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Gas safety evaluation has always been vital for coal mine safety management. To enhance the accuracy of coal mine gas safety
evaluation results, a new gas safety evaluation model is proposed based on the adaptive weighted least squares support vector
machine (AWLS-SVM) and improved Dempster–Shafer (D-S) evidence theory. )e AWLS-SVM is used to calculate the sensor
value at the evaluation time, and the D-S evidence theory is used to evaluate the safety status. First, the sensor data of gas
concentration, wind speed, dust, and temperature were obtained from the coal mine safety monitoring system, and the prediction
results of sensor data are obtained using the AWLS-SVM; hence, the prediction results would be the input of the evaluationmodel.
Second, because the basic probability assignment (BPA) function is the basis of D-S evidence theory calculation, the BPA function
of each sensor is determined using the posterior probability modeling method, and the similarity is introduced for optimization.
)en, regarding the problem of fusion failure in D-S evidence theory when fusing high-conflict evidence, using the idea of
assigning weights, the importance of each evidence is allocated to weaken the effect of conflicting evidence on the evaluation
results. To prevent the loss of the effective information of the original evidence followed by modifying the evidence source, a
conflict allocation coefficient is introduced based on fusion rules. Ultimately, taking Qing Gang Ping coal mine located in Shaanxi
province as the study area, a gas safety evaluation example analysis is performed for the assessment model developed in this paper.
)e results indicate that the similarity measures can effectively eliminate high-conflict evidence sources. Moreover, the accuracy of
D-S evidence theory based on enhanced fusion rules is improved compared to the D-S evidence theory in terms of the modified
evidence sources and the original D-S evidence theory. Since more sensors are fused, the evaluation results have higher accuracy.
Furthermore, the multisensor data evaluation results are enhanced compared to the single sensor evaluation outcomes.

1. Introduction

China is a country with a large coal consumption and
production where a large proportion of the production
mines is related to the high gas mines.)e gas accident is one
of the major problems; hence, it is necessary to investigate
and solve this problem for China’s coal industry. Coal mine
gas safety evaluation has always been a key tool for coal mine
safety management. In China, the coal mines are ordered to
monitor the gas concentration, carbon monoxide concen-
tration, carbon dioxide concentration, oxygen

concentration, dust, wind speed, humidity, temperature,
power state, and others by the National Coal Mine Safety
Administration [1]. )rough monitoring those data auto-
matically and identifying the gas safety state timely in the
coal mine, outburst, gas accumulation, and explosion can be
effectively prevented. )e work has important theoretical
significance and practical value for suppressing the gas di-
sasters occurrence [2, 3] and endorsing the safe and sus-
tainable development of the coal industry.

Safety evaluation and risk assessment are important and
systematic processes to assess the impact, occurrence, and
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consequences of human activities on a system with haz-
ardous characteristics, and they are necessary tools for the
company’s safety policy. )e risk types and data sources are
many and various, so are the safety evaluation techniques to
assess risks. )erefore, the choice of methods has become
more and more important. Presently, safety evaluation
techniques can be classified into qualitative and quantitative
safety evaluation methods [4, 5].

1.1. Safety Evaluation Techniques

1.1.1. Qualitative Methods. )e qualitative safety assessment
methods are mainly to carry out qualitative analysis of the
production system’s process, equipment, facilities, envi-
ronment, personnel, and management based on experience
and intuitive judgment ability. )e results of qualitative
safety assessment methods are some qualitative indicators,
such as the type of an accident and the factors that may lead
to the accident. )e commonly used qualitative analysis
methods [4] include checklist analysis, plant level safety
analysis, process risk management audit, failure mode effect
analysis, hazard, and operability. )e qualitative evaluation
process is simple and easy to understand and manage;
however, the differences in the professional background and
operational capabilities of various participants may lead to
differences in safety assessment. For example, the structure
of checklist analysis relies exclusively on the knowledge built
into the checklists to identify potential problems [6]. If the
checklist does not address a key issue, the analysis is likely to
overlook potentially important weaknesses.

1.1.2. Quantitative Methods. )e quantitative safety as-
sessment methods are to quantify the status of the pro-
duction system’s processes, equipment, environment,
facilities, personnel, and management, based on statistical
analysis of a large number of experimental results or/and
accident data, using obtained indicators or laws (mathe-
matical models). )e commonly used quantitative analysis
methods [5, 7] include fault tree analysis, event tree analysis,
shortcut risk assessment, and maintenance analysis. )e
quantitative methods can evaluate the system more accu-
rately than the qualitative methods, but they are still not
perfect. Take the commonly used fault tree analysis as an
example, this is a deductive technique that uses a fault tree to
determine the cause of the accident event. All possible ac-
cident events are needed to construct the complete fault tree,
but it is difficult to assess all possible accident events and
their possibilities and consequences.

1.2. Intelligent Methods for Coal Mine Safety Evaluation.
With the enormous development of artificial intelligence
(AI), more andmore practical applications are available with
the artificial intelligent algorithm in the field of engineering
[8–12], and numerous attempts have also been carried out
on coal spontaneous combustion [13, 14], gas explosions
[15–18], etc. Moreover, there are some intelligent methods

for coal mine safety evaluation to assess risks quantitatively
and solve the problem above.

1.2.1. Improved Fuzzy.eoryMethods. Sun [19] developed a
comprehensive assessment model of coal mine safety risk in
terms of the Fuzzy TOPSIS and integration operator tech-
nique. Dai [20] presented a method to use the gas density
data by leveraging the fuzzy synthetic evaluation model, and
an algorithm to select the weights assignment proposals.
Peng [21] introduced linguistic intuitionistic fuzzy numbers
to depict the necessary evaluation information. Wang [22]
estimated and ranked all of these risk factors through the
fuzzy analytic hierarchy process including managerial, en-
vironmental, individual, and operational criteria to develop
a management model and direct the safety managers in
mining procedure.

1.2.2. Improved Swarm Intelligence. He [23] integrated an
ant colony algorithm with neural networks to develop a
neural network security assessment model utilizing an ant
colony algorithm to train the neural network weights. Li [24]
optimized the neural net model of the right value (threshold)
to overcome the neural net easily falling into the local
minimum through quantum genetic algorithm.

1.2.3. Other Techniques. An improved factorization-ma-
chine supported neural networks (FNN) structure was
designed by Zhang [25]. )e fuzzy neurons of the improved
FNN have decision-making and control properties with
further enhanced error correction performance making the
entire system adaptable and stable. Wang [26] integrating
the gray correlation technique and the new gray correlation
degree method introduced a dynamic resolution coefficient
to decrease the error of the gray correlation technique. Li
[27] extracted the causal chain of accidents through Bayesian
Network analysis to develop the multilevel forecasting in-
dicator system for safety situations and constructed the
multilevel prediction model for the coal mine risk trend by
combining rough set theory, Bayesian network, and support
vector machine.

)e occurrence reasons of gas accidents mostly include
the unfavorable monitoring of environmental factors, the
insufficient accuracy, and the lack of evaluation systems.
Based on the Dempster–Shafer (D-S) evidence theory, a coal
mine gas safety evaluation model is proposed to automat-
ically get more accurate safety state information. Various
sensor monitoring data were collected from the working face
monitoring system and processed by adaptive weighted least
squares support vector machine (AWLS-SVM) to obtain the
prediction data as the input of the safety assessment model.
)en, the gas safety state was divided into some different
safety levels, and multisensor data fusion was carried out. By
the comprehensive analysis of fusion results, the gas safety
assessment would be realized assisting coal mine safety
management.
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2. Gas Safety Evaluation Model

)e data source of the gas safety evaluation model is the
monitoring system of a coal mine, including monitoring
data of gas concentration, wind speed, dust, temperature,
etc. )e Pearson correlation was used to find the reasonable
correlative sensors.

First, in order to evaluate the safety state of a coal mine
after a certain time from now on, the predicted sensor values
are acquired using the time series prediction model, and
AWLS-SVM has been used as the prediction model in this
paper. )e predicted sensor values would be the evidence
sources used in the next step.

Second, the sensor data need to be integrated using
improved D-S evidence theory to produce more consistent,
accurate, and useful information for safety assessment. )e
basic probability assignment (BPA) function, which is the
basis of D-S evidence theory, is obtained through the pos-
terior probability modeling technique and the similarity
degree is presented for modifying the evidence source to
reduce the conflicts and improve the accuracy.

Ultimately, multisensor data fusion is performed based
on the introduced fusion rules, which are enhanced by the
conflict assignment coefficients to prevent the distortion of
evidence sources. )e reasonable modification of fusion
rules can also enhance the accuracy of fusion results.

)e coal mine gas safety evaluation model based on
AWLS-SVM and D-S evidence theory is shown in Figure 1.

3. Adaptive Weighted Least Squares Support
Vector Machine

)e evaluation model developed in this paper is aimed at the
coal mine gas safety assessment after a definite time. It is
essential to obtain the predicted values of the monitoring
variables as the input of the evaluation model. )erefore, an
adaptive weighted least squares support vector machine
(AWLS-SVM) is proposed based on the weighted least
squares support vector machine (WLS-SVM) with the
adaptive weights calculated through the distribution char-
acteristics of the discrete points.

3.1. Weighted Least Squares Support Vector Machine.
Suykens [28] proposed a WLS-SVM in terms of the least
squares support vector machine (LS-SVM). )e Lagrange
function of its optimization problem can be explained as

L(w, b, ξ, α) �
1
2
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w +
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In the previous equation, w represents the weight co-
efficient vector; φ(xi) shows the mapping input to the high-
dimensional space;C denotes the regularization parameter; b
represents the threshold; xi is the Lagrange multiplier.

Regarding the KKT (Karush–Khun–Tucker) condition, the
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In the previous equation, V � diag(v−1
1 , v−1

2 , . . . , v−1
N )

represents the diagonal matrix, l1×N shows the unit column
vector, R � K (xi, xj)|i � 1, 2, . . . , N􏽮 􏽯 denotes the radial
basis kernel function matrix, and y � [y1, y2, . . . , yN]T.
Equation (2) can be obtained α and b, inputting test samples
to obtain WLS-SVM model as

y � 􏽘
n
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αK xi, x( 􏼁 + b. (3)

)e weight calculation formula is
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(4)

In the previous equation, the values of s1 and s2 are 2.5
and 3.0, respectively [28]; 􏽢s represents the standard esti-
mated deviation of the error sequence; and its calculation
function is

􏽢s �
IQR

2 × 0.6745
. (5)

In the previous equation, IQR represents the difference
between the first and third quartiles in the sequence of errors
ξi from small to large.

3.2. Adaptive Weighted Least Squares Support Vector
Machine. In the WLS-SVM algorithm, the weight is mainly
used to eliminate the influence of gross error data in the
sample, and whether its value is appropriate directly de-
termines the performance of the model. )e weights de-
termined by equation (4) are linearly distributed, and the
calculation results will include errors. )erefore, this paper
adaptively determines the weight of each sample through
iterative operations. )e weights are adaptively calculated
utilizing the distribution characteristics of discrete points
divided into two categories: high leverage points far from the
input data center, and high residual error points differing
greatly from the actual value.)e weighting technique in this
paper is the key of the AWLS-SVM, the gross errors are
judged simultaneously through sample leverage points and
residual points, and it can minimize the adverse impacts of
the discrete points.

)e residual error weight v
ξ
i of the i-th sample data is

determined as
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v
ξ
i �

2
1 + e

ξi/T
, i � 1, 2, . . . , n. (6)

where T represents the robust scale estimate of the residual
error defined as

T � median ξi − median ξi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, i � 1, 2, . . . , n. (7)

)e leverage weight vx
i of the i-th sample data is deter-

mined as

v
x
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where ‖·‖ represents the Euclidean distance, median X( )

shows the median value of X, xi denotes the i-th sample data,
X represents the vector of all input specimens, and c denotes
a constant usually taken as 4 [28, 29].

Comprehensively considering the leverage and residual
error weights, the weight vi of the i-th sample data is de-
termined as

vi �

����

v
ξ
i v

x
i

􏽱

. (9)

)e algorithm steps of AWLS-SVM are given in Algo-
rithm 1.

3.3. Prediction Model of Monitoring Variables. )e steps to
build a prediction model of monitoring variables in terms of
AWLS-SVM include the following:

Step 1. Collecting the monitoring data of the mine
working face, preprocessing the data, and obtaining the
learning samples of the model.
For missing data in the time series, the interpolation
method is utilized to supplement the missing data. For
abnormal data, which are values of zero or beyond the
theoretical range, the discarding method is used to
delete the abnormal data from the original data set, and
the interpolation method is used again as a supplement.
)e ultimate objective is to prevent data problems
resulting in the deviation of the counterintuitive results.
Step 2. Dividing the learning sample into a test set and a
training set and selecting the proper fitness function,
like the mean square error (MSE), neighborhood av-
erage method, and weighted arithmetic mean.)eMSE
is used in this paper.
Step 3. Using 3-fold cross-validation, performing the
regression analysis by WLS-SVM with the training
sample data, and determining the fitting residual error
ξ of each sample. )e initialization weight value v is

The monitoring system of a coal 
mine (the data source)

The safety evaluation and decision-making

The data fusion using improved D-S theoryThe prediction model
(AWLS-SVM)

Timeseries
data set 1

Timeseries
data set 2
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data set n

Predicted sensor value
at time (now + i)

Predicted sensor value 
at time (now + i)

Predicted sensor value 
at time (now + i) Construction of 

the BPA

The degree of support 
for evidence

Frame of discernment
{(no danger), (mild danger), (moderate danger), (severe danger), (uncertain)}

... ......
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The 2nd sensor

The n-th sensor

now + i: the certain 
time from now

Sensors wereselected using 
correlation analysis

The posterior 
probability 

modeling technique

Evidence-based 
improvements

Fusion rules 
improvements

The fusion results

Conflict allocation 
coefficient

Shannon entropy was used for measuring the uncertainty of the fusion results. Then, coal mine gas safety status was 
evaluated and some suggestions were made for safety work.

Figure 1: )e gas safety evaluation model.
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calculated based on equations (4) and (5) and taking v

into equations (2) and (3) to reach the WLS-SVM
model.
Step 4. Recalculating the residual error ξ of each sample
data based on the regression model. )e weight value v

is recalculated using equations (6), (8), and (9).
Step 5. Taking the weight value v into equations (2) and
(3) to develop the AWLS-SVM as the prediction model.

4. Improved Dempster–Shafer Evidence Theory

Dempster–Shafer (D-S) theory has strong applicability in
data fusion; however, there are still some deficiencies in the
actual fusion process in dealing with uncertain problems.
)e high conflicts of uncertain information may make the
data fusion results inconsistent with the facts [30], resulting
in the inability to assess the event. )e problems are mainly
manifested in the following three aspects:

One-vote veto problem: when there is a complete
contradiction between the pieces of evidence, there will
be a veto problem
General conflict problem: when the belief functions of
the evidence are very different, unreasonable results
appear after fusion
Robustness problem: when the belief functions of the
evidence change, the results after data fusion will
change drastically

In this study, the enhancement of D-S evidence theory is
mostly considered to solve the problem of conflicting evi-
dence sources.

4.1. Basic Principles of D-S Evidence .eory. For reasoning,
the uncertain problems, D-S evidence theory has robust
adaptability with a simpler reasoning process. )e distri-
bution of belief functions and the fusion of evidence are the
basic knowledge of D-S evidence theory. )e uncertainty of
events can be expressed through the frame of discernment
and basic probability assignment function.

4.1.1. Frame of Discernment. A set X of possible situations of
the event is represented by the frame of discernment with the
elements representing the degree of evaluation of the event
state. In the gas safety evaluation system, every possible state
is known as a hypothesis, and all possible categories con-
stitute a frame of discernment. Hence, the frame of

discernment includes all possible results of a particular
problem. )e frame of discernment can be expressed in

X � X1, X2, X3, . . . ,Θ􏼈 􏼉, (10)

where Xi represents a possible result of the event and Θ
denotes the uncertainty.

4.1.2. Basic Probability Assignment (BPA) Function.
Suppose that X is a frame of discernment; 2X represents a
power set on X, if m: 2X⟶ [0, 1] and satisfies

􏽘
A∈2X

m A( ) � 1, m Θ( ) � 0. (11)

In the previous equation, m is known as the BPA of the
discernment frame X and it is also known as the mass
function and A represents the element in the discernment
frame. For ∀A⊆X, m A( ) shows the basic belief indicating
the level of trust in proposition A.

4.1.3. Belief Function. If there are A ∈P (X) and B ∈A, the
function Bel is defined as

Bel A( ) � 􏽘
B∈A

m B( ). (12)

In the previous equation, Bel shows the belief function,
and equation (11) is the sum of the possibilities of all the
subsets of A representing the overall degree of trust in A;
hence, it can be inferred that Bel Θ( ) � 0 and Bel X( ) � 1.
)e belief function shows the trust degree of a certain thing.
It is incomplete and untrustworthy to only use the belief
function to explain the possibility of an event.

4.1.4. Likelihood Function. In D-S evidence theory, the
likelihood function is a measure expressing the degree of
distrust of an event. Definition: X is a frame of discernment,
m: 2X⟶ [0, 1] is given as the basic probability assignment
on X. If there are A ∈ P X( ), B ∈ A, then the function Pl:
2X⟶ [0, 1] is defined as

Pl A( ) � 1 − Bel(A) � 􏽘
B∩A≠Θ

m B( ). (13)

In the previous equation, Pl A( ) indicates that event A is
true uncertainty and Bel(A) shows the trust degree of event
A. )e degree of mistrust Pl A( ) of A can be determined by
equation (13).

Step 1. Based on the modeled sample data, determine the fitting residual of each sample using least squares support vector machine
regression
Step 2. Initialize the weight vi using equations (6), (8), and (9)
Step 3. Perform weighted least squares support vector machine regression on the sample data to obtain a regression model
Step 4. According to the regression model, calculate the residual error ξ of each sample data and recalculate the weight vi using
equations (6), (8), and (9)

ALGORITHM 1: Algorithm steps.
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)e minimum level of trust of evidence theory for event
A is Bel A( ), the potential degree of trust in event A is stated
as Pl A( ), the support interval of event A is expressed as
[0,Bel A( )], and the likelihood interval of event A is stated as
[0,Pl A( )]. When the evidence neither confirms nor denies
the occurrence of eventA, a trust interval can be used for this
uncertain phenomenon, to represent the probability of event
A.

4.2. Improvements of D-S Evidence .eory

4.2.1. Evidence-Based Improvements. Modifying the evi-
dence source can reduce the effect of interference factors on
the fusion assessment results and improve the evaluation
results’ accuracy. In this study, the idea of assigning weights
is utilized to allocate each evidence’s importance to increase
the reliability of the evidence on the decision result and
weaken the effect of conflicting evidence.

For an uncertain event, there are n pieces of evidence,
and the corresponding discernment frame X contains N
focal elements with mi representing the evidence set com-
posed of the basic probability assignment function equiv-
alent to the evidence under each focal element:

mi � mi A1( 􏼁, mi A2( 􏼁, . . . , mi An( 􏼁􏼂 􏼃
T

, i � 1, 2, . . . , n.

(14)

Equation (14) is utilized to determine the distance be-
tween mi and mj and dij represents the distance of mi and
mj. )is distance function with a better reflection in
explaining the focal element and the reliability between
pieces of evidence can better determine the conflict between
pieces of evidence:

dij � d mi, mj􏼐 􏼑 �

�������������������������
1
2

mi

����
����
2

+ mj

�����

�����
2

− 2 mi, mj􏼐 􏼑􏼔 􏼕

􏽲

. (15)

)e similarity function is further derived from equation
(15). )e similarity between mi and mj can be expressed as
Sij and the expression of Sij is

Sij � 1 − dij. (16)

)e smaller the distance between the pieces of evidence,
the higher the mutual support. )e degree of support for
evidence can be stated by the sum of other evidence; then the
degree of support for evidence mi is

T mi( 􏼁 � 􏽘

n

j�1,j≠i
Sij, i � 1, 2, . . . , n. (17)

In this paper, the distance similarity matrix between
pieces of evidence is utilized to allocate various weights to
each sensor to meet the purpose of modifying the evidence
source. To prevent the conservative revised evidence source
and losing the advantages of the original evidence, this study
adopts retaining the original set of more accurate evidence to
guarantee the impact of data fusion. Based on the above
ideas and the ratio of the degree of support of the evidence,
under retaining a good set of evidence sources, the weight β

of the evidence is determined based on the level of support.
)e specific formula is as follows:

β mi( 􏼁 �
T mi( 􏼁

max T mi( 􏼁( 􏼁
. (18)

After allocating the weights, the modified basic proba-
bility assignment function equivalent to the evidence can be
stated as follows:

mi
′(i) � β mi( 􏼁 · mi,

mi
′(Θ) � β mi( 􏼁 · mi + 1 − β mi( 􏼁( 􏼁.

(19)

4.2.2. Improvements Based on Fusion Rules. In this paper,
using the time series prediction value of the monitoring data
of each sensor, the basic probability assignment function
value is calculated. After fusing the value of each sensor, the
mine gas safety state is judged. )e fusion rules of D-S
evidence theory are as follows.

According to two independent pieces of evidence M1
and M2, the focal elements of the two pieces of evidence are
Bi and Cj(i � 1, 2, 3, . . . , n; j � 1, 2, 3, . . . , m), and the basic
probability assignment function value after their fusion is
m A( ):

m A( ) � M1 ⊕M2 �
1

1 − K
􏽘

Bi∩Cj�A

m1 Bi( 􏼁m2 Cj􏼐 􏼑,

K M1, M2( 􏼁 � 􏽘
Bi∩Cj�Θ

m1 Bi( 􏼁m2 Cj􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

In the previous equation,K(M1, M2) is known as the
conflict coefficient representing the degree of conflict be-
tween the two pieces of evidence M1 and M2. )ere is no
conflict between the two pieces of evidence when the conflict
coefficient is 0. However, when it is closer to 1, greater
conflict exists between the two pieces of evidence, as a
complete conflict.

Many scholars [30–32] believe that the fusion rules of
evidence theory are imperfect in the processing of evidence;
hence, the reasonable modification of fusion rules can also
enhance the accuracy of fusion. After modification of the
evidence source, the simple modification of the evidence
source data to prevent high conflicts between the pieces of
evidence may result in the revised evidence to lose the ef-
fective information of the original evidence. )e conflict
allocation coefficient is introduced based on the fusion rules
to enhance the decision stage accuracy.

)e conflict allocation coefficient ω(Ai) can be expressed
as

ω Ai( 􏼁 �
􏽐

n
i�1mi
′ Aij􏼐 􏼑

􏽐
n
i�1􏽐

p
j�1mi
′ Aij􏼐 􏼑

. (21)

6 Discrete Dynamics in Nature and Society



)e enhanced formula of D-S evidence theory fusion
rule is expressed as

m(A) � 􏽘
Bi∩Cj�A

m1 Bi( 􏼁m2 Cj􏼐 􏼑 + K · ω Ai( 􏼁.
(22)

In equation (22), set A denotes the intersection of the
focal element Bi and focal element Cj.

4.3. Settings for the Gas Safety Evaluation Model. )e gas
safety evaluation model includes AWLS-SVM and improved
D-S evidence theory, which are explained in detail before.
)e frame of discernment and the basic probability as-
signment function are the bases of D-S evidence theory
calculation, some settings should be done before to use the
evaluation model.

4.3.1. Settings of Discernment Frame. From the perspective
of D-S evidence theory, the gas safety state can be con-
sidered as a judgmental problem, and the summary of
hypothetical results can be explained as a frame of dis-
cernment. Based on the coal mine safety regulations [1] and
related literature [33, 34], the gas safety state is divided into
five states: no danger implies that the working face of the
coal mine is in a decent environment; mild danger rep-
resents that the working face possesses a certain risk, and
this danger value is within the acceptable range, an on-site
inspection should be completed; moderate danger implies
that the working face is unsafe, the indicated value has
exceeded the acceptable range, and an on-site inspection is
required as soon as possible; severe danger represents that
the working face is very bad, and the staff should be
evacuated; and uncertain implies that the evacuated result
is vague, and the work should be redone after checking the
data source and the evaluation process. Hence, the frame of
discernment for the coal mine gas safety evaluation model
can be explained as X � {X1 (no danger), X2 (mild danger),
X3 (moderate danger), X4 (severe danger), and Θ
(uncertain)}.

4.3.2. Construction of Basic Probability Assignment Function.
In this paper, the posterior probability modeling technique is
utilized to construct the basic probability assignment
function, and the similarity degree is introduced to modify
the evidence source. )e support degree of each sensor is
characterized by the basic probability assignment function to
the safety state of mine gas. In this paper, a time series
prediction model is made through the AWLS-SVM, and the
prediction model is developed with each influence factor as
an input to obtain the prediction value of each sensor. )e
posterior probability modeling technique calculates the basic
probability assignment function of each sensor.

Taking a sensor as an example, the basic probability
assignment function value obtained by the posterior
probability modeling method is y, and the frame of dis-
cernment is X � X1, X2, X3, X4,Θ􏼈 􏼉. )e distance between
X and y can be stated as

di Xi, y( 􏼁 � Xi − y
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (23)

)e correlation coefficient between the evidence and Xi

can be stated as

ci �
1/di( 􏼁

􏽐
4
i�1 1/di( 􏼁

. (24)

Introducing equation (24), the uncertainty m Θ( ) of the
corresponding evidence and the basic probability assign-
ment function m i( ) can be expressed as

m(i) �
ci

􏽐 ci + E
,

m(Θ) �
E

􏽐 ci + E
,

E �
1
2
|y − x|

2
,

(25)

where y represents the predicted value of the time series
prediction model and x shows the expected output value of
the prediction model.

5. Case Analysis

5.1. Data Sources. Qing Gang Ping coal mine located in
Shaanxi province is taken as the study area, and the data in
this paper are obtained from the coal mine monitoring
system, which includes the gas concentration at the upper
corner (No. A02), the wind speed (No. A09), the gas con-
centration at the working face 10 meters away (No. A01), the
dust (No. A11), the return air tunnel gas concentration (No.
A08), and the return air tunnel temperature 15 meters away
(No. A07). )e original data sampling interval is 1 minute,
and the data distribution has obvious jagged characteristics.
Hence, this paper uses 5 minutes as the sampling interval to
obtain 1500 groups of samples and choose the first 1400
samples for model training and the remaining samples for
model testing.)e sample set of original monitoring data are
shown in Table 1.

5.2. Predicted Results of the Time Series Prediction Model.
To predict the monitoring value of each sensor at the next
moment, this paper uses the multivariable AWLS-SVM time
series prediction model introduced in Section 3. It also uses
the target sensor as the output and other sensors as the input
for model training. SPSS software was utilized to analyze the
Pearson correlation of A02, A01, A09, A11, A07, and A08
monitoring sensors. )e analysis results are represented in
Table 2.

)e interpretation of a correlation coefficient depends on
the context and purposes. One of the common criteria used
is |r|> 0.95, significant degree; 0.8≤ |r|< 0.95, high degree;
0.5≤ |r|< 0.8, moderate degree; 0.3≤ |r|< 0.5, low degree;
and |r|< 0.3, irrelevant. )us, the correlation of 0.3 is
regarded as the limit in this paper. According to Table 2, the
correlation coefficients are all greater than 0.3, and it is
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reasonable for each sensor to be as the input of the target
sensor. )e prediction results are shown in Table 3.

)e prediction results were obtained undertaking the
steps described in Section 3.3 using the data sources in
Section 5.1 from the coal mine monitoring system, and those
values would be the input of the data fusion using the
improved D-S theory.

5.3. Experimental Results and Analysis

5.3.1. Contrast Analysis of Conflict Degree. )e posterior
probability modeling method introduced in Section 4.3 is
used in this paper to calculate the basic probability as-
signment function of each sensor. )e BPA of each sensor is
shown in Table 4.

According to Table 2, the results of single sensor rec-
ognition are A09 m(X2) � 0.8079, A07 m(X4) � 0.2399, A11
m(X1) � 0.4939, A02 m(X1) � 0.5551, A01 m(X1) � 0.5664,
and A08 m(X1) � 0.5954. Obviously, there is a great conflict
between A09 and A07 and other sensors. Using one sensor
evaluation result cannot accurately assess the safety state of
coal mine gas. Hence, it is necessary to modify the evidence
source before fusion.

)is study adopts the improved technique of evidence
source introduced in Section 4.2 and redistributes the
weights for each sensor based on the BPA in Table 4, and the
revised BPA is shown in Table 5.

According to Table 5, A09 is revised from
m(X2) � 0.8079 to m(X2) � 0.4622, and A07 is revised from
m(X4) � 0.2399 to m(X4) � 0.1997. )e conflict is consid-
erably reduced, indicating that the modification method of

the evidence source is feasible and retains the excellent
evidence of A02. At the same time, Table 5 shows that only
using sensors A07 and A09 as evaluation evidence will fail
decision-making. Moreover, only using A11, A02, A01, and
A08 as evaluation evidence has low recognition accuracy and
makes decision reliability low. )erefore, it is not reliable to
use only one sensor to assess the safety state of coal mine gas.

5.3.2. Comparative Analysis of Evaluation Results. Based on
the comparative analysis of the degree of conflict in Section
5.3, data fusion plays a key role in the decision-making
results. For the modifying method of the evidence source,
this paper calls the D-S-1 evidence theory. Moreover, the
D-S-2 evidence theory is called for the method of modifying
the fusion rule. Sensors A09, A07, A11, A02, A01, and A08
are recorded as pieces of evidence e1, e2, e3, e4, e5, and e6.)e
fusion procedure of multisensors is the fusion process of two
sensors in sequence. )e comparison outcomes of the
multisensor data fusion of the three methods are provided in
Figures 2–6.

According to Figure 2, the fusion evidence sources e1 and
e2 are all highly conflicting pieces of evidence; hence, the
decision results of D-S evidence theory and D-S-1 evidence

Table 1: )e sample set of monitoring data.

Number A02 (%) A01 (%) A09 (m/s) A11 (mg/m3) A07 (°C) A08 (%)
1 0.224 0.262 1.952 0.02 21.332 0.35
2 0.226 0.26 1.992 0.014 21.3 0.342
3 0.218 0.26 1.97 0.08 21.306 0.342
4 0.218 0.27 1.98 0.082 21.3 0.342
5 0.212 0.276 2.016 0.068 21.304 0.34
. . . . . . .
. . . . . . .
. . . . . . .
1497 0.368 0.408 1.926 0.086 22.026 0.502
1498 0.37 0.406 1.916 0.084 22 0.518
1499 0.362 0.4 1.944 0.076 22 0.496
1500 0.352 0.396 1.944 0.074 22 0.482

Table 2: )e correlation analysis results of various influencing
factors.

A02 A01 A09 A11 A07 A08
A08 0.572 0.910 0.668 0.324 0.788 1

Table 3: )e predicted results of various sensors.

A02 A01 A09 A11 A07 A08
Predicted results 0.380 0.422 1.912 0.094 22.086 0.504

Table 4: )e basic probability assignment functions.

A09 A07 A11 A02 A01 A08
X1 0.0646 0.2057 0.4939 0.5551 0.5664 0.5954
X2 0.8079 0.2160 0.2358 0.2150 0.2106 0.1979
X3 0.0557 0.2273 0.1549 0.1333 0.1294 0.1187
X4 0.0288 0.2399 0.1153 0.0966 0.0934 0.0848
Θ 0.0431 0.1111 0.0000 0.0000 0.0002 0.0032

Table 5:)e basic probability assignment function after modifying
the evidence source.

A09 A07 A11 A02 A01 A08
X1 0.0369 0.1712 0.4914 0.5551 0.5643 0.5801
X2 0.4622 0.1797 0.2357 0.2150 0.2098 0.1929
X3 0.0318 0.1892 0.1541 0.1333 0.1298 0.1157
X4 0.0165 0.1997 0.1148 0.0966 0.0930 0.0826
Θ 0.4526 0.2602 0.0051 0.0000 0.0040 0.0287

8 Discrete Dynamics in Nature and Society



theory are invalidated, and the recognition results of D-S-2
evidence theory are uncertain. Followed by introducing the
evidence source e3 in Figure 3, the recognition results of the
D-S-1 and D-S evidence theories are wrong, and the D-S-2
evidence theory recognition results are accurate. )is proves
that the enhanced fusion rule in this paper is effective in
retaining the revised evidence source. In Figure 4, according
to the fusion results of evidence sources e1, e2, e3, and e4, D-S

evidence theory recognition result is inaccurate and D-S-2
evidence theory recognition results are accurate proving that
the modified technique of the evidence source enhanced in
this paper is correct, eliminating the interevidence high
conflicts. Figures 5 and 6 show that the D-S-2 evidence
theory technique for modifying the evidence source and
fusion rules in this paper is reasonable. )e recognition
accuracy of the D-S-2 evidence theory is higher compared to
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the D-S-1 evidence theory and D-S evidence theory. )e
accuracy of D-S evidence theory based on the improved
fusion rules (D-S-2, the model proposed in this paper) is
improved by 2.82% (from 0.9225 to 0.9485), respectively,
compared to D-S evidence theory based on modified evi-
dence sources (D-S-1) and improved by 15.70% (from
0.8198 to 0.9485) compared to the original D-S evidence
theory (D-S).

)e accuracy rate of mine gas safety state recognition was
enhanced. At the same time, the fusion rule satisfies the
exchange law; moreover, it can be concluded that increasing
the evidence during the fusion process leads to the higher
accuracy of the identification in the decision stage. )e
problem regarding the difficulty in accurately characterizing
the gas safety state in the single sensor is solved. It can be
concluded that the multisensor data fusion gas safety state
evaluation system suggested in this paper possesses high
practical value in field applications with important theo-
retical significance for overwhelming the occurrence of gas
disasters and enhancing the safe and sustainable develop-
ment of the coal industry.

5.3.3. Model Uncertainty Measure. )is paper utilizes
Shannon entropy [35] for measuring the uncertainty of the

above three D-S evidence theories. Let n signal sources make
up the signal X � x1, x2, x3, . . . , xn􏼈 􏼉; the probability that
each signal source represents the equivalent information for
an event is P � p(x1), p(x2), p(x3), . . . , p(xn)􏼈 􏼉; then the
system structure S of the signal can be stated as

S �
X

P
􏼠 􏼡 �

x1 x2 . . . xn

p x1( 􏼁 p x2( 􏼁 . . . p xn( 􏼁
􏼠 􏼡. (26)

)erefore, the Shannon entropy of the signal is given as

H(x) � − 􏽘
n

i�1
p xi( 􏼁lnp xi( 􏼁. (27)

)e uncertainty of fusion data using D-S evidence theory
is

−0.8198∗ ln 0.8198 − 0.1768∗ ln 0.1768 − 0.0028

∗ ln 0.0028 − 0.0006∗ ln 0.0006 � 0.4901.
(28)

)e uncertainty of fusion data using D-S-1 evidence
theory is

−0.9225∗ ln 0.9225 − 0.0720∗ ln 0.0720 − 0.0042

∗ ln 0.0042 − 0.0013∗ ln 0.0013 � 0.2955.
(29)
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)e uncertainty of fusion data using D-S-2 evidence
theory is

−0.9485∗ ln 0.9485 − 0.0466∗ ln 0.0466 − 0.0038

∗ ln 0.0038 − 0.0011∗ ln 0.0011 � 0.2217.
(30)

From the above results, it is deduced that the enhanced
D-S-2 evidence theory has lower uncertainty compared to
the D-S evidence theory and D-S-1 evidence theory and can
better assess the safety of coal mine gas.

6. Conclusions

According to the features of coal mine monitoring data, a
prediction model is made. By obtaining the predicted values
of each sensor, the basic probability assignment function of
each sensor is determined to utilize the posterior probability
modeling method.

Moreover, a safe assessment model of coal mine gas state
is made, andmultisensor data fusion is realized. Fusing more
sensors, the evaluation results are more accurate. )e model
in this paper effectively solves the problem of difficulty in
accurately characterizing the gas safety state by one sensor.

Furthermore, regarding the problem of evidence fusion
failure caused by high-conflict data, this paper represents the
similarity for modifying the evidence source of conflict data,
which effectively decreases the conflict between the evidence
sources. At the same time, to prevent distortion of evidence
sources, the conflict assignment coefficients are presented to
enhance the fusion rules, and the accuracy of evaluation results
is improved. It proves that the enhanced D-S evidence theory
can improve accuracy by 15.70% compared to the original D-S
evidence theory.

)e enhancedmethod has better generalization ability and
higher accuracy for coal mine gas safety evaluation providing
a theoretical basis for gas disaster accident prevention.
According to the results of coal mine gas safety evaluation,
there are some policy implications for coal mine safety in
China: although reducing gas in underground coal mine has a
positive effect on coal mine safety, it is impossible to com-
pletely avoid gas production in the short term. )us, one
available choice is to promote the research of gas monitoring
and related safety evaluation technologies and to advocate the
use of more efficient and accurate technical means.
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