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-e dissemination of countermeasures is diffusely recognized as one of the most valid strategies of containing computer virus
diffusion. In order to better understand the impacts of countermeasure and removable storage media on viral spread, this paper
addresses a dynamical model, which incorporates nonlinear countermeasure probability and infected removable storage media.
-eoretical analysis reveals that the unique (viral) equilibrium of the model is globally asymptotically stable. -is main result is
also illustrated by some numerical experiments. Additionally, the numerical experiments of different countermeasure proba-
bilities are conducted.

1. Introduction

-e continual emergence of computer viruses, especially
with the growing popularity of the Internet, has brought
great troubles and threats to our daily work and life (e.g.,
[1]). Besides, removable storage media, such as compact
disk, removable hard disk, USB flash disk, flash memory
card, and so on, which are often used in our daily work
provide another spreading route for computer viruses except
the Internet. Antivirus software, patches, and firewall are the
main technical means of defending against computer vi-
ruses, which can weed out all viruses they can recognize that
stay in individual electronic devices such as personal
computer (PC) and removable storage media. Unfortu-
nately, these techniques seem powerless to the outbreak of a
new virus. In order to effectively contain virus spread, one
needs to understand the propagation laws of computer vi-
ruses, which may provide a theoretical basis for decision
making, as well as to use technical measures.

A multitude of propagation models of computer viruses
have been presented since 1991, specifically, SIS (susceptible-
infected-susceptible) models (e.g., [2, 3]), SIRS (susceptible-

infected-recovered-susceptible) models (e.g., [4, 5]), SLBS
(susceptible-latent-breaking-susceptible) model (e.g., [6]),
SICS (susceptible-infected-countermeasured-susceptible)
models (e.g., [7–9]), and SDIRS (susceptible-delitescent-
infected-recovered- susceptible) model (e.g., [10]).

In the field of computer viruses, countermeasures such
as warnings, firewall, and software patches can provide a
practical approach to avoid virus infection problems. In
2004, Chen and Carley [11] addressed the countermeasure
competing (CMC) strategy, which shows that the CMC
strategy is more available compared to previous strategies.

Inspired by this work and in order to macroscopically
describe the mixed transmission of computer viruses and
countermeasures, Zhu et al. [7] presented the first com-
partment model in this aspect, named as the SICS model,
and its global dynamics was fully examined. Afterwards,
Yang and Yang [8] extended this model by incorporating the
effect of infected external computers (i.e., computers outside
the Internet) and removable storage media. However, these
two models ignore two important facts. On the one hand,
they overlook the fact that the linear infection probability is
fit well for the real-world situations only when the
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countermeasured (or immune) nodes are few. On the other
hand, they neglect the fact that countermeasures may be
disseminated through networks at different rates, which has
been mentioned in Reference [11]. -us, the assumption of
linear countermeasure probability is unreasonable.

To remedy these defects and considering the influences
of general countermeasure and infected removable storage
media on viral diffusion, this paper studies a new propa-
gation model incorporating generic countermeasure prob-
ability and infected removable storage media. -e main
result, the global stability of the unique (viral) equilibrium, is
proved, which is also examined by some numerical exper-
iments. Furthermore, the numerical experiments of different
countermeasure probabilities are conducted.

-e paper is organized as follows. -e model formula-
tion is made in Section 2. Section 3 determines the (viral)
equilibrium and investigates its global stability. Numerical
experiments are presented in Section 4. -is work is sum-
marized in Section 5.

2. Model Description

In this paper, a computer is called external or internal com-
puter determined by whether it is disconnected from or
connected to the Internet. All internal computers may have
three states: susceptible, infected, and immune (with coun-
termeasures). For brevity, let S(t), I(t), and C(t) (S, I, and C,
for short) denote the average numbers of susceptible, infected,
and countermeasured computers at time t, respectively. -eir
entering rates are μ1 > 0, μ2 > 0, and μ3 > 0, respectively. Be-
sides, the following basic assumptions of the model are made.

(1) Each internal computer leaves the Internet with
probability δ > 0.

(2) Each susceptible internal computer becomes infected
by connecting with infected internal computer (or
infected removable storage media) with probability
β1 > 0 (or β2 > 0).

(3) Each infected or susceptible internal computer gains
the latest countermeasure with probability c1(C(t))

at time t, where c1 is twice continuously differen-
tiable, c1′ > 0, c1″ < 0, and c1(0) � 0. -e concavity
assumption seizes well the saturability of the
countermeasure probability.

(4) By reinstalling the operating system, each counter-
measured (or infected) internal computer becomes
susceptible with probability α> 0 (or c2 > 0).

Now, one can derive the mathematical representation of
the model as follows (also see Figure 1):

dS

dt
� μ1 − β1SI − β2S − c1(C)S + c2I + αC − δS,

dI

dt
� μ2 + β1SI + β2S − c1(C)I − c2I − δI,

dC

dt
� μ3 + c1(C)S + c1(C)I − αC − δC,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

with initial condition (S(0), I(0), C(0)) ∈ R3
+.

3. Theoretical Analysis

Let N � S + I + C, and μ � μ1 + μ2 + μ3. Adding up the three
equations of system (1), it is easy to get that
limt⟶∞N � (μ/δ). It follows by the asymptotically au-
tonomous system theory [12] that system (1) is equivalent to
the following reduced limiting system:

dI

dt
� μ2 +

β2μ
δ

+
β1μ
δ

− β2 − c2 − δ􏼠 􏼡I − β2C − β1I
2

− β1IC − c1(C)I,

dC

dt
� μ3 + c1(C)

μ
δ

− C􏼒 􏼓 − (α + δ)C,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)

with initial condition (I(0), C(0)) ∈ Ω, where

Ω � (I, C) ∈ R2
+: I + C≤

μ
δ

􏼚 􏼛, (3)

and Ω is positively invariant for system (2).
In the following sections, we just need to investigate the

dynamical behavior of system (2).

3.1. Equilibrium

Theorem 1. ,ere exists a unique (viral) equilibrium E∗ �

(I∗, C∗) for system (2), where E∗ is the single positive solution
to the following system:

μ2 +
β2μ
δ

+
β1μ
δ

− β2 − c2 − δ􏼠 􏼡x − β2y − β1x
2

− β1xy − c1(y)x � 0,

μ3 + c1(y)
μ
δ

− y􏼒 􏼓 − (α + δ)y � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4)
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with the initial condition (x(0), y(0)) ∈ Ω.

Proof. Let us suppose that E∗ � (I∗, C∗) is an equilibrium of
system (2). Clearly, E∗ satisfies system (4). -us, it suffices to
prove that system (4) has a unique positive solution.

Firstly, let us prove that the second equation of system
(4) has a unique positive root. Let

f(y) � μ3 + c1(y)
μ
δ

− y􏼒 􏼓 − (α + δ)y. (5)

As f(0) � μ3 > 0 and f(μ/δ) � − (αμ/δ) − (μ1 + μ2)< 0,
so f does have a zero located in (0, (μ/δ)). Besides, notice
that

f′
μ
δ

􏼒 􏼓 � − c1
μ
δ

􏼒 􏼓 − (α + δ)< 0,

f″(y) � c1″(y)
μ
δ

− y􏼒 􏼓 − 2c1′(y)< 0.

(6)

We shall consider two possibilities depending upon
whether f′(0) is positive or negative.

Case 1: f′(0)> 0. Let

y � max y ∈ 0,
μ
δ

􏼔 􏼕: f′(y)> 0􏼚 􏼛. (7)

-us, f is strictly increasing in [0, y] and strictly de-
creasing in [y, (μ/δ)], which implies that f has a
unique zero in [y, (μ/δ)].
Case 2: f′(0)≤ 0. So, f is decreasing and has a unique
zero.

It is easily obtained from the above discussions that f

does has a single zero. -en, y � C∗. Besides, f′(C∗)< 0.
Next, let us prove that the first equation of system (4) has

a single positive root. Let

g(x) � μ2 + β2
μ
δ

− C
∗

􏼒 􏼓 +
β1μ
δ

− β2 − c2 − δ − β1C
∗

􏼠

− c1 C
∗

( 􏼁􏼡x − β1x
2
.

(8)

As g(0) � μ2 + β2((μ/δ) − C∗)> 0 and g((μ/δ) − C∗) �

− μ1 − αC∗ − c2((μ/δ) − C∗)< 0, g does have a (positive) zero
located in (0, (μ/δ) − C∗). Besides, note that

g′
μ
δ

− C
∗

􏼒 􏼓 � − β1
μ
δ

− C
∗

􏼒 􏼓 − β2 + c2 + δ + c1 C
∗

( 􏼁( 􏼁< 0,

g″(x) � − 2β1 < 0.

(9)

We shall also proceed by distinguishing two possibilities
depending upon whether g′(0) is positive or negative.

Case 1: g′(0)> 0. Let

x � max x ∈ 0,
μ
δ

− C
∗

􏼔 􏼕: g′(x)> 0􏼚 􏼛. (10)

-en, g is strictly increasing in [0, x] and decreasing in
[x, (μ/δ) − C∗], meaning that g has a single zero in
[x, (μ/δ) − C∗].
Case 2: g′(0)≤ 0. Hence, g is decreasing and has a
unique zero. -en, g always has a single zero x � I∗.
Besides, g′(I∗)< 0.

-us, the claimed result follows. □

3.2. Local Stability

Theorem 2. E∗ is locally asymptotically stable.

γ1 (C)S

γ1 (C)Iγ2I

β1SI

β2S

μ2

μ3μ1

δI

αC

δS δC

S I C

Figure 1: Transfer diagram of the new proposed model.
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Proof. -e corresponding Jacobian matrix of system (2) at
E∗ is as follows:

β1μ
δ

− β2 − c2 − δ − β1C
∗

− 2β1I
∗

− c1 C
∗

( 􏼁 − β2 − β1I
∗

− c1′ C
∗

( 􏼁I
∗

0 c1′ C
∗

( 􏼁
μ
δ

− C
∗

􏼒 􏼓 − c1 C
∗

( 􏼁 − (α + δ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (11)

and its two eigenvalues are

λ1 �
β1μ
δ

− β2 − c2 − δ − β1C
∗

− 2β1I
∗

− c1 C
∗

( 􏼁 � g′ I
∗

( 􏼁< 0,

λ2 � c1′ C
∗

( 􏼁
μ
δ

− C
∗

􏼒 􏼓 − c1 C
∗

( 􏼁 − (α + δ) � f′ C
∗

( 􏼁< 0.

(12)

-us, the claimed result follows from the Lyapunov
stability theorem [13]. □

3.3. Global Stability

Lemma 1. System (2) has no periodic orbit.

Proof. Let

h1(I, C) � μ2 +
β2μ
δ

+
β1μ
δ

− β2 − c2 − δ􏼠 􏼡I − β2C

− β1I
2

− β1IC − c1(C)I,

h2(I, C) � μ3 + c1(C)
μ
δ

− C􏼒 􏼓 − (α + δ)C,

D(I, C) �
1

IC
.

(13)

It can be obtained in the interior of Ω that

z Dh1( 􏼁

zI
+

z Dh2( 􏼁

zC
� −

β1
C

−
c1′(C)

I
−

μ2
I
2
C

−
μ3

IC
2 −

β2
I
2
C

μ
δ

− C􏼒 􏼓

+
μ

δIC
2 c1′(C)C − c1(C)( 􏼁.

(14)

Let

k(x) � c1′(x)x − c1(x). (15)

As k(0) � 0 and k′(x) � c1″(x)x< 0 for all x> 0,
k(C)< 0. -us, we have (z(Dh1)/zI) + (z(Dh2)/zC)< 0.

Hence, in the interior of Ω, system (2) has no periodic
orbit according to the Bendixson–Dulac criterion [13].

On the boundary of Ω, let (􏽥I, 􏽥C) denote an arbitrary
point. -us, three possibilities may occur.

Case 1: 0< 􏽥C< (μ/δ), 􏽥I � 0. -en, (dI/dt)|
(􏽥I,􏽥C)

� μ2+
β2((μ/δ) − 􏽥C)> 0.

Case 2: 0< 􏽥I< (μ/δ), 􏽥C � 0. -en, (dC/dt)|
(􏽥I,􏽥C)

�

μ3 > 0.
Case 3: 􏽥I + 􏽥C � (μ/δ), 􏽥C≠ 0, 􏽥I≠ 0. Hence,

d(I + C)

dt
|
(􏽥I,􏽥C)

� − μ1 − c2
􏽥I − α􏽥C< 0. (16)

-us, system (2) has no periodic orbit across the arbi-
trary point (􏽥I, 􏽥C). -e proof is completed.

In what follows, the main result of this paper will be
given as follows. □

Theorem 3. E∗ is globally asymptotically stable.

Proof. Based on -eorem 1, Lemma 1, and -eorem 2, the
claimed result follows from the generalized Poincar-
e–Bendixson theorem [13]. □

4. Numerical Experiments

To illustrate the main result of this paper and the impacts of
different countermeasure probabilities on viral spread, some
numerical experiments are presented in this section.

Example 1. Consider system (1) with μ1 � 0.55, μ2 � 0.25,
μ3 � 0.2, α � 0.02, β1 � 0.05, β2 � 0.03, c2 � 0.02, δ � 0.1,
and c1(C) � 0.05C/(1 + C). -e initial condition is
(S(0), I(0), C(0)) � (3, 1, 5). In Figure 2, a comparison
between the new proposed SICSmodel and the original SICS
model is shown, from which it can be seen that the new
proposed model is more reasonable in predicting virus
prevalence because computer viruses would not go extinct
(i.e., I≥ 1), which demonstrates that the linear counter-
measure probability overestimates the suppression of
countermeasures on virus diffusion when compared to the
nonlinear one.

Example 2. Consider system (1) with μ1 � 55, μ2 � 38,
μ3 � 7, α � 0.01, β1 � 0.52, β2 � 0.015, c2 � 0.01, δ � 0.02,
and c1(C) � 0.006C0.15. Six different initial conditions are
listed below.

(1) (S(0), I(0), C(0)) � (325, 25, 10).
(2) (S(0), I(0), C(0)) � (925, 125, 90).
(3) (S(0), I(0), C(0)) � (1525, 225, 170).
(4) (S(0), I(0), C(0)) � (2125, 325, 250).
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(5) (S(0), I(0), C(0)) � (2725, 425, 330).
(6) (S(0), I(0), C(0)) � (3325, 525, 410).

Figure 3 shows six orbits of system (1) with different
initial conditions for a common system. It can be seen from
this figure that no matter where the initial state starts,
computer viruses would always exist and tend to a steady
state, which coincides with the main result. -is also reveals
that the global stability is independent of the initial state.

Example 3. Consider system (1) with the common initial
condition (S(0), I(0), C(0)) � (1050, 450, 105), and six sets of
parameters are given in Table 1. Six orbits of system (1) with
different system parameters for a common initial condition are
shown in Figure 4, from which it can be seen that computer
viruses would remain present and tend to a steady state, which
accords with the main result. Additionally, this figure reveals
that even starting from the same initial state the system would
approach to different states for different parameters, which is
distinct from the phenomenon in Example 2.

Example 4. Consider system (1) with μ1 � 5.5, μ2 � 3.8,
μ3 � 0.7, α � 0.01, β1 � 0.52, β2 � 0.015, c2 � 0.01, and
δ � 0.02. -e initial condition is (S(0), I(0), C(0)) �

(325, 25, 10). Figure 5 shows the influences of the varied
countermeasure probabilities on the number of infected
computers, where c1(C) � 0.08C0.2, c2(C) � (0.08C/(1+

0.416C)), and c3(C) � (0.08C/(1 + C)). -is figure also
demonstrates that the nonlinear countermeasure probabil-
ities which are continuously differentiable up to the second
order may have many forms and pose different impacts on
viral spread.

5. Summary and Outlook

A new SICS model has been proposed and analyzed in this
paper. -e global stability of the unique (viral) equilibrium

has been proved and illustrated completely. Besides, a
comparison between the new proposed model and the
original SICS model has been shown, and the effects of
varied countermeasure probabilities have also been revealed.
-e numerical experiments demonstrate that the nonlinear
countermeasure probability is more reasonable than the
linear one.

Additionally, the follow-up work arrangement is as
follows. Firstly, time delays (e.g., [14, 15]), pulses (e.g., [16]),
random fluctuations (e.g., [17, 18]), and optimal control
strategies (e.g., [19]) can be considered in the new model.
Secondly, the newmodel may be extended on wireless sensor
networks (e.g., [20–22]). With the popularity of social
networks, individuals’ participation has a particularly im-
portant effect on information diffusion including propa-
gation of computer viruses. For example, Alduaiji et al. [23]
developed an influence propagation model for clique-based
community detection in social networks. Li et al. [24]
proposed a metric to measure the community-diversified
influence in social networks. -erefore, the new model may
also be extended in social networks. Finally, the new
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Figure 3: Six orbits of system (1) with different initial conditions.
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proposed model can be formulated for cloud computing
security (e.g., [25]).
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