, k,
θ
μ

  �
a +(θ/μ)

p
k

p

a + k
p ,

μ≥F a, k,
μ
θ

  �
a +(μ/θ)

p
k

p

a + k
p ,

(99)

or

θμp ≤
aμp

+ θp
k

p

a + k
p ,

μθp ≥
aθp

+ μp
k

p

a + k
p .

(100)

,en,

aθpμp− 1
+ μ2p− 1

k
p ≤ θpμp ≤ aμpθp− 1

+ θ2p− 1
k

p
. (101)

Hence,

aθpμp− 1
+ μ2p− 1

k
p ≤ aμpθp− 1

+ θ2p− 1
k

p
. (102)

So,

θp
aμp− 1

+ μp− 1 μ
θ

 
p

k
p

 ≤ μp
aθp− 1

+ θp− 1 θ
μ

 

p

k
p

 ,

(103)

or

θ
μ

 

p

a
μ
θ

 
p− 1

− k
p

 ≤ a −
μ
θ

 
p− 1

k
p
. (104)

,us,

a
θ
μ

− k
p θ

μ
 

p

≤ a −
θ
μ

 

1− p

k
p
,

a
θ
μ

− 1 ≤ k
p θ

μ
 

p

−
θ
μ

 

1− p

⎛⎝ ⎞⎠.

(105)

But, from 0<p≤ (1/2), one can obtain p≤ 1 − p. ,is
implies that

a
θ
μ

− 1 ≤ 0, (106)

or

θ≤ μ. (107)

,us, we get that θ � μ. ,e proof is completed.
Now, suppose that (1/2)<p< 1, a> 1, and

a(a − 1)> b − 1 hold. ,en, using relations (61) and
(92)–(95) and (η/λ)p ≤ ((b − 1)/(a − 1)), (λ/η)p ≥ ((a −

1)/(b − 1)) holds; we obtain

θ≤F a,
η
λ

,
θ
μ

  �
a +(η/λ)

p
(θ/μ)

p

a +(η/λ)
p ≤

a +((b − 1)/(a − 1))(θ/μ)
p

a +((b − 1)/(a − 1))
,

μ≥F a,
η
λ
,
μ
θ

  �
a +(η/λ)

p
(μ/θ)

p

a +(η/λ)
p ≥

a +((b − 1)/(a − 1))(μ/θ)
p

a +((b − 1)/(a − 1))
,

(108)

or
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μpθ ≤
aμp

a +((b − 1)/(a − 1))
+

((b − 1)/(a − 1))θp

a +((b − 1)/(a − 1))
, (109)

μθp≥
aθp

a +((b − 1)/(a − 1))
+

((b − 1)/(a − 1))μp

a +((b − 1)/(a − 1))
. (110)

Since μ≤ θ, it follows that μθp ≤ θμp. ,erefore, from
equation (109), we get

aθp

a +((b − 1)/(a − 1))
+

((b − 1)/(a − 1))μp

a +((b − 1)/(a − 1))

≤
aμp

a +((b − 1)/(a − 1))
+

((b − 1)/(a − 1))θp

a +((b − 1)/(a − 1))
,

(111)

or

aθp

a +((b − 1)/(a − 1))
−

((b − 1)/(a − 1))θp

a +((b − 1)/(a − 1))

≤
aμp

a +((b − 1)/(a − 1))

−
((b − 1)/(a − 1))μp

a +((b − 1)/(a − 1))
.

(112)

Since (1/2)<p< 1, a> 1, and a(a − 1)> b − 1 hold, then
from (112), we have θ≤ μ; so, θ � μ. ,en, the proof is
completed. □

Theorem 10. Assume that 0<p< 1, and an  is a periodic
sequence, s.t., an+2 � an for all n � 0, 1, . . . ,and then, (6) has a
periodic solution of the prime period two.

Proof. For (6) possesses a periodic solution xn  having
prime period two, one can find positive numbers x0 andx− 1,
s.t.,

x− 1 � x1 � a0 +
x0

x− 1
 

p

,

x0 � x2 � a1 +
x1

x0
 

p

.

(113)

Or, equivalently,

x− 1 � a0 +
x0

x− 1
 

p

,

x0 � a1 +
x− 1

x0
 

p

.

(114)

Now, one has to prove that system (114) is consistent.
From (114), one gets

x− 1 − a0(  x0 − a1(  � 1, (115)

and from this, it follows that

x− 1 − a0( 
p+1

�
a1 x− 1 − a0(  + 1( 

p

x
p
− 1

, (116)

x0 − a1( 
p+1

�
a0 x0 − a1(  + 1( 

p

x
p
0

. (117)

Define

F(x) � x − a0( 
p+1

−
a1 x − a0(  + 1( 

p

x
p , x> a0. (118)

,en,

F a0(  � −
1
a0
< 0,

F a0 + 1(  � −
a1 + 1( 

p

a0 + 1( 
p + 1> 0,

(119)

where a1 < a0. So, F has a zero, say x− 1 ∈ (a0, a0 + 1), and in
view of equation (115) and (116), one can get that (6) has a
two-periodic solution. Now, assuming that a1 > a0, one can
define

H(x) � −
a0 x − a1(  + 1( 

p

x
p + x − a1( 

p+1
, x> a1.

(120)

,en,

H a1(  � −
1
a1
< 0,

H a1 + 1(  � −
a0 + 1( 

p

a1 + 1( 
p + 1> 0.

(121)

,us, H has a zero, say x0 ∈ (a1, a1 + 1), and in view of
equations (115) and (116), one can get that (6) has a two-
periodic solution. □

3. Numerical Simulation

In this section, we will provide some simulation in order
to verify obtained theoretical results, for these following
cases are to be considered for the completeness of this
section ():

Case 1: If a � 2 and p � 1.4< a + 1 � 3, then Figure 1
implies that fixed point x � 3 of equation (8) is a sink. ,is
simulation agrees with the conclusion of ,eorem 1.

Case 2: If a � 2 and p � 2.1< a + 1 � 3, then Figure 2
implies that fixed point x � 3 of equation (8) is a sink. ,is
simulation again agrees with the conclusion of ,eorem 1.

Case 3: If α � 0.6, β � 0.103, andp � 0.4, then Figure 3
implies that fixed point (u, v) � (1.6, 1.103) of system (54) is
a sink. Additionally, if α � 0.6, β � 0.103, andp � 0.4, then
p � 0.4< (((β + 1)(α + 1))/ ((β + 1)p + (α + 1)p)) � 0.78

8 Discrete Dynamics in Nature and Society
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Figure 1: Phase portrait of equation (8) with x− 1 � 1.1 andx0 � 1.7.
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Figure 2: Phase portrait of equation (8) with x− 1 � 1.9 andx0 � 2.9.
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Figure 3: Phase portrait of system (54) with (u0, v0) � (1.2, 1.9).
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54629670125335, and hence, this simulation agrees with the
conclusion of ,eorem 7.

Case 4: If α � 0.26, β � 0.1, andp � 0.04, then Figure 4
implies that fixed point (u, v) � (1.26, 1.1) of system (54) is a
sink. Additionally, if α � 0.26, β � 0.1, andp � 0.04, then
p � 0.04< (((β + 1)(α + 1))/((β + 1)p + (α + 1)p)) �

0.6884879889459452, and hence, this simulation again
agrees with the conclusion of ,eorem 7.
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Figure 4: Phase portrait of system (54) with (u0, v0) � (0.3, 1.9).
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