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Although energy-related factors, such as energy intensity and energy consumption, are well recognized as major drivers of carbon
dioxide emission in China, little is known about the time-varying impacts of other macrolevel nonenergy factors on carbon
emission, especially those from macroeconomic, financial, household, and technology progress indicators in China. This paper
contributes to the literature by investigating the time-varying predictive ability of 15 macrolevel indicators for China’s carbon
dioxide emission from 1982 to 2017 with a dynamic model averaging (DMA) method. The empirical results show that, firstly, the
explanatory power of each nonenergy predictor changes significantly with time and no predictor has a stable positive/negative
impact on China’s carbon emissions throughout the whole sample period. Secondly, all these predictors present a distinct
predictive ability for carbon emission in China. The proportion of industry production in GDP (IP) shows the greatest predictive
power, while the proportion of FDI in GDP has the smallest forecasting ability. Interestingly, those Chinese household features,
such as Engel’s coefficient and household savings rate, play very important roles in the prediction of China’s carbon emission. In
addition, we find that IP are losing its predictive power in recent years, while the proportion of value-added of the service sector in
GDP presents not only a leading forecasting weight, but a continuous increasing prediction power in recent years. Finally, the
dynamic model averaging (DMA) method can produce the most accurate forecasts of carbon emission in China compared to

other commonly used forecasting methods.

1. Introduction

As an important part of the atmosphere, greenhouse gases,
i.e., carbon dioxide (CQO,), nitrous oxide, and methane, act
just like a blanket, can absorb infrared radiation, and prevent
it from escaping into outer space, maintaining the tem-
perature of Earth’s atmosphere and surface. However, since
the beginning of the Industrial Revolution in the early 1800s,
the concentration of greenhouse gases, especially CO,, in the
atmosphere, has greatly increased because of the great
consumptions of fossil fuels. The level of CO, in the at-
mosphere has increased by more than 40 percent, from
about 280 parts per million (ppm) in the 1800s to 400 ppm
recently. The increase in CO, causes the gradual warming of
the Earth’s atmosphere and surface, which is known as
global warming. The process of global warming would cause

serious natural and societal effects such as extreme weather
events, a rise in sea levels, and increasing ocean acidification.

In addition, China has become the largest CO, emissions
country in the world, by the end of 2019, with a share as
much as 28.8% of the total amount [1]. Thus, determining
the major factors that would have an effect on the growth
rate of China’s carbon emissions is a key task for policy-
makers. Our research contributes to the literature on this
issue in the following three points.

Firstly, many research studies have proved the impacts of
energy-related factors, such as energy consumption per
capita, total energy consumption, fossil fuel energy con-
sumption, renewable energy consumption, nuclear energy
consumption, and coal consumption, on CO, emission (see
[2-9] and among many others). This paper, however, pays
attention to those nonenergy indicators from
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macroeconomy (especially from finance sectors), household
wealth conditions, and technical progress level, which have
not been investigated in a comprehensive framework in
previous research studies. More specifically, the Chinese
household features, such as household wealth or saving
(consumption) behaviors, have not been investigated re-
garding their impacts on China’s CO, emission in the
previous literature. In addition, patent number is commonly
used as a proxy of technical progress in extant research
studies. However, these patent data are not available for
China in the early 1980s. Therefore, in our research, we use
the ratios of total R&D to GDP as well as the number of
college students to China’s population as the other two
proxies to measure the technical progress condition in
China.

Secondly, in terms of research methods, constant co-
efficient (CC) models, i.e., multivariate linear regression,
cointegration, VECM, or ARDL, which have the advantages
of providing simple and easy estimates, are widely used for
investigating the impacts of different factors on the Chinese
CO, emission. It is, however, well documented in economic
and econometric researches that CC models have the ob-
vious shortcoming that they cannot depict the time-varying
effects of one variable on another. It is also well known that
major policy switching, business cycle, and economy cer-
tainty may alter the dependence structure between CO,
emission and its influential factors. Thus, it is very important
and necessary to account for these time-varying effects by
using models with time-varying parameter (TVP) setting.
The TVP method is useful for exploring the time-varying
connections between the explanatory variable and the
explained variable because it can produce the time-varying
parameters for explanatory variables. Thus, we utilize both
traditional CC and TVP OLS models to forecast China’s CO,
emission in recent years and evaluate their performances
within several evaluation criteria.

Lastly, many recent research studies use a large number
of factors to detect their impacts on China’s CO, emission
(see [10, 11] and among many others). But using too many
explanatory variables in an econometric model, no matter it
is a CC or TVP model has some clear drawbacks. Koop and
Korobilis [12] indicate that a model with too many ex-
planatory variables often leads to overfitting in-sample and,
thus, forecasting poorly out-of-sample. Besides, studies have
shown that a fixed set of explanatory variables may not
always be related to the explained variable throughout a long
time period [3, 13-18]. In other words, during different time
periods and/or under different policy conditions, the in-
fluence of each determinant on China’s CO, emission may
not be fixed. Research studies further indicate that a model
with the fixed set of predictors may behave inconsistently
over time [19-21]. These problems can be solved by per-
forming a dynamic model selection process at each time
point, while the computational burden of this process is
huge. In the process of dynamic model selection, if n pre-
dictors are given, we need to evaluate 2n models at each time
point, so throughout the evaluation period of T, the total
number of models to be assessed will be as large as 2 nT. This
computational task would be difficult to achieve when #n and
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T are large. Therefore, the model averaging method, such as
Bayesian model averaging (BMA) and forecast combination,
is a preferred choice for improving the forecasting accuracy.
Model averaging method is useful for achieving stable and
accurate forecasts. However, either forecast combination or
BMA method is difficult to capture each model’s time-
varying contribution because the weights they assigned for
combining different models are fixed over time [19, 21, 22].
To address these problems, we further utilize a dynamic
model averaging (DMA) method, which is proposed by
Raftery et al. [23] and widely employed in recent researches
[24-27], to carry out our task of forecasting China’s CO,
emission with many predictors. Using two forgetting factors,
DMA combines different models in a dynamic way, allowing
the coefficients of predictors and the sets of predictors to
change over time. These two forecasting factors can also
simplify the model selection process which has a huge
computational task.

The remainder of this paper is organized as follows:
Section 2 reviews the extant literature on the topic of im-
pactors on China’s carbon emission. Section 3 describes the
data used in this paper. Methodologies are introduced in
Section 4. Section 5 analyzes the empirical results and
Section 6 concludes the paper.

2. Literature Review

Numerous studies have been trying to investigate the factors
that would influence CO, emissions. Various variables, such
as population activities, energy consumption patterns,
economic growth, innovation and technology, urbanization
process, and government policies, are used in these studies to
explain their effects on carbon emissions. These impact
factors can be summarized into three major categories.
Firstly, energy consumption is an output of human
activities that produces carbon emission. From this per-
spective, population growth, population density, and ur-
banization process in an economy are supposed to play
significant roles in carbon dioxide emissions. Zhang and Tan
[28] investigate the connections between CO, emissions and
population factors using the Stochastic Impacts by Re-
gression on Population, Affluence, and Technology (STIR-
PAT) method. They found a positive connection between
carbon emissions and population. STIRPAT method is also
adopted by Guan et al. [29] to discuss the main drivers of
China’s CO, emissions. According to their results, CO,
emission is negatively correlated with disposable income,
population density, and development of tertiary industries,
whereas positively correlated with GDP per capita, sec-
ondary industries, and urban employment. Employing four
Chinese megacities (Beijing, Tianjin, Shanghai, and
Chonggqing) as cases, Shi et al. [30] conclude that the im-
provement of resident living standards and the development
of manufacturing in these cities are the main drivers of
carbon emission per capita from 2010 to 2015. Yao et al. [31]
use the mediating effect model and the threshold regression
model, finding that the urbanization in China helps to
decline the carbon emission scale, carbon intensity, and
carbon emission per capita in recent years. Based on the data
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of consumption level, population size, and population
structure in China from 1978 to 2008, Zhu and Peng [32] use
the ridge regression method and find that the urbanization
of population is the key driver for the growth of China’s CO,
emission. Moreover, population structure, population age,
urbanization, and household size are also significantly as-
sociated with carbon emissions. Ma et al. [33] further note
that wealth, economic structure, energy structure, pop-
ulation structure, and the development of technology are
also major influential factors of China’s carbon emission.
Meng et al. [34] investigate the impact of local officials’
promotion incentives on China’s CO, emission. The results
indicated the significant influence of age, tenure, and local
officials’ promotion sources on total CO, emissions.

Secondly, economic growth is regarded as another
major driver of excessive energy consumption in China
[28, 29, 35]. It is agreed that there are significant positive
connections among China’s CO, emission and economic
growth and energy consumption. Based on China’s energy
consumption data from 2005 to 2016, Ma et al. [36] find
that aggressive economic output and increasing energy
consumption basically promote China’s carbon emissions.
More specifically, CO, emissions from China’s energy
consumption mainly come from industry, residential
consumption sector, transportation industry, and tertiary
industry. Using the structural decomposition analysis
(SDA) approach, Chen et al. [37] measure the construction
industry CO, emissions difference between the USA and
China by the structural decomposition analysis (SDA) and
found that the four largest contributors to the difference of
China and USA construction carbon emissions are energy
intensity, final demand ration effect, final demand effect,
and the carbonization factor effect. These findings suggest
the adverse interaction between construction carbon
emissions and economic growth. Thus, they propose that
the Chinese government should take efforts to change the
economic development mode. By formulating the indus-
trial subsector decomposition analysis in Tianjin province,
China, Kang et al. [38] find that the economic growth is the
most important influential factor for driving the growth of
CO, emissions, while energy efficiency improvement is
crucial to promote the decreases of CO, emissions. By
using the LMDI method, Wang and Yang [39] show that
the main influential factors for the industrial CO, emis-
sions in Beijing-Tianjing-Hebei economic band including
the rapid economic growth, energy structure, and energy
intensity. Ma et al. [40] also employ the LMDI method to
examine the connection between economic growth and
household CO, emissions in China. Their results show that
energy intensity and economic growth are the two primary
drivers of carbon emission fluctuations. By using the
DPSIR and PLS-SEM methods, Wei et al. [35] find that the
economic development level and the urbanization are the
two main drivers for CO, emissions. In summary, sus-
tainable economic growth and long-term industrial
transformation would lead to the continued growing for
the total CO, emissions [41].

Lastly, financing activities can adjust the economic
structure and improve economic efficiency, since finance

sector is generally considered to be of low resource con-
sumption and high value-added. So many researchers
suggest that improving finance sector is an effective way to
reduce carbon dioxide intensity. Jalil and Feridun [42] ex-
plore the influence of energy consumption, economic
growth, and financial development on China’s CO, emis-
sions from 1953 to 2006 and prove that a decrease in carbon
emissions can be caused by financial development. Other
empirical analysis also confirms that the development of
tertiary industries, including finance sector development, is
the key influential factor for CO, emission decreases
[29, 43]. By applying spatial econometric analysis, Xu et al.
[44] reach a conclusion that China’s financial structure is
negatively related to the carbon emission, meaning that
optimizing financial structure is an effective strategy for
reducing CO, emissions. The research of Zhang et al. [45]
shows that carbon emission trading (CET) market, which is
one of the promising financial market, has a significant
impact on the decrease of China’s CO, emissions in recent
years. This conclusion is consistent with Zhou et al. [46] but
quite different from the study of Mo et al. [47], which reveals
that China’s carbon emissions trading program cannot
support low carbon energy consumption, and other policies
are necessary to complete China’s CET trading mechanism.
Except for the factors listed above, foreign direct investment
(FDI) is another significant contributor to carbon emission
reduction [31, 48, 49], implying that financial development
can attract more FDI inflow and evolve superior technology
to reduce carbon emission [50]. However, other researchers
debate that due to economy globalization, financing activ-
ities are conducive to the expansion of industrialization,
which may bring more FDI, faster economic growth, and
thus larger CO, emissions [51-54]. Recently, the results of
[36] show that China’s tertiary industries account for an
increasing proportion of energy consumption. Using the
Granger causality test and ARDL bound test, Zhang and
Zhang [11] investigate the short-term and long-term dy-
namic and casual relationship between China’s CO, emis-
sions and GDP, exchange rate, FDI, and trade structure from
1982 to 2016. They find the negative effects of the exchange
rate and the trade in services on China’s carbon emissions
and the positive impact of FDI inflows on it. These results
come to a consensus with Zhang [55], indicating that the
financial industry in China is an important factor for pro-
moting CO, emissions. Zhang [55] examines the impact of
China’s financial development on CO, emissions by various
econometric techniques, including the Granger causality
test, cointegration test, and variance decomposition. The
empirical results show that the financial development of
China, especially the financial intermediation scale, is an
important influential factor for the increase of CO, emis-
sions. In addition, even though the results show that FDI has
the least impact on CO, emission in China among the
concerned financial development indicators because it only
accounts for a small proportion in the GDP of China (see
also in [49]), Zhang [55] also insists that FDI is an important
CO, emission influential factor due to the utilization of
China’s FDI in carbon-intensive sectors. In summary, it can
be seen from the above literature that financial sectors have



important effects on carbon emission in China, but there are
no widely accepted relationships between them.

3. Data

To account for both changes in China’s carbon emission and
total population, we use carbon emission per capita to
measure the carbon emission levels in China (see also in
[11, 45]). Furthermore, as explained above, we do not focus
on those predictors directly related to energy sectors, such as
energy consumption per capita, total energy consumption,
fossil fuel energy consumption, renewable energy con-
sumption, nuclear energy consumption, and coal con-
sumption. In contrast, we utilize 15 indicators from three
nonenergy categories: (1) China’s macroeconomic indices,
especially those from financial sectors (see [11, 45, 55] and
among many others). (2) Indicators on China’s household
wealth conditions and saving behaviors: we think that these
indicators are key bases for a family to decide what kinds of
energy and how much energy it will consume within a time
period, which will influence the carbon emissions in China
consequently. (3) Technical progress indices: as documented
in many studies [10, 35], technology development can not
only improve the energy production and consumption with
lower carbon emission but also promote better methods for
energy conservation and environment protection. To ac-
count for both data available and data matching, we collect
the data we need covering a time period from 1982 to 2017.
All data are recorded in annual frequency with 36 obser-
vations for each of them. Table 1 presents the detailed
definitions of these indicators.

Table 1 reveals that the 15 nonenergy predictors are
selected from three general categories: macroeconomic,
household feature, and technical progress indicators. In
addition, macroeconomic indicators are further divided into
four specific sorts from macroeconomic aggregate, macro-
economic structure, financial market, and international
trade. Table 2 then shows the descriptive statistics for these
variables.

To ensure stationary, all data are transformed in the
forms of natural logarithm growth rate, which is a method
commonly used in time series analysis. Table 2 indicates that
the growth rates vary greatly among them, indicating some
interesting macroeconomic overviews in China. For ex-
ample, firstly, in terms of macroeconomic structure, the
proportions of both agriculture and industry productions to
GDP of China have negative means, but the share of value-
added of the service sector in the GDP keeps a positive mean
of 2.4 percent. That is to say, the service sector in GDP is
becoming more and more important in determining the
GDP growth of China. However, the industry and agri-
culture sectors are losing this power. Additionally, we can
also see that the Chinese public finance revenue maintains a
negative 0.2 percent annual growth rate, and the public
expenditure, however, keeps a positive 0.2 percent growth
rate. These two numbers further reveal that the Chinese
government is trying to lower down the tax and other fi-
nancial burdens in the real economy and increase the public
welfare in the past few decades. Secondly, as far as the
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Chinese household features are concerned, we find that
Engel’s coeflicient continues to decrease, while the saving
rate is increasing, which together imply that the Chinese
family is becoming more and more affluent with more
money being saved since 1982. Finally, with regard to the
technical progress indices, we can see that both R&D and
college students keep a positive growth rate in China, in-
dicating the continuous improvement in the innovation
capabilities and scientific research strength in China.

In addition, we find that almost all the variables are
skewed distributed with excess kurtosis. Considering this,
most of the variables reject the null hypotheses of normality
distribution based on the Jarque-Bera statistics. However,
most results in Ljung-Box Q test indicate no rejections for
the null hypotheses of no autocorrelation up to 5th lag order.
The most important results are that all the variables con-
sidered here reject the null hypotheses of one unit root
according to the ADF and/or P-P statistics, implying that all
the time series are stationary and can be modeled directly
without further transforms.

4. Methodology

4.1. TVP Model and Dynamic Model Averaging (DMA)
Forecasts. Although the constant coefficient (CC) models
such as autoregression (AR) or multivariable regression have
the advantages of providing simple estimation and
straightforward explanations, they also possess the draw-
backs that the regressor coefficients of the CC model are
fixed. In contrast, the time-varying parameter (TVP) ap-
proach is a very natural way to depict the time-varying
relationships between explanatory variables and explained
variable because it allows the parameters of explanatory
variables to be time-varying. As mentioned by Primiceri
[56], Koop et al. [57], and Wei and Cao [24], a basic TVP
model can be defined as follows:

Yt :xt/—lﬁt+st’ (1)
Bi =Bt + 15 (2)

where y, is the target variable to be forecasted at time t. x,_; is
a 1 x m vector of predictors, in which the lagged dependent
variable y; is usually included besides other exogenous
variables. f3, is an mx1 vector of coefficients,
g ~1.i.d.N(0,V,), and #, ~ i.i.d. N (0, W,).

For the TVP model defined in equations (1) and (2), the
predictors in x,_; are assumed to be fixed throughout the
whole forecasting time period, which may cause the over-
parameterization problem and a loss of forecasting preci-
sion. However, the dynamic model averaging (DMA) and
dynamic model selection (DMS) can facilitate the problem
of the TVP model because they allow both the predictor sets
(forecasting models) and the coefficients of predictors to be
time-varying. Therefore, following Raftery et al. [23], Koop
and Korobilis [12], Wei and Cao [24], and Wei et al., [25], we
utilize DMA and DMS methods to forecast China’s carbon
emission. The DMA (DMS) method can be written as
follows:
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TaBLE 1: Definitions of the explained variable and various nonenergy predictors.
Category (frequency) Variable Definition Calculation Unit
Explained variable Carbon CO, emission per capita Total CO, emission d}Vldeq by the total Tons.per
(annual) population in China capita
Predictors (annual)
Macroeconomic GDP Nominal GDP per capita Nominal GDP .d1v1.ded b}r the total Yuan. per
aggregate population in China capita
. Proportion of agriculture production to  Agriculture production divided by GDP o
Agriculture total GDP in China v
Macroeconomic Indust Proportion of industry production to total Industry production divided by total %
structure Y GDP GDP in China ’
Service added Proportion of value-added of the service Value-added of the service sector o
sector to total GDP divided by GDP in China ’
Proportion of foreign direct investment in . . . o
FDI China to total GDP FDI divided by GDP in China %
Proportion of total loan by financial . . . o
Total loan intermediation in China to total GDP Total loan divided by GDP in China %
Financial market . Proportion of total public revenue in China Total public revenue divided by GDP in
Public revenue . %
to total GDP China
Public Proportion of total public expenditure in Total public expenditure divided by total %
expenditure China to total GDP GDP ’
M, Proportion of M, in China to total GDP M, divided by GDP in China %
Exchange rate The exchange rate of RMB against US dollar Nominal exchange rate of RMB against  Yuan/
International trade US dollar dollar
. Proportion of service trade to total trade in Service trade divided by total
Service trade . . . . ) %
China international trade in China
Engel’s . . Food expenditure of China’s family o
Household feature coeflicient Proportion of income spent on food divided by family’s income v
Total saving Proportion of family saving to GDP China’s family saving divided by GDP %
R&D Proportion of total research & development Total research & development (R&D) %
Technical progress (R&D) expenditure to GDP in China expenditure divided by GDP in China ’
prog College Proportion of college student number to College student number divided by total %
student population in China population in China ’
TaBLE 2: Descriptive statistics for energy returns.
Mean St. deviation Skewness Kurtosis Jarque-Bera Q (5) ADF P-P
Carbon 0.043 0.043 1.138%** 1.518* 10.910%** 31.304*** —2.998** -2.958""
GDP 0.135 0.060 0.843* 0.327 4.299 26.065%"* —3.257%F -2.867*
Agriculture —-0.041 0.044 0.299 0.581 1.013 5.622 —5.405"*" —5.208"""
Industry -0.003 0.023 0.632 1.521* 5.708* 7.783 —3.741*** —3.738%**
Service added 0.024 0.033 1.336™"* 3.510""" 28.374*"* 7.828 -3.965""" -3.990""*
FDI 0.021 0.221 2.254** 4.726*** 62.208** 7.876 —5.487*** —4.507***
Total loan 0.017 0.108 -2.173"** 9.359%** 155.310""* 3.502 -2.625" —6.299""*
Public revenue -0.002 0.062 —-0.794* 0.130 3.701 39.392 -2.6927 -2.599*
Public expenditure 0.002 0.065 -0.156 -0.156 0.177 27.427 -2.618" —-2.628"
M, 0.001 0.073 0.821" 1.457 7.024** 8.349 —4.1027** —4.040"""
Exchange rate 0.036 0.097 2.172%** 5.338*** 69.084** 16.384*** —5.047*** —4.219%**
Service trade 0.012 0.109 -0.516 1.831%* 6.443"* 6.985 -2.625" -5.967***
Engel’s coefficient -0.020 0.036 -0.824" 3.051%** 17.539*** 1.974 —4.148*** —-5.500%"*
Total saving 0.008 0.037 0.231 -0.258 0.410 7.547 -2.399* —3.925%**
R&D 0.016 0.105 1.163"*~ 3.965""* 30.830""" 14.908** —3.435"" -3.516""
College student 0.081 0.080 1.053** 0.357 6.652** 36.586 -2.710* -2.110

Notes: the Jarque-Bera statistic tests the null hypothesis of normal distribution. Q (5) is the Ljung-Box statistics that test the null hypothesis of no serial
correlation for up to 5 orders. ADF are the statistics of Augmented Dickey-Fuller unit root test. P-P refers to the statistics of Phillips—Perron unit root tests.
Symbols ***, **, and * indicate the rejections of null hypothesis at 1%, 5%, and 10% significance levels, respectively.

(k) p (k)

Ye =X 1P

) _
t

(k)
-1 T 1y

+te s
(k)

)
(3)

>

!
where xt(fi <

x,_, for k=1, 2, ..., K indicates a set of pre-
dictors, ¢, ~ .i.d.N (0, V¥), and 5, ~ i.i.d. N (0, W ). For
the set x;_; with m predictors, there would be K = 2" possible



combinations of these predictors. The uncertain factors in
these K models can then be incorporated by DMA and DMS
in a dynamic way:

ADMA
”(t|t Lk)X¢— 1ﬁt g

7= xfﬁ) &
where YU ={y,...,y, 1} mpoip = Pr(L, = kY1) is
the probability (or weight) assigned to model k, and the
equation L;=k denotes that model k is chosen at time t.
DMA approach obtains its forecasts by averaging all the K
models in terms of their historical forecasting performances,
calculated by the probability, 77 ;,_; ). However, DMS selects
the model which has the highest probability, 7z, x-).
The DMA and DMS methods discussed above have the
drawback of heavy computational when the sample length is
long or the number of predictors is large. So Raftery et al.
[23] propose a Kalman filter method which involves two
forgetting factors, A and a, to simplify the estimation process
without loss of forecast accuracy. A, which is a forgetting
factor with 0 <A <1, can simplify the covariance matrix of
t(ki, which is important for the calculation of ﬁ(k) This
simplified process is given as follows:

(4)

(k)
/3t|t1 Bt (5)
w _ s 6)
Ztlt—l - th—llt—l’

where Z(‘t | is the covariance matrix of B*). Then, the
parameter estimation is achieved by the following updating
equations:

1
£ ®'5 k) CIAY
Xy lztlt 1% 1) (yt_xt—l t-1 )

(7)

(k) 5(k) (k) (k)
ﬁt|t ﬁt—lh—l + Zr\r lxt 1 (V

(k) (k) (k) (k) ( ) s (k) (k) (k) 5 (k)
Ze = Zyply — g Xps 1<V X1 g1 X 1) 121
(8)

For the probability, 7, ), if a transition probability
matrix is used, K =2" model combinations should be
considered at each time in point. m is the number of pre-
dictors, and if the sample period is long or m is large, it is
computationally infeasible to operate the Markov switching
in the K x K matrix. However, the use of the forgetting
factor, @ (0 <a<1), provides an effective way for reducing
the calculation error and time. Based on this forgetting
factor, the probability for the forecasting model k is defined
as follows:

o
T (¢-1)t-1,k)

K o 4
hIn T 1)t-1,0)

(9)

T(tt-1k) =

and the updating equation is defined as follows:
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t—1

. _ ”(tlt—Lk)fk(J’AY )
(k) = R —
Ly, ”(tlt—l,k)fe()’AY )

where f,(y,]Y""!) is the predictive density of model €. In
summary, the steps through equations (5)-(10) consist of a
complete process of Kalman filter updating and prediction
method. Furthermore, Raftery et al. [23] indicate that a BMA
(Bayesian model averaging) method can be regarded as a
special case of the DMA model with A=a=1.

(10)

4.2. Model Evaluation. Various statistical criteria can be
used to quantitatively assess the forecasting performance of
different models. Following the mainstream of literature in
this field, two loss functions, mean squared forecast error
(MSFE) and mean absolute forecast error (MAFE), are used
in this paper. MSFE and MSAE are simply defined as
follows:

M
MSFE = M Z (v _j)t)2>

t=1

M
MAFE = M~ Y|y, - 7], (11)

t=1

where M is the total number of forecasting methods, y,
denotes the true observation, and ¥, is the forecast set
achieved by different forecasting methods.

However, the two loss functions discussed above can
hardly offer us the significance levels of forecasting dif-
ference among various models. Therefore, this paper uti-
lizes the model confidence set (MCS) test which is proposed
by Hansen et al. [58] and widely used in recent research
studies [24, 25, 59], to achieve this goal and to determine
the superior models. The MCS test is developed from
several traditional and standard model evaluation methods
[60-63] but with more obvious advantages over these
traditional ones. Firstly, the MCS test uses a bootstrap
method to obtain the test statistics, reducing the influence
of outliers in the data. Secondly, it does not have to specify a
benchmark mode. Finally, this test does not limit the
number of the “best” model to be one. The MCS process is
as follows.

Suppose that we have a model set, M, = {1,...,m,}
which includes a finite number of objects (models). These
models are evaluated over the sample, t=1, ..., n, and under
aloss function i. The purpose of MCS is to select a model set,
M*, which consists of the best models from M,. The set of
superior models can be defined as follows:

M* = {u € My: E(di,w’t) <0, forallve MO}, (12)

whered,,, =L, ,—L,, is the relative performance of model u
and model v, for any u, v € My, in which L, is the loss of
model u in period t, and E(d;,,,) is the mathematical ex-
pectation of d,,, MCS test is performed by a series of
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significance tests, in which the models that are found to be
significantly worse than other elements of M are eliminated.
The null hypothesis of this test can be identified as follows:

Ho i E(dy ) =0, forallu,v € M < M, (13)

The MCS process consists of an equivalence test, 8, and an
elimination rule, eyr. 8, examines the hypothesis Hy for any
two models in M,. When H, is rejected, ey, is used to identify
the model that is to be removed from M. A model set, M| ,
which consists of the set of “surviving” models, and which are
named as the MCS, can be obtained by repeating these two
tests. The significance level, o, of the MCS test is generally set to
be 0.1 by Hansen et al. [58] and among many others. If the p
value of one MCS test is larger than 0.1, the corresponding
model is a “surviving” model and it has the forecasting ac-
curacy that is superior to other competitive models.

In the MCS test, two statistics, the range statistic (T)
and the semiquadratic statistic (Tsq), are commonly utilized.
They are calculated as follows:

Tr = max M,
wveM Var(di’w)

_ (ai,uv)z

(14)

where d,,, = (1/n) Y} d;,,,. The null hypothesis in
equation (13) cannot be rejected when the p values of T and
Tsq are larger than 0.1. The asymptotic distributions of these
two test statistics depend on nuisance parameters, so they are
nonstandard. However, these conditions do not pose any
obstacles because the distribution of these two statistics can
be easily estimated by the bootstrap methods and thus
implicitly solve the problem of nuisance parameter. To get
more robust conclusions, except for T and Tsq, four more
test statistics, i.e., Taw T, Tr and Tp, are used in our
research. A more detailed discussion of these test statistics
can be found in Hansen et al. [58].

5. Empirical Results

5.1. Time-Varying Contributions of Single Explanatory Var-
iable to Carbon Emission. In this section, we firstly examine
the time-varying effects of individual predictors on China’s
carbon emission by using the simple univariate TVP re-
gression model denoted in equations (1) and (2). For clarity,
Figure 1 represents the time-varying coefficients for only 9
predictors in the univariate TVP regression.

Figure 1 shows that the explanatory power of each
predictor really changes significantly with time. In general,
no predictors always have positive or negative impacts on
carbon emissions in China throughout the estimation time
period. For example, through 1985 to 1990, the proportion
of industry production to GDP (IP) offers negative effects,
while from 1991 to 2017 it has large positive impacts on
China’s carbon emission. GDP per capita has a positive
impact on carbon emission in most years, but experiences an
obvious decreasing explanatory power from 2004 and ends

up with a small negative effect in 2017. Similar results can
also be evidenced for other predictors in Figure 1. Moreover,
we can see that the impacts of different predictors vary
greatly with time. In particular, IP seems to provide the
largest positive impact in recent years. The proportion of
value-added of the service sector to total GDP (service
added), however, has the largest negative effects on China’s
carbon emission from 2000.

In summary, it is interesting but difficult to quantify the
overall contributions of various predictors on China’s car-
bon emission in a time-varying way. The empirical findings
in this section only give us the in-sample fitting results of
time-varying effects of explanatory variables on carbon
emission within a univariate TVP model. Thus, to obtain the
out-of-sample forecasting evaluations, we have to seek helps
from various forecasting results in multivariate TVP models
and model combination methods.

5.2. Forecasting Results of Different Models. In the extant
literature, to identify what factors are important for deter-
mining carbon emission in China is usually investigated by
multivariate constant coefficient (CC) OLS regression
models. Nevertheless, as discussed above, a better way to
solve this problem is to seek help from TVP models. Fur-
thermore, to take the different contributions of various
explanatory variables at different time periods or market
conditions into account, we further employ several com-
monly used combination forecasting approaches in this
paper. In summary, nine models are considered here: CC
OLS, TVP OLS, equal weighted, BMA, BMS, DMA95,
DMS95, DMA99, and DMS99. The recursive out-of-sample
forecasting approach is applied to all the nine models. The
descriptions of these models in details are as follows:

(1) CC OLS: a constant coeflicient multivariate regres-
sion model with all the 15 explanatory variables

(2) TVP OLS: a time-varying parameter multivariate
regression model with all the 15 explanatory
variables

(3) Equal weighted: the equal-weighted averaging of K
OLS models, i.e., the equal-weighted DMA model. In
this paper, we have 15 explanatory variables, which
means that we have K=2'"=32,768 models to
combine

(4) BMA: DMA forecasting with A = a = 1

(5) BMS: DMS forecasting with A = =1

(6) DMA95:  dynamic model averaging with
A=a=0.95

(7) DMS95: dynamic model selection with A = & = 0.95

(8) DMA95:  dynamic model averaging with
A=a=0.99

(9) DMS95: dynamic model selection with A = a = 0.99

To get a visible overview of the performances for these
forecasting models, Figure 2 shows the predictive results
through 1985 to 2017. The blue line with circles denotes the
true growth rate of carbon emission per capita in China,
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FIGURE 2: Carbon emission forecasting results by various models.

while other lines with different colors and markers are the
forecasting results made by various models. We can see in
Figure 2 that, in general, most models can produce similar
forecasts to the real observations. In particular, during the
period of 2000 to 2009, the growth rate of carbon emission
experiences large fluctuations. We can see that those
combination methods, such as BMA, BMS, DMA, and DMS,
make more accurate predictions than others. In addition, we
also find that the equal-weighted averaging model seems to
offer too “mild” forecasts to follow the changing trend of real
carbon emissions. Tables 3 and 4 report the results of
forecasting errors and MCS test, respectively.

Table 3 shows the MSFE and MAFE of various models.
Moreover, the R* of a Mincer-Zarnowitz regression is also
reported in this table [64]. The Mincer-Zarnowitz approach
is a regression of the real dependent variable against its fitted
values produced by a forecasting model, which is also a
commonly accepted approach to assess the forecast accuracy
of a model. Like the meaning of ordinary adjusted R” in a
multivariate regression, a larger R> of a Mincer-Zarnowitz
regression indicates a better forecasting accuracy for a
model.

Table 3 shows that, in general, dynamic combination
(selection) methods, i.e., DMA, DMS, BMA, and BMS,
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TaBLE 3: Results of loss functions for different forecasting models.

Loss functions

Models MSFE MAFE Mincer-Zarnowitz
CC OLS 0.00164 0.03140 0.20793

TVP OLS 0.00135 0.02807 0.32244
Equal weighted 0.00211 0.03553 -0.02215
BMA 0.00117 0.02554 0.39684

BMS 0.00118 0.02579 0.38466
DMA95 0.00117 0.02588 0.43213
DMS95 0.00119 0.02606 0.40760
DMA99 0.00116 0.02552 0.40446
DMS99 0.00118 0.02589 0.38941

Note: the bold numbers in this table indicate the smallest MSFE and MAFE and the largest R> of a Mincer-Zarnowitz regression, respectively.

TABLE 4: Results of the MCS test.

MSFE MAFE

Models Tx Tso Tt To Ty Tp Tx Tso Tiax To Tr Ty
CC OLS 0.0532 0.836 0.0421 00190 01068 0.0557 0.0228 0.081 0.0253 0.0107 0.0967 0.0185
TVP OLS 01092 05285 04836 04916 0.6097 04238 01343 04919 06017 0.0717 0.1814 0.4870
Equal weighted ~ 0.0992 03116  0.0604 0.0006 0.0309 0.0683  0.0511  0.2200 0.0696 0.0094 0.0967  0.0336
BMA 09511 09700 09242 09280 09335 09495 09386 09386 09419 09701 09711 0.9419
BMS 09153 09700 09242 0.8302 0.8526 0.9495 0.9034 09277 0.8650 0.9701 09711  0.8950
DMA95 09511 09700 09251 09280 09335 09495 09034 09099 0.8386 0.6742 0.6997  0.8950
DMS95 09153 09664 09242 04916 0.6097 09495 0.8443 09099 0.8386 02473 03541  0.8950
DMA99 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMS99 09153 09700 09242 09280 09335 009495 0.8443 09099 0.8386 0.4055 04750  0.8950

Notes: the underlined numbers indicate those p values smaller than 0.1, implying that the corresponding prediction models cannot survive the MCS tests. The
bold numbers indicate p values of 1.000, showing that the corresponding prediction models perform better than all other competitive models. MSFE and
MAFE denote mean squared forecast error and mean absolute forecast error, respectively.

produce close forecasting errors. In particular, under the
MSFE and MAFE criteria, the DMA method with forgetting
factors A = « = 0.99 (DMA99) produces the smallest pre-
diction errors of 0.00116 and 0.02552, respectively. The
equal-weighted averaging method, however, obtains the
largest forecasting errors of 0.00211 and 0.03553, respec-
tively. With regard to Mincer-Zarnowitz regression, the
DMA method with forgetting factors A = & = 0.95 (DMA95)
gets the largest R” of 0.43213, implying again the superiority
of DMA approach to individual CC or TVP models, as well
as other combination methods.

In addition, to obtain a statistically robust conclusion
about the forecasting accuracy of all the competitive models,
we further conduct the MCS test on the forecasting results.
Table 4 offers us a clearer picture of the performances of
various prediction models. Firstly, no matter under MSFE or
MAFE criteria with various statistics, the DMA method with
forgetting factors A =a =0.99 (DMA99) can definitely
survive with the largest p values of 1.0, revealing its dom-
inance over other models. Secondly, we find that the CC OLS
and equal-weighted averaging models cannot survive in the
MCS tests under many statistical criteria with p values
smaller than 0.1. This means that, on the one hand, constant
coefficient (CC) model can rarely describe the true rela-
tionships between carbon emission in China and those
commonly used explanatory variables and thus cannot

provide accurate predictions for it. On the other hand, even
if the equal-weighted averaging method is applied, it also
lacks the ability to depict the time-varying contributions of
different predictors in different time periods.

In summary, the empirical results in both Tables 3 and 4
supply strong evidence that the dynamic model averaging
method (DMA) can produce better forecasting accuracy
than other predictive models. This finding also verifies the
rationality of considering both the TVP models and a model
averaging (selection) procedure in forecasting the carbon
emissions in China.

5.3. Contributions of Various Predictors in Forecasting China’s
Carbon Emission. In this section, we are to understand how
much each predictor contributes to explaining the growth
rate of carbon emission in China in the past few decades.
This question is answered through a measurement called
“inclusion probability,” which measures the total weights
obtained by one predictor through all the K=2" combi-
nations of models in a DMA forecasting process. To be more
formal, the inclusion probability for a predictor x; is the sum
of the probabilities (77 (;jyy_14,11)) that a given predictor would
be included in the forecasting model k (k=1, 2, ..., K) of
DMA at time ¢. In this paper, as we have 15 predictors, the
inclusion probability of predictor x; (i=1,2, .. .,15) willbe a



10

number summed through K=2"" = 32,768 combinations of
forecasting models. A predictor with a higher inclusion
probability would be assigned more prediction weights, thus
contributing more important predictive power.

Figure 3 presents the overall picture of the time-varying
contributions (inclusion probabilities) of the 15 nonenergy
predictors in forecasting growth rate of carbon emission in
China. Firstly, we find that all the 15 indicators present a
steady but distinct predictive ability for carbon emission in
China over the past few decades. At the beginning of the
prediction period, i.e., 1985 to 1994, the DMA method needs
to calculate the historical performance of different model
(predictor) combinations, and thus, the inclusion proba-
bilities for different predictors show small dispersions with
similar time-varying trends. In particular, at the first pre-
diction time point in 1985, the DMA method assigns all the
predictors with the same inclusion probability of 0.5. As time
goes by, however, with the different performances of various
predictors, we can see that the inclusion probabilities begin
to split up.

Secondly, predictors with major or minor contributions
to predict carbon emissions in China are identified. It is clear
that the proportion of industry production in GDP (IP)
shows the greatest predictive power than others, while the
growth rate of FDI to GDP (FDI) in China has the smallest
forecasting ability. Interestingly, those Chinese household
features, such as Engel’s coefficient and household savings
rate, are observed as the second and third important factors
in explaining carbon emission in China. They provide more
contributions than other factors from financial market,
international trade, and technical progress sectors. That is to
say, the household wealth and saving behavior are extremely
important elements to determine China’s family energy
consumptions and thus have great predictive power for the
carbon emission in China. Moreover, we also find that the
proportion of value-added of the service sector to GDP
(service added) has a large prediction ability to carbon
emission in China. However, GDP per capita in China, an
important index of macroeconomic development level, just
makes moderate explanatory ability. Additionally, other
factors except for those mentioned above, supply relatively
small and similar forecasting power to carbon emission in
China.

Finally, taking the time-varying trends for various
inclusion probabilities into account, we get several inter-
esting results as follows: first, although the IP index holds
the largest forecasting weight among all the predictors, it
clearly experiences a declining trend in its predictive power
especially in recent years. Similarly, we also find the de-
creasing prediction power of the two household factors, i.e.,
Engel’s coefficient and household saving since the year
2009. Then, it is worth mentioning that the proportion of
value-added of the service sector to GDP (service added)
presents not only a leading forecasting weight, but a
continuous increasing prediction power in recent years.
Notably, in 2016 and 2017, the inclusion probabilities
assigned to service added becomes the second largest one
among all the factors, implying its emerging status in
explaining the carbon emission in China. In addition, other
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factors from financial markets, international trade, and
technical progress have relatively small but increasing
weights in recent years.

5.4. Robustness Checks of Model Forecasting Results. In this
section, we utilize two alternative model evaluation methods
to further check the forecasting performances of various
predictive models. On the one hand, the forecasting di-
rectional accuracy of a model is also very important for
investors and regulators’ decision making. Degiannakis and
Filis [65] opine that Direction-of-Change (DoC) is the core
of market timing and portfolio trading strategies. Thus,
following Degiannakis and Filis [65] and Zhang et al. [59],
we adopt the Direction-of-Change (DoC) test as another
model evaluation approach. In detail, DoC is a ratio that
accounts for the accurate predictions to the total predictions
in the direction of a forecasted variable by a model. As-
suming that p, is a dummy variable, it takes the value of 1 if
the prediction model correctly forecasts the direction of
carbon emission growth rate at time ¢, and 0 otherwise. It is
defined as follows:

L ity >y, andy >y, g,
p=9L ity <y andy <y, (15)

0, otherwise,

where y, and ¥, are the actual growth rate of carbon
emission and the forecasted growth rate of carbon emis-
sion made by a specific model, respectively. Mathemati-
cally, the DoC ratio is 1/q YL, p,, where q is the length of
the out-of-sample forecasting period. A larger DoC rate,
e.g., close to 1, indicates a better forecasting of directional
changes by a model. In order to investigate the statistical
significance of directional accuracy, we also use PT statistic
proposed by Pesaran and Timmermann [66]. The null
hypothesis of PT tests is that the DoC rate of a prediction
model is smaller than or equal to the DoC rate of random
walk forecasts.

Table 5 reveals similar results to those reported in Ta-
bles 3 and 4: DMA and DMS methods, as well as the BMA
and BMS, show very close DoC rates from 0.742 to 0.774,
indicating that dynamic model combination (selection)
methods can beat traditional TVP OLS and equal-weighted
combination approaches in predicting the directional
changes in the Chinese carbon emission growth rate. The
constant coeflicient (CC OLS) model, however, fails to pass
the PT test with the lowest DoC rate of 0.548.

In addition, we employ the out-of-sample R* (R% )
criterion proposed by Campbell and Thompson [67] to
assess prediction accuracy. The out-of-sample R* of a
forecasting model is defined as follows:

~ \2
RE o —1- 22:1 (k= J%)
008 = q — 2
ket (;Vk - )’k,bench)

(16)

where y;, ¥, and Yy, are, respectively, the actual
growth rate of carbon emission, the forecasted growth rate
of carbon emission made by a specific model, and the
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FIGure 3: Inclusion probability (forecasting weights) for various nonenergy predictors.

TaBLE 5: Results of Direction-of-Change test.

TaBLE 6: Results of out-of-sample R-square test.

Models DoC rate PT statistic p value
CC OLS 0.548 0.568 0.285
TVP OLS 0.710*** 2.368 0.009
Equal weighted 0.677** 1.944 0.026
BMA 0.742*** 2.771 0.003
BMS 0.774*** 3.102 0.001
DMA95 0.677** 2.037 0.021
DMS95 0.774*** 3.102 0.001
DMA99 0.742*%** 2.771 0.003
DMS99 0.774*** 3.102 0.001

Notes: this table reports the Direction-of-Change (DoC) rates and the PT
statistics of Pesaran and Timmermann [66] test for all forecasting ap-
proaches. Statistical significance for DoC rate is based on the p values of the
PT statistic. Symbols *, **, and *** indicate the rejection of the null hy-
pothesis at the 10%, 5%, and 1% significance level, respectively.

forecasted growth rate of carbon emission made by the
benchmark model on time k and q represents the length of
the out-of-sample period. In this paper, we set CC OLS as
the benchmark model and compare its performance with
others. The R statistic evaluates the percent reduction in
mean squared forecast error (MSFE) of a forecasting model
relative to the benchmark. A positive value of R} ,q indi-
cates a superior forecasting accuracy of a specific model to
the benchmark. To estimate the significance of improve-
ment in MSFE obtained by one model, we use the Clark and
West [68] statistic, which implies the null hypothesis that
the MSFE of the benchmark model is not larger than the
MSFE of the interested model. The Clark and West [68]
statistic is defined as follows:

fi= (;Vk - j}k,bench)z (- ?k)z +(5’k,bench - )A’k)z’ (17)

Models R% o6 (%) MSFE-adjusted p value
TVP OLS 17.557** 1.952 0.025
Equal weighted -28.813* 1.455 0.073
BMA 28.796* 2.323 0.010
BMS 27.980%*" 2.492 0.006
DMA95 28.869"* 1.907 0.028
DMS95 27.569** 1.918 0.028
DMA99 29.102** 2.195 0.014
DMS99 28.140%** 2.350 0.009

Notes: this table presents the out-of-sample prediction performance based
on the out-of-sample R” test. The benchmark model is the CC OLS model. A
positive value of out-of-sample R implies that the forecasting model of
interest has higher prediction accuracy than the benchmark model. Symbols
*,**, and *** indicate the rejection of the null hypothesis at the 10%, 5%,
and 1% significance level, respectively.

where yy, ¥i, and ¥y p.nq, are, respectively, the actual growth
rate of carbon emission, the forecasted growth rate of carbon
emission made by a specific model, and the forecasted
growth rate of carbon emission made by the benchmark
model on time k, respectively. The MSFE-adjusted statistic is
the t-statistic from the regression of f, on a constant term. In
addition, the p value of the statistic can be obtained from the
standard normal distribution [68].

Table 6 also shows quite similar outcomes presented in
Tables 3 to 5. On the one hand, DMA and DMS methods, as
well as the BMA and BMS, exhibit alike out-of-sample R*
ranging from about 27% to 29%, implying again the superior
performances of dynamic model averaging (selection)
models to the benchmark CC OLS. Among them, DMA99
and DMA95 are the best ones in all these methods. On the
other hand, TVP OLS has better performance than the CC
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OLS, while the equal-weighted combination method fails to
beat the benchmark model.

6. Conclusions

A large amount of literature pays close attention to those
energy-related factors regarding their roles in explaining or
forecasting carbon emission in China. It is no surprise that
those energy-related factors, such as energy consumption
and energy intensity, have significantly great impacts on the
China’s carbon emission. This paper, in contrast, focuses on
the prediction power of nonenergy factors from macro-
economy, financial markets, household features, and tech-
nical progress sectors in China from a time-varying
perspective. This research may offer us a new viewpoint to
identify the underlying determinants of China’s carbon
emission and help the policymakers to introduce innovative
and effective regulations to reduce carbon emission in
China.

The major findings are listed as follows. Firstly, the
explanatory power of each predictor changes significantly
with time and no predictors always keep positive or negative
effects on China’s carbon emissions throughout the sample
period. Secondly, the proportion of industry production in
GDP (IP) presents the largest prediction power among all
the 15 predictors, but with a decreasing weight in recent
years. Similarly, two indices from household features, i.e.,
Engel’s coeflicient and household savings rate are observed
as the second and third important factors in forecasting
carbon emission in China. Thirdly, the proportion of value-
added of the service sector to GDP (service added) presents
not only a leading forecasting weight, but a continuous
increasing prediction power in recent years, especially since
the year 2016. This result reveals that the development of
service sector may bring significant changes in economic
structure and energy consumption in China and thus gives
more predictive power to future carbon emissions. Finally,
in terms of forecasting methods, we find that individual
constant coefficient (CC) and TVP models, as well as equal-
weighted averaging method, cannot provide satisfactory
forecasting accuracy for the growth rate of carbon emission
in China. However, the dynamic model averaging method
(DMA) can dominate other individual and combination
methods no matter in two simple evaluation criteria of
MSFE and MAFE or other rigorous statistical tests.

The empirical results obtained in this paper have several
important policy implications for the Chinese policymakers.
For example, first of all, the time-varying positive or negative
impacts of various predictors on China’s carbon emission
suggest that policymakers should not make fixed adminis-
trative policies to the factors that have effects on China’s
carbon emission considered in this paper. Then, both the
decreasing prediction power of IP and the increasing weight
of service added reveal that the Chinese government should
persist in promoting the development of service sector in
economy, especially those modern service industries, such as
communication, information technology, finance, logistics,
education, and medical care. The sustainable developments
in these industries may be effective ways to reduce carbon
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emission in China. We think that the Chinese regulators do
right efforts in this direction with the evidence that the IP/
GDP ratio decreases from about 44.6% in 1982 to about
40.4% in 2017, while the service added/GDP ratio increases
sharply from about 22.6% in 1982 to about 51.6% in 2017.
Finally, the household features measuring family wealth
should also be concerned for their important roles in
influencing the energy consumption behavior in Chinese
families. The increasing wealth in China’s family can ac-
celerate more consumption in clean energy, i.e., solar, wind,
and nuclear energy and thus reduce the carbon emission in
China. Fortunately, in 2018, the Chinese government begins
to massively cut taxes and administrative fees nationwide,
which should have an optimistic impact on the reduction of
China’s carbon emission in the following years.
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