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In the present work, we mainly focus on a new established fractional-order predator-prey system concerning both types of time
delays. Exploiting an advisable change of variable, we set up an isovalent fractional-order predator-prey model concerning a single
delay. Taking advantage of the stability criterion and bifurcation theory of fractional-order dynamical system and regarding time
delay as bifurcation parameter, we establish a new delay-independent stability and bifurcation criterion for the involved
fractional-order predator-prey system.+e numerical simulation figures and bifurcation plots successfully support the correctness
of the established key conclusions.

1. Introduction

Setting up mathematical models to describe the natural
phenomena has become an important topic in real life. +e
interaction of predator population and prey population
plays a significant role in maintaining ecological balance in
nature. In order to grasp the change law of predator pop-
ulation and prey population, a large number of predator-
prey models have been established and many fruits on
dynamical properties of various predator-prey models have
been reported. Usually, time delay often exists in biological
systems due to the lag of the response of different predators
and preys. In many situations, time delay will lead to the loss
of stability, periodic oscillation, bifurcation, and chaotic
behavior of predator-prey models. +us, the study on the
impact of time delay on dynamical nature of predator-prey
models has attracted great interest of many scholars in the
fields of biology and mathematics. For a long time in the
past, lots of valuable works on predator-prey models have
been published. For instance, Dubey et al. [1] investigated
the stability behavior, Hopf bifurcation, and chaos of delayed
predator-prey system. Ren and Shi [2] dealt with the global
boundedness and stability of solutions of a predator-prey

systemwith time delay. Li and Guo [3] introduced a newway
to study the permanence and extinction for a stochastic
prey-predator system involving functional response. Alsa-
kaji et al. [4] made a detailed discussion on permanence,
local and global stabilities, Hopf bifurcation, and a predator-
prey model with time delay. For more publications about
this topic, one can see [5–8].

Here we notice that the works of [1–8] are concerned
with the integer-order predator-prey models. In recent
years, fractional-order dynamical systems have found po-
tential application in numerous areas such as all sorts of
physical waves, neural network systems, biological tech-
nique, finance, automatic control, and so on [9–11]. A lot of
researchers think that fractional-order dynamical system can
more accurately describe the real phenomenon in realistic
world than the classical integer-order ones due to its owned
memory trait and hereditary nature [12]. Nowadays a great
deal of valuable works on fractional-order dynamical sys-
tems have been published (see [13–22]). In particular, the
study on fractional-order predator-prey systems is also
continuously displayed. For example, Yousef and Chandan
Maji [23] revealed the effect of fear for a fractional-order
predator-prey model. Xie et al. [24] proved the non-negative
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and boundedness of a fractional-order predator-prey model
and established some conditions to ensure the existence and
stability of the positive equilibrium point of the fractional-
order predator-prey model. In 2019, Zhou et al. [25] con-
sidered the bifurcation control issue for a fractional-order
predator-prey system involving delays. For more details, one
can see [26–28].

Hopf bifurcation caused by time delay is a vital dy-
namical phenomenon in predator-prey systems. Up to now,
plenty of publications on Hopf bifurcation of integer-order
predator-prey models have been available. +e impact of
time delay on Hopf bifurcation has been revealed. However,
the investigation on Hopf bifurcation for fractional-order
predator-prey models is comparatively few. Recently, some
scholars are devoted to Hopf bifurcation of fractional-order
predator-prey models and some valuable fruits have been
derived. For instance, Alidousti [29] investigated the stability
and Hopf bifurcation problem of a fractional predator-prey
system. Yuan et al. [30] established a set of sufficient con-
ditions to ensure the stability and the onset of Hopf bi-
furcation for a fractional-order predator-prey model. Wang
et al. [31] discussed the stability and bifurcation for a
generalized fractional-order predator-prey system involving
time delay and interspecific competition. Huang et al. [32]
applied a new technique to control Hopf bifurcation of a
fractional predator-prey system involving delays. In 2019,
Xu et al. [42] did a very valuable work on Hopf bifurcation
for delayed neural networks. As to more works about this
theme, we refer the readers to [33–36].

Up to now, the investigation on Hopf bifurcation of
fractional-order delayed predator-prey systems merely in-
volves discrete time delay. To reflect the time lag of response
of predator population and prey population during the
course of interaction of predator and prey in biological
systems, it is very essential to introduce the distributed time
delay into predator-prey models. Now there are only very
few works on Hopf bifurcation of predator-prey system
involving distributed time delay. +us, a natural problem
arises: what is the impact of distributed time delay on Hopf
bifurcation of predator-prey system involving distributed
time delay?+is motives us to deal with the Hopf bifurcation
for predator-prey system involving distributed time delay.

In 2020, Rahman et al. [37] investigated the following
predator-prey system concerning both types of delays:

dw1(t)

dt
� w1(t) a1 − α11 􏽚

t

−∞
U(t − v)w1(v)dv − α12w2(t − ς)􏼢 􏼣,

dw2(t)

dt
� w2(t) −a2 + α21w1(t − ς) − α22 􏽚

t

−∞
U(t − v)w2(v)dv􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where w1(t) denotes the population density of prey at time t

and w2(t) stands for the population density of predator at
time t, a1 > 0 stands for the growth rate of the prey pop-
ulations without predators, a2 > 0 stands for the death rate of
the predator populations without prey, α11 represents the

self-regulation rate for the prey, α12 represents the rate of
predation of the prey by predators, α21 represents the
conversion rate of predators and α22 represents the intra-
specific competition among predators, U(.) denotes the
non-negative continuous delay kernel which is defined on
[0,∞) and is integrable on [0,∞), and ς≥ 0 denotes the
feedback time delay between the predator and the prey. For
details, see [37].

Usually, the kernel function owns the following two
forms:

(i) 􏽒
t

−∞U(v)dv � 1, U(v) � δe− δ(t− v), δ > 0.
(ii) 􏽒

t

−∞U(t − v)dv � 1, U(v) � δe− δv, δ > 0.

Rahman et al. [37] chose kernel function as case (ii). By
means of stability criterion and Hopf bifurcation theory of
delayed differential equation, Rahman et al. [37] established
a sufficient criterion ensuring the stability and the appear-
ance of Hopf bifurcation of model (1). Meanwhile, the
concrete formula determining bifurcation peculiarities is
presented by virtue of center manifold theory and normal
form theorem.

Inspired by the analysis above, we are to analyze the
stability and Hopf bifurcation for fractional-order predator-
prey model involving discrete time delay and distributed
time delay. On the basis of the research of Rahman et al. [37],
in this work, we revise model (1) as the fractional-order
form:

dw
ϱ
1(t)

dt
ϱ � w1(t) a1 − α11 􏽚

t

−∞
U(t − v)w1(v)dv − α12w2(t − ς)􏼢 􏼣,

dw
ϱ
2(t)

dt
ϱ � w2(t) −a2 + α21w1(t − ς) − α22 􏽚

t

−∞
U(t − v)w2(v)dv􏼢 􏼣,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where 0< ρ< 1 is a constant, w1(t) denotes the population
density of prey at time t and w2(t) stands for the population
density of predator at time t, a1 > 0 stands for the growth rate
of the prey populations without predators, a2 > 0 stands for
the death rate of the predator populations without prey, α11
represents the self-regulation rate for the prey, α12 represents
the rate of predation of the prey by predators, α21 represents
the conversion rate of predators and α22 represents the
intraspecific competition among predators, U(.) denotes the
non-negative continuous delay kernel which is defined on
[0,∞) and is integrable on [0,∞), and ς≥ 0 denotes the
feedback time delay between the predator and the prey. For
more implication of the parameters in system (2), one can
see [37]. In this research, we choose the kernel function U(.)

as (ii).
+is article is organized as follows. Section 2 lists several

necessary theories about fractional-order dynamical system.
Section 3 gives the bifurcation condition for model (2)
involving kernel function (ii). Section 4 presents simulation
plots to support the validity of the obtained key conclusions.
Section 5 ends this article.
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2. Basic Principle on Fractional-Order
Dynamical System

In this section, we present some indispensable basic
knowledge about fractional-order dynamical system.

Definition 1 (see [38]). +e Caputo-type fractional-order
derivative is given by

D
ϱ
w(τ) �

1
Γ(k − ϱ)

􏽚
τ

τ0

w
(k)

(u)

(τ − u)
ϱ−k+1 du, (3)

where w(τ) ∈ ([τ0,∞), R), Γ(u) � 􏽒
∞
0 τu− 1e− τdτ, τ ≥ τ0, k

∈ Z+, k − 1≤ ϱ< k.

Lemma 1 (see [39, 40]). For the fractional-order model

dϱv(t)

dt
ϱ � w(t, v(t)), v(0) � v0, (4)

where 0< ϱ≤ 1 and w(t, v(t)): R+ × Rn⟶ Rn. Let v0 be the
equilibrium point of (4). We say that v0 is locally asymp-
totically stable provided that each eigenvalue λ of
(zw(t, v)/zv)|v�v0

obeys |arg(λ)|> (ϱπ/2).

Lemma 2 (see [41]). For the fractional-order model

dϱ1V1(t)

dt
ϱ1 � f11V1 t − ς11( 􏼁 + f12V2 t − ς12( 􏼁 + · · · + f1lVl t − ς1l( 􏼁,

dϱ2V2(t)

dt
ϱ2 � f21V1 t − ς21( 􏼁 + f22V2 t − ς22( 􏼁 + · · · + f2lVl t − ς2l( 􏼁,

⋮

dϱlVl(t)

dt
ϱl � fl1V1 t − ςl1( 􏼁 + fl2V2 t − ςl2( 􏼁 + · · · + fllVl t − ςll( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where ϱj ∈ (0, 1) (j � 1, 2, . . . , l), denote

Δ(s) �

s
ϱ1 − f11e

− sς11 −f12e
− sς12 · · · −f1le

− sς1l

−f21e
− sς12 s

> 2 − f22e
− sς22 · · · −f2le

− sς2l

⋮ ⋮ ⋱ ⋮

−fl1e
− sςl1 −fl2e

− sςl2 · · · s
> l − flle

− sςll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

We say that the zero solution of model (5) is asymp-
totically stable provided that det(Δ(s)) � 0 possesses the
roots with negative real parts.

For the fractional-order model

dϱ1V1(t)

dt
ϱ1 � f11V1(t) + f12V2(t) + · · · + f1lVl(t),

dϱ2V2(t)

dt
ϱ2 � f21V1(t) + f22V2(t) + · · · + f2lVl(t),

⋮

dϱlVl(t)

dt
ϱl � fl1V1(t) + fl2V2(t) + · · · + fllVl(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where 0< ϱj ≤ 1 (j � 1, 2, . . . , l), the characteristic equation
of model (7) owns the following expression:

det

s
ϱ1 − f11 −f12 · · · −f1l

−f21 s
ϱ2 − f22 · · · −f2l

⋮ ⋮ ⋱ ⋮

−fl1 −fl2 · · · s
ϱl − fll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (8)

Assume that ϕh � (ϵh/εh), ϵh, εh ∈ Z+, (ϵh, εh) � 1 and let
ε be the lowest common multiple of βh of ψh, h � 1, 2, . . . , l.

Lemma 3 (see [41]). Assume that each root λs of the fol-
lowing equation:

det

λεϕ1 − f11 −f12 · · · −f1l

−f21 λεϕ2 − f22 · · · −q2l

⋮ ⋮ ⋱ ⋮

−fl1 −fl2 · · · λεϕl − fll

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0, (9)

conforms to |arg(λ)|> (π/2ε); then, the zero solution to model
(7) is locally asymptotically stable.

Discrete Dynamics in Nature and Society 3



3. Bifurcation Exploration for Predator-Prey
Model (2)

In this section, we are to study the stability property and the
appearance of Hopf bifurcation of predator-prey model (2).
Set

w3(t) � 􏽚
t

−∞
U(t − v)w1(v)dv

� 􏽚
t

−∞
δe

− δ(t− v)
w1(v)dv,

w4(t) � 􏽚
t

−∞
U(t − s)w2(s)ds

� 􏽚
t

−∞
δe

− δ(t− v)
w2(v)dv,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

and then

dw3(t)

dt
� 􏽚

t

−∞
δe

− δ(t− v)
w1(v)dv􏼢 􏼣

′

� −δw3(t) + δw1(t),

dw4(t)

dt
� 􏽚

t

−∞
δe

− δ(t− v)
w2(v)dv􏼢 􏼣

′

� −δw4(t) + δw2(t).

(11)

+us, system (2) becomes the following equivalent form:

dw
ϱ
1(t)

dt
ϱ � w1(t) a1 − α11w3(t) − α12w2(t − ς)􏼂 􏼃,

dw
ϱ
2(t)

dt
ϱ � w2(t) −a2 + α21w1(t − ς) − α22w4(t)􏼂 􏼃,

dw3(t)

dt
� −δw3(t) + δw1(t),

dw4(t)

dt
� −δw4(t) + δw2(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Assume that

(H1) a1α21 > a2α11. (13)

It is easy to obtain that system (12) owns the equilibrium
points E0

1(0, 0, 0, 0), E0
2((a1/α11), 0, (a1/α11), 0), and

E0
3(w0

1, w0
2, w0

3, w0
4), where

w
∗
1 �

a1α22 + a2α12
α11α22 + α12α21

,

w
∗
2 �

a1α21 − a2α11
α11α22 + α12α21

,

w
∗
3 �

a1α22 + a2α12
α11α22 + α12α21

,

w
∗
4 �

a1α21 − a2α11
α11α22 + α12α21

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

If (H1) holds, then the equilibrium point
E0

3(w0
1, w0

2, w0
3, w0

4) is a positive equilibrium point. Con-
sidering the biological implication of predator-prey model
(2), we only deal with the positive equilibrium point
E0

3(w0
1, w0

2, w0
3, w0

4). +e linear system of equation (12)
around E0

3(w0
1, w0

2, w0
3, w0

4) is

dw
ϱ
1(t)

dt
ϱ � b1w1(t) + b2w2(t − ς) + b3w3(t),

dw
ϱ
2(t)

dt
ϱ � c1w1(t − ς) + c2w2(t) + c3w4(t),

dw3(t)

dt
� −δw3(t) + δw1(t),

dw4(t)

dt
� −δw4(t) + δw2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where

b1 � a1 − α11w
0
3 − α12w

0
2,

b2 � −α12w
0
1,

b3 � −α11w
0
1,

c1 � α21w
0
2,

c2 � α21w
0
1 − a2 − α22w

0
4,

c3 � α22w
0
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

+e characteristic equation of (15) takes the following
form:
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det

s
ϱ

− b1 −b2e
− sς

−b3 0

−c1e
− sς

s
ϱ

− c2 0 −c3

−δ 0 s + δ 0

0 −δ 0 s + δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (17)

Set ϱ � ϵ/ε, where ϵ, ε ∈ Z+ and (ϵ, ε) � 1. Let λ � s1/ε.
When ς � 0, then equation (17) becomes

det

s
ϱ

− b1 −b2 −b3 0

−c1 s
ϱ

− c2 0 −c3

−δ 0 s + δ 0

0 −δ 0 s + δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 0. (18)

Lemma 4. Assume that ς � 0 and all the roots λ of equation
(18) obey |arg(λ)|> (π/2ε); then, the positive equilibrium
point E0

3(w0
1, w0

2, w0
3, w0

4) of model (12) is locally asymptoti-
cally stable.

Proof. Clearly, when ς � 0, then characteristic equation (17)
becomes equation (18). By virtue of Lemma 3, one can easily
obtain that Lemma 4 holds.

By virtue of equation (17), one obtains

s
2ϱ+2

+ σ1s
2ϱ+1

+ σ2s
2ϱ

+ σ3s
ϱ+2

+ σ4s
ϱ+1

+ σ5s
ϱ

+σ6s
2

+ σ7s + σ8 + σ9s
2

+ σ10s + σ11􏼐 􏼑e
− 2sς

� 0,
(19)

where

σ1 � 2δ,

σ2 � δ2,

σ3 � − b1 + c2( 􏼁,

σ4 � −c3δ − 2δ b1 + c2( 􏼁 − b3δ,

σ5 � −c3δ
2

− b1 + c2( 􏼁δ2 − b3δ
2
,

σ6 � b1c2,

σ7 � δ b1c3 + 2b1c2 + b3c2( 􏼁,

σ8 � δ2 b3c3 + b1c3 + b3c2 + b1c2( 􏼁,

σ9 � −b2c1,

σ10 � −2δ2b2c1,

σ11 � −b2c1δ
2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Assume that s � iχ � χ(cos(π/2) + i sin(π/2)) is the root
of equation (19); then, one gets

χ2ϱ+2 cos
(2ϱ + 2)π

2
+ i sin

(2ϱ + 2)π
2

􏼠 􏼡 + σ1χ
2ϱ+1 cos

(2ϱ + 1)π
2

+ i sin
(2ϱ + 1)π

2
􏼠 􏼡􏼢

+ σ2χ
2ϱ

(cos ϱπ + i sin ϱπ) + σ3χ
ϱ+2 cos

(ϱ + 2)π
2

+ i sin
(ϱ + 2)π

2
􏼠 􏼡 + σ4χ

ϱ+1 cos
(ϱ + 1)π

2
+ i sin

(ϱ + 1)π
2

􏼠 􏼡

+ σ5σ
ϱ cos
ϱπ
2

+ i sin
ϱπ
2

􏼒 􏼓 − σ6χ
2

+ iσ7χ + σ8 + −σ9χ
2

+ iσ10χ + σ11􏼐 􏼑(cos 2 χς − i sin 2 χς) � 0.

(21)

By means of equation (21), we get
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A1 cos 2 χς + A2 sin 2 χς � A3,

A2 cos 2 χς − A1 sin 2 χς � A4,
􏼨 (22)

where

A1 � σ11 − σ9χ
2
,

A2 � σ10χ,

A3 � −χ2ϱ+2 cos
(2ϱ + 2)π

2
− σ1χ

2ϱ+1 cos
(2ϱ + 1)π

2
− σ2χ

2ϱ cos ϱπ

−σ3χ
ϱ+2 cos

(ϱ + 2)π
2

− σ4χ
ϱ+1 cos

(ϱ + 1)π
2

− σ5σ
ϱ cos
ϱπ
2

+σ6χ
2

− σ8,

A4 � −χ2ϱ+2 sin
(2ϱ + 2)π

2
− σ1χ

2ϱ+1 sin
(2ϱ + 1)π

2
− σ2χ

2ϱ sin ϱπ

−σ3χ
ϱ+2 sin

(ϱ + 2)π
2

− σ4χ
ϱ+1 sin

(ϱ + 1)π
2

− σ5σ
ϱ sin
ϱπ
2

−σ7χ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

It follows from (22) that

cos 2 χς �
A1A3 + A2A4

A
2
1 + A

2
2

, (24)

A
2
1 + A

2
2 � A

2
3 + A

2
4. (25)

In equation (23), let

c1 � −cos
(2ϱ + 2)π

2
,

c2 � −σ1 cos
(2ϱ + 1)π

2
,

c3 � −σ2 cos ϱπ,

c4 � −σ3 cos
(ϱ + 2)π

2
,

c5 � −σ4 cos
(ϱ + 1)π

2
,

c6 � −σ5 cos
ϱπ
2

,

c7 � σ6,

c8 � −σ8,

ρ1 � −sin
(2ϱ + 2)π

2
,

ρ2 � −σ1 sin
(2ϱ + 1)π

2
,

ρ3 � −σ2 sin ϱπ,

ρ4 � −σ3 sin
(ϱ + 2)π

2
,

ρ5 � −σ4 sin
(ϱ + 1)π

2
,

ρ6 � −σ5 sin
ϱπ
2

,

ρ7 � −σ7,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)
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and then (21) becomes

A1 � σ11 − σ9χ
2
,

A2 � σ10χ,

A3 � c1χ
2ρ+2

+ c2χ
2ρ+1

+ c3χ
2ρ

+ c4χ
ρ+2

+c5χ
ρ+1

+ c6χ
ρ

+ c7χ
2

+ c8,

A4 � ρ1χ
2ρ+2

+ ρ2χ
2ρ+1

+ ρ3χ
2ρ

+ ρ4χ
ρ+2

+ρ5χ
ρ+1

+ ρ6χ
ρ

+ ρ7χ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

By virtue of (25) and (27), one gets

ϑ1χ
4ϱ+4

+ ϑ2χ
4ϱ+3

+ ϑ3χ
4ϱ+2

+ ϑ4χ
4ϱ+1

+ ϑ5χ
4ϱ

+ ϑ6χ
3ϱ+4

+ ϑ7χ
3ϱ+3

+ ϑ8χ
3ϱ+2

+ ϑ9χ
3ϱ+1

+ ϑ10χ
3ϱ

+ ϑ11χ
2ϱ+4

+ ϑ12χ
2ϱ+3

+ ϑ13χ
2ϱ+2

+ ϑ14χ
2ϱ+1

+ ϑ15χ
2ϱ

+ ϑ16χ
ϱ+4

+ ϑ17χ
ϱ+3

+ ϑ18χ
ϱ+2

+ ϑ19χ
ϱ+1

+ ϑ20χ
ϱ

+ ϑ21χ
4

+ ϑ22χ
2

+ ϑ23 � 0,

(28)

where

ϑ1 � c
2
1 + ρ21,

ϑ2 � 2 c1c2 + ρ1ρ2( 􏼁,

ϑ3 � c
2
2 + ρ22 + 2 c1c3 + ρ1ρ3( 􏼁,

ϑ4 � 2 c2c3 + ρ2ρ3( 􏼁,

ϑ5 � c
2
3 + ρ23,

ϑ6 � 2 c1c4 + ρ1ρ4( 􏼁,

ϑ7 � 2 c1c5 + ρ1ρ5( 􏼁,

ϑ8 � 2 c1c6 + c2c5 + c3c4 + ρ1ρ6 + ρ2ρ5 + ρ3ρ4( 􏼁,

ϑ9 � 2 c2c6 + c3c5 + ρ2ρ6 + ρ3ρ5( 􏼁,

ϑ10 � 2 c3c6 + ρ3ρ6( 􏼁,

ϑ11 � c
2
4 + ρ24 + 2 c1c7 + ρ1ρ7( 􏼁,

ϑ12 � 2 c4c5 + c2c7 + ρ4ρ5 + ρ1ρ7( 􏼁,

ϑ13 � c
2
5 + ρ25 + 2 c4c6 + c3c7 + c1c8 + ρ4ρ6 + ρ2ρ7( 􏼁,

ϑ14 � 2 c5c6 + c2c8 + ρ5ρ6 + ρ3ρ7( 􏼁,

ϑ15 � c
2
6 + ρ26,

ϑ16 � 2c4c7,

ϑ17 � 2 c5c7 + ρ4ρ7( 􏼁,

ϑ18 � 2 c6c7 + c4c8 + ρ5ρ7( 􏼁,

ϑ19 � 2 c5c8 + ρ6ρ7( 􏼁,

ϑ20 � 2c6c8,

ϑ21 � c
2
7 − σ29,

ϑ22 � 2c7c8 − ρ27 − σ211 + 2σ9σ11,

ϑ23 � c
2
8 − σ211.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Denote

Q(χ) � ϑ1χ
4ϱ+4

+ ϑ2χ
4ϱ+3

+ ϑ3χ
4ϱ+2

+ ϑ4χ
4ϱ+1

+ ϑ5χ
4ϱ

+ ϑ6χ
3ϱ+4

+ ϑ7χ
3ϱ+3

+ ϑ8χ
3ϱ+2

+ ϑ9χ
3ϱ+1

+ ϑ10χ
3ϱ

+ ϑ11χ
2ϱ+4

+ ϑ12χ
2ϱ+3

+ ϑ13χ
2ϱ+2

+ ϑ14χ
2ϱ+1

+ ϑ15χ
2ϱ

+ ϑ16χ
ϱ+4

+ ϑ17χ
ϱ+3

+ ϑ18χ
ϱ+2

+ ϑ19χ
ϱ+1

+ ϑ20χ
ϱ

+ ϑ21χ
4

+ ϑ22χ
2

+ ϑ23 � 0.

(30)

Now the following assumption is given.
(H2) ϑ23 < 0, where ϑ23 is defined by (29). □

Lemma 5. Assume that (H2) is fulfilled; then, equation (19)
possesses at least a pair of purely imaginary roots.

Proof. It is easy to see that Q(0) � ϑ23 < 0 and
limχ⟶∞Q(χ) � +∞. +en, one can conclude that equation
(28) owns at least one positive root, which implies that
equation (19) owns at least a pair of purely imaginary roots.

In equation (28), because the parameter ϱ is a fractional
number, it is not inconvenient to solve the solution of
equation (28). So, we are to change equation (28) to an
isovalent equation with the powers involving integer
number. Let x � χ1/ε; then, χ � xε. It follows from equation
(28) that

ϑ1x
4ϵ+4ε

+ ϑ2x
4ϵ+3ε

+ ϑ3x
4ϵ+2ε

+ ϑ4x
4ϵ+ε

+ ϑ5x
4ϵ

+ ϑ6x
3ϵ+4ε

+ ϑ7x
3ϵ+3ε

+ ϑ8x
3ϵ+2ε

+ ϑ9y
3ϵ+ε

+ ϑ10x
3ϵ

+ ϑ11x
2ϵ+4ε

+ ϑ12x
2ϵ+3ε

+ ϑ13x
2ϵ+2ε

+ ϑ14x
2ϵ+ε

+ ϑ15y
2ϵ

+ ϑ16x
ϵ+4ε

+ ϑ17x
ϵ+3ε

+ ϑ18x
ϵ+2ε

+ ϑ19x
ϵ+ε

+ ϑ20x
ϵ

+ ϑ21x
4ε

+ ϑ22x
2ε

+ ϑ23 � 0.

(31)

By virtue of computer, we can easily find the roots of
equation (31). Suppose that equation (31) owns the positive
root which is denoted by xj; then, equation (28) owns the
root χj � xε

j > 0. Suppose that equation (31) owns h positive
roots xj, j � 1, 2, . . . , h. It follows from (24) that

ςl
j �

1
2χj

arccos
A1A3 + A2A4

A
2
1 + A

2
2

+ 2lπ􏼢 􏼣,

j � 1, 2, . . . , h; l � 0, 1, 2, . . . .

(32)

Set

ς0 � ς(0)
j0 min

j�1,2,...,h
ς0j􏽮 􏽯,

χ0 � χ|ς�ς0.

(33)

Next, the following hypothesis is prepared as follows.
(H3)D11D21 + D12D22 > 0, where

Discrete Dynamics in Nature and Society 7



D11 � (2ϱ + 2)χ2ϱ+10 cos
(2ϱ + 1)π

2
+ σ1(2ϱ + 1)χ2ϱ0 cos ϱπ

+2ρσ2χ
2ϱ−1
0 cos

(2ϱ − 1)π
2

+ 2σ3(ϱ + 2)σϱ+10 cos
(ϱ + 1)π

2

+σ4(ϱ + 1)σϱ0 cos
ϱπ
2

+ σ5ϱσ
ϱ−1
0 cos

(ϱ − 1)π
2

+ σ7

+σ10 cos 2χ0ς0 + 2σ9 sin 2χ0ς0,

D12 � (2ϱ + 2)χ2ϱ+10 sin
(2ϱ + 1)π

2
+ σ1(2ϱ + 1)χ2ϱ0 sin ϱπ

+2ρσ2χ
2ϱ−1
0 sin

(2ϱ − 1)π
2

+ 2σ3(ϱ + 2)σϱ+10 sin
(ϱ + 1)π

2

+σ4(ϱ + 1)σϱ0 sin
ϱπ
2

+ σ5ϱσ
ϱ−1
0 sin

(ϱ − 1)π
2

+ 2σ6

−σ10 sin 2χ0ς0 + 2σ9 cos 2χ0ς0,

D21 � 2χ0 σ11 − σ9χ
2
0􏼐 􏼑cos 2χ0ς0 + 2χ20σ10 sin 2χ0ς0,

D22 � 2χ20σ10 cos 2χ0ς0 − 2χ0 σ11 − σ9χ
2
0􏼐 􏼑sin 2χ0ς0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

Lemma 6. Let s(ς) � ψ1(ς) + iψ2(ς) be the root of equation
(19) around ς � ς0 satisfying ψ1(ς0) � 0,ψ2(ς0) � χ0; then,
one gets Re[ds/dς]|ς�ς0 ,χ�χ0 > 0.

Proof. By virtue of equation (19), we get
(2ϱ + 2)s

2ϱ+1
+ σ1(2ϱ + 1)s

2ϱ
+ 2ϱσ2s

2ϱ− 1
+ σ3(ϱ + 2)s

ϱ+1
􏽨

+ σ4(ϱ + 1)s
ϱ

+ σ5ϱs
ϱ− 1

+ 2σ6s + σ7􏽩
ds

dς

+ 2σ9s + σ10( 􏼁e
− 2sςds

dς

− 2e
− 2sς ds

dς
ς + s􏼠 􏼡 σ9s

2
+ σ10s + σ11􏼐 􏼑 � 0.

(35)

It follows from (35) that
ds

dς
􏼢 􏼣

− 1

�
D1(s)

D2(s)
−
ς
s
, (36)

where

D1(s) � (2ρ + 2)s
2ρ+1

+ σ1(2ρ + 1)s
2ρ

+ 2ρσ2s
2ρ− 1

+ 2σ3(ρ + 2)s
ρ+1

+σ4(ρ + 1)s
ρ

+ σ5ρs
ρ− 1

+ 2σ6s + σ7 + 2σ9s + σ10( 􏼁e
− 2sς

,

D2(s) � 2se
− 2sς σ9s

2
+ σ10s + σ11􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(37)

+en,

Re
ds

dς
􏼢 􏼣

−1

ς�ς0 ,χ�χ0

� Re
D1(s)

D2(s)
􏼢 􏼣

ς�ς0 ,χ�χ0

�
D11D21 + D12D22

D
2
21 + D

2
22

.

(38)

By (H3), one has

Re
ds

dς
􏼢 􏼣

−1

ς�ς0 ,χ�χ0

> 0, (39)

which completes the proof.
According to the study above, one gets the following

conclusion. □

Theorem 1. Suppose that (H1)–(H3) are fulfilled and
every root λ for equation (18) satisfies |arg(λ)|> (π/2ε); then,
the positive equilibrium point of model (2) is locally as-
ymptotically stable provided that 0≤ ς< ς0 and a Hopf bi-
furcation takes place around the positive equilibrium point
provided that ς � ς0.

Remark 1. In 2020, Rahman et al. [37] dealt with the Hopf
bifurcation for integer-order predator-prey model in-
volving discrete and distributed delay. In this article, we
have dealt with Hopf bifurcation for fractional-order
predator-prey model involving discrete and distributed
delay. +e method of research in [37] cannot be used to
investigate the fractional-order case. From this viewpoint,
we say that the research is a good complement of the work
of [37].

Remark 3. For many works on Hopf bifurcation of frac-
tional-order predator-prey systems, numerous scholars fo-
cus on the fractional-order predator-prey models involving
discrete time delay and do not involve the distributed time
delay. In this article, we are concerned with the fractional-
order predator-prey model involving discrete time delay and
distributed time delay. After a suitable variable substitution,
we obtain an isovalent fractional-order predator-prey model
which includes integer-order operator and fractional-order
operator. +e discussion on the characteristic equation of
the isovalent fractional-order predator-prey model has be-
come more complex. So, we think that our works enrich and
develop the stability and bifurcation theory of fractional-
order dynamical system.

4. Simulation Figures

Given the following predator-prey model:
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Figure 1: Continued.
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Figure 1: +e stable behavior of system (40) when ς � 0.04< ς0 � 0.05.
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dw
ϱ
1(t)

dt
ϱ � w1(t) 1 − 0.5w3(t) − 0.6w2(t − ς)􏼂 􏼃,

dw
ϱ
2(t)

dt
ϱ � w2(t) −1 + 1.2w1(t − ς) − 0.5w4(t)􏼂 􏼃,

dw3(t)

dt
� −0.3w3(t) + 0.3w1(t),

dw4(t)

dt
� −0.3w4(t) + 0.3w2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(40)

it is not difficult to derive that model (40) owns a unique
positive equilibrium point
E0

3(w0
1, w0

2, w0
3, w0

4) � (1.1340, 0.7216, 1.1340, 0.7216). Select
ϱ � 0.93 � (93/100). +en, ϵ � 93, ε � 100. By means of
computer software, one derives χ0 � 1.8722, ς0 � 0.05, ϑ23 �

−0.8347,D11 � 0.5091,

D12 � 0.6783,D21 � −0.4377,D22 � 0.7901. +en,
D11D21 + D12D22 � 0.3131> 0. Furthermore, each root λ of
equation (18) satisfies |arg(λ)|> (π/200). So, all the as-
sumptions of +eorem 1 are satisfied. +erefore,
E0

3(1.1340, 0.7216, 1.1340, 0.7216) of model (40) is locally
asymptotically stable for 0≤ ς< 0.5. To illustrate this situa-
tion, we select ς � 0.04< ς0 � 0.05.+e computer simulation
plots are presented in Figure 1. Figure 1 indicates that the
variables w1(t), w2(t), w3(t), w4(t) tend to
1.1340, 0.7216, 1.1340, 0.7216, respectively. When ς passes
through ς0 � 0.05, then a family of Hopf bifurcation caused
by time delay ς takes place in the neighborhood of
E0

3(1.1340, 0.7216, 1.1340, 0.7216). To verify this situation,
we select ς � 0.067> η0 � 0.05. +e computer simulation
plots are shown in Figure 2. Figure 2 suggests that the
variables w1(t), w2(t), w3(t), w4(t) will exhibit periodic
oscillatory phenomenon. Moreover, the bifurcation plots are
drawn in Figures 3–6. Figures 3–6 show that the bifurcation
value of model (40) is roughly equal to 0.05.
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Figure 2: Hopf bifurcation phenomenon of system (40) when ς � 0.07> ς0 � 0.05.
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5. Conclusions

+e investigation on the stability and bifurcation peculiarity
of delayed predator-prey models plays a vital role in
maintaining ecological balance in real world. In this work,
based on the work of [37], we set up a new fractional-order
predator-prey model concerning discrete delay and dis-
tributed delay. By virtue of apposite change of variable, we
derive an equivalent fractional-order predator-prey model
concerning one delay. By analyzing the characteristic
equation of the equivalent fractional-order predator-prey
model and regarding the time delay as bifurcation param-
eter, the stability and bifurcation condition for the involved
predator-prey model is established. +e influence of time
delay on the stability and bifurcation of the involved
predator-prey model has been revealed. +e computer
simulation plots and bifurcation diagrams are displayed to
sustain the validity of the derived main results.
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