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In view of existing Visual SLAM (VSLAM) algorithms when constructing semantic map of indoor environment, there are
problems with low accuracy and low label classification accuracy when feature points are sparse. This paper proposed a 3D
semantic VSLAM algorithm called BMASK-RCNN based on Mask Scoring RCNN. Firstly, feature points of images are extracted
by Binary Robust Invariant Scalable Keypoints (BRISK) algorithm. Secondly, map points of reference key frame are projected to
current frame for feature matching and pose estimation, and an inverse depth filter is used to estimate scene depth of created key
frame to obtain camera pose changes. In order to achieve object detection and semantic segmentation for both static objects and
dynamic objects in indoor environments and then construct dense 3D semantic map with VSLAM algorithm, a Mask Scoring
RCNN is used to adjust its structure partially, where a TUM RGB-D SLAM dataset for transfer learning is employed. Semantic
information of independent targets in scenes provides semantic information including categories, which not only provides high
accuracy of localization but also realizes the probability update of semantic estimation by marking movable objects, thereby
reducing the impact of moving objects on real-time mapping. Through simulation and actual experimental comparison with other
three algorithms, results show the proposed algorithm has better robustness, and semantic information used in 3D semantic
mapping can be accurately obtained.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a
technology which enables robots or UAVs to realize au-
tonomous positioning in an unknown environment and
autonomous mapping. The robot can get rich information
through sensors, which brings more conveniences to solve
the problem of localization and mapping. Therefore, SLAM
technology is undoubtedly a priority for robot autonomy.
Compared with traditional SLAM based on laser sensor,
SLAM based on camera vision can make full use of rich
texture information on pictures taken by the camera, which

provides a huge advantage in relocation and classification
of scene semantic information. In recent years, intelligent
robots have been widely used in various industries, espe-
cially for rapid development of Visual SLAM (VSLAM).
Image feature extraction methods represented by deep
learning technology have appeared in VSLAM. Meanwhile,
deep learning also associates images with semantics and
combines with VSLAM methods to build a semantic map
and semantic knowledge base of environment. Salehi et al.
[1] focused on the real-time fusion of monocular Vision
SLAM and GPS data, where a hybrid method of con-
strained BA/position map is put forward to obtain the
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attitude estimation and reconstruction of city scale and
geographical parameters. Liu et al. [2] proposed a SSD
algorithm based on YOLO and Faster RCNN, adding
multiple convolution layers of different scales to maintain
the accuracy of Faster RCNN, while a faster speed than
YOLO is obtained. Zhang et al. [3] used collinear rela-
tionship of points to optimize the existing VSLAM algo-
rithm based on points, and a practical line matching
algorithm was given, where compensating computation
assisted by straight beam was utilized and the perspective of
n-point algorithm was improved. The proposed method is
evaluated on indoor sequences of different ranges in the
dataset of TUM and also compared with point-based and
line-based methods. The results show that the designed
algorithm has faster computing speed in comparison with
VSLAM system based on point line. Gao et al. [4] proposed
an improved method of augmented reality registration
based on VSLAM to solve the problem of unstable regis-
tration and low registration accuracy of unmarked aug-
mented reality of standard homographic matrix. The
VSLAM algorithm generates a 3D scene map in the process
of dynamic camera tracking, and then AR based on VSLAM
uses 3D map of scene reconstruction to calculate the po-
sition of virtual object, which enables and enhances the
stability and accuracy of AR registration.

Recently, robustness and availability of VSLAM tech-
nology have been strengthened, which tends to be mature
[5]. However, sparse image features can provide limited
environmental semantic information in dealing with dy-
namic target motion, lack of texture, or single texture en-
vironment. For these problems, hierarchical image feature
extraction methods represented by deep learning have
appeared in the field of VSLAM in recent years, providing
ideas for solving such problems. By modeling bounding box
of the most representative first-level detector YOLOV3 in
accordance with Gaussian parameters and redesigning loss
function, Choi et al. [6] proposed a method to improve
detection accuracy and support real-time operation. Li et al.
[7] put forward a multitarget detection framework inte-
grating RCNN and DPM, which can precisely detect each
single object among all objects in the image. Especially better
performance was shown when objects are close to each
other. Cai and Vasconcelos [8] developed a multilevel target
detection structure, namely, Cascade RCNN, which includes
a series of detectors trained by increasing IOU threshold,
and higher selectivity for approaching misinformation is
obtained. Ren et al. [9] proposed an improved anchoring
scheme, where high resolution characterized mapping of
small targets for improvement of its performance was used.
Eggert et al. [10] introduced an improved scheme for
generating anchor proposals and proposed a modification to
Faster RCNN which leverages higher resolution feature
maps for small objects. A novel multiscale location per-
ception kernel representation (MLKP) method was pre-
sented by Wang et al. [11] to obtain the high-order statistics
of depth features, and it combined discriminated high-order
statistics into representation of object proposals for effective
detection for objects. Note that this method can be applied to
target detection flexibly. Li et al. [12] put forward a SOR
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Faster RCNN algorithm, which was used to search same
target in different scenes with less training samples. A new
robust Faster RCNN method was developed by Zhou et al.
[13] to detect targets in multitag images. Unlike Fast RCNN,
this design method has stronger robustness. Tao et al. [14]
proposed a method of 3D environment semantic mapping
based on Mask RCNN algorithm. The input image sequence
was filtered by ORB-SLAM for key frame and then image
semantic segmentation was combined with SLAM tech-
nology to build a 3D semantic map of the environment.
Schorghuber et al. [15] fused a robust static weighting
strategy based on corresponding distance of depth edge into
intensity assisted ICP and thus proposed a real-time RGB-D
visual range measurement method. Laidlo and Leutenegger
[16] proposed a 3D reconstruction system called Deep-
Fusion which leverages the output of a convolutional neural
network (CNN) in DeepLab-v2 [17] to produce fully dense
depth maps for key frames that include metric scale.
DeepFusion fuses the output of a semidense multiview
stereo algorithm with the depth and gradient predictions of a
CNN in a probabilistic fashion, using learned uncertainties
produced by the network. McCormac et al. [18] proposed an
improved Elastic Fusion SLAM [19] method based on
convolution neural network to build a dense 3D semantic
map, which relies on Elastic Fusion SLAM algorithm to
provide estimation for interframe pose of indoor RGB-D
video, uses convolution neural network to predict classes
and labels of pixel-level object, and finally combines
Bayesian upgrading strategy and conditional random field
model to realize probability upgradation of predicted CNN
value from different perspectives so as to generate a dense
3D semantic map. Mur-Artal et al. [20, 21] proposed a ORB-
SLAM2 method, which uses depth information to synthesize
a three-dimensional coordinate, and the information of an
image can be accurately extracted. The backend uses BA
algorithm to build a global sparse map reconstruction.
Therefore, this method is more lightweight and can be used
in semantic mapping [22]. However, these aforementioned
methods have some drawbacks in correctness of classifica-
tion in the case of sparse feature points.

Motivated by the aforementioned existing problems, this
paper proposed an ingenious semantic VSLAM algorithm
combining BRISK feature [23] with a VSLAM algorithm
based on Mask Scoring RCNN [24]. Semantic information of
independent targets in scenes provides semantic informa-
tion including categories. Meanwhile, the impact of moving
objects during semantic mapping is reduced by the prob-
ability update of semantic estimation by marking movable
objects.

2. Three-Dimensional Map Generation

2.1. System Overview. The overall architecture of the algo-
rithm has two parts including front-end processing and
back-end processing. A BRISK algorithm is used in front-
end processing to extract features as well as key points. A
Mask Scoring RCNN method is used in back-end processing
including segmentation, semantic association, and semantic
mapping as shown in Figure 1.
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FIGURE 1: The entire framework of the proposed algorithm.

2.2. Dense SLAM Algorithm Based on BRISK Feature
Extraction. Binary Robust Invariant Scalable Keypoints
(BRISK) algorithm is similar to SIFT (scale-invariant feature
transform), SURF (speeded-up robust feature), and ORB
(oriented FAST and rotated BRIEF) [23], which is a feature
point matching algorithm, but calculation speed is faster than
other two algorithms. BRISK algorithm constructs image
pyramid for multiscale expression, so it has good rotation
invariance, scale invariance, good robustness, and so on. In
particular, BRISK algorithm performs the best for image
registration with large blurs. BRSIK algorithm consists of two
parts: detection of key points and description of key points.

The detection for key points of BRISK is based on scale
space composed of image pyramid. FAST is used to detect
candidate key points in all layers of pyramid image, and
candidate key points suppressed by nonmaximum are taken

as final key points. After all the key points in image are
obtained, key points need to be described. Different from
descriptors constructed by SURF, SIFT, and other algo-
rithms, BRISK algorithm applies binary string to describe
key points so as to use Hamming distance to calculate
matching degree and enable it to have a calculation speed
faster than Euclidean distance. BRISK describes features in
the mode of neighborhood sampling. The algorithm con-
structs multiple Bresenham concentric circles with key
points as a center and takes N points evenly distributed to
calculate feature direction and binary descriptors, respec-
tively, in accordance with its long distance sampling points
and short distance sampling points. Finally, Hamming
distance is used to match above binary feature description so
as to obtain global motion estimation of image.

In order to avoid the problem of sparse point cloud map
caused by strict screening strategy to avoid gross error, this
paper proposed a 3D mapping method of inverse depth
filtering based on Visual SLAM. The task of inverse depth
filter is used to estimate scene depth of created key frame and
only build matching cost within depth range, which greatly
reduces stereo matching time [25]. Based on the principle of
depth similarity between adjacent pixels, after initial depth
map is obtained, smoothing of intraframe and elimination of
outer point are carried out, which increased density of depth
map and eliminated possible isolated matching points. And
Gaussian fusion is carried out for each candidate inverse
depth hypothesis through an inverse depth fusion method of
multikey frame to optimize current depth value of key frame.
The specific algorithm steps are as follows:

Step 1: measuring for scene depth. Each map point
observed by key frame at any time is projected into key
frame image to calculate the depth value of the map
point in the key frame coordinate system. Maximum
depth and minimum depth are selected to set inverse-
depth search range of scene.

pi = (x5 Zi)T’ (1)

Pt =T = (b)) @

pmin = min(zi_k)’
Prmax = max ("), (3)
i€ (0,n),

where p; is the homogeneous representation of 3D
coordinates of map points in the world coordinate
system; T, p; is the pose transformation between the
camera coordinate system and world coordinate system
at time k; pk = T, p; is the homogeneous representa-
tion of 3D coordinates of map points in the camera
coordinate system at time k; and N is the number of map
points that can be observed in the key frame at time k.

Step 2: stereo matching. Pixel depth is calculated by
using aggregate stereo matching algorithm of variable
weight cost [26]. Based on layers of cost volume in the



limited stereo matching of scene depth value calculated
in Step 1, it is only searched in the range of parallax
opposite to inverse depth (Ppin> Pmax) SO as to reduce the
amount of calculation. Post-processing step of parallax
deletion in stereo matching is eliminated at the same
time, only retaining inverse depth of pixels with the same
parallax in the left and right consistency matching.

Step 3: elimination of isolated outer point. It is assumed
that parallax obtained by stereo matching follows the
Gaussian distribution of variance 1, i.e., d: N (d, 1):

p=z'=d(fb), (4)

where d, is the parallax value calculated by stereo
matching, f is the focal length of the camera, b is the
baseline, z is the depth value of the pixel, and p is the
inverse depth. The inverse depth distribution after
transformation is as follows:

N dy 1 5
P <ﬁ’ﬁ)' ®

The inverse depth map obtained in stereo matching
stage is filled and isolated outliers are eliminated. The
specific steps are as follows:

(1) For each pixel with inverse depth distribution, the
number of pixels whose inverse depth distribution
meets y distribution of less than 5.99 is calculated.
As shown in formula (6), inverse depth is elimi-
nated in case of number less than 2. When the
number is greater than 2, formula (7) is used to fuse
the inverse depth that meets the requirements of y
distribution. After fusion, inverse depth of the pixel
is p,,, while variance azp is the minimum variance of
inverse depth before fusion.

(s ;ipy)z (P ;ipy)z <59 (6)
(o)
P é(l/of,]), 7
(o)
P ™ ;(wﬁ,}) ’ ©
P

where x and y are eight surrounding pixels around
current pixel and n is a number which satisfies y
distribution.
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(2) For each pixel that does not have an inverse depth
distribution, check whether the inverse depth dis-
tribution between the eight surrounding pixels
meets the chi-square distribution. When the
number which satisfies y distribution is greater than
2, formula (2) is used for inverse depth fusion, and
homomorphic variance is the minimum variance of
inverse depth before fusion.

Step 4: fusion of inverse depth. After position and
pose of key frame are calculated by tracking thread,
current depth information of key frame is optimized
through following six inverse depth maps of the key
frame. The specific steps are as follows:

(1) Project map point corresponding to inverse depth
map of current key frame to adjacent key frame and
read the inverse depth p, of projection point and
inverse depth variance of o2.

(2) Map points whose inverse depth is p, + 0, p, and
Po — 0, in the adjacent frame to current frame, and
the reverse depth of p,, p,, and p; is retained.

(3) Construct candidate inverse depth of fusion, as-
suming p: N (p,, [max(Ip; = pal, | p3 = p)1?).

(4) Cycle above steps to obtain 6 candidate hypotheses of
fusion inverse depth and select inverse depth hy-
pothesis to be fused by using y distribution less than
5.99. After fusion, inverse depth Py and variance Uf,
are

where p represents pixels of current frame and n
represents numbers of inverse depth to be fused.

Step 5: re-elimination of isolated outer point. Based
on assumption that depth of adjacent areas in scene
is similar, inverse depth map obtained by inverse
depth fusion is smoothed in frame and removed
from outer points so as to improve accuracy of
output map points and increase density of point
cloud. The specific steps are reverse depth filling and
removal in Step 2.

Step 6: get cloud point map. All points in the
processed depth graph are transformed to the
global coordinate system, and point cloud map is
obtained to construct current environment map.
However, if point cloud data of each frame are
integrated into map, a lot of computing resources
will be occupied, thus reducing real-time per-
formance of the system. Therefore, this paper uses
point cloud map based on key frame to build
dense environment map by dividing an entire map
into several submaps with specific key frames to
reduce memory consumption. The extracted key
frame is optimized and saved to global map, and
the dense global map is finally output, as shown in
Figure 2.

For a key frame, the RGB-D camera provides color image

and depth image. The formula of 3D point cloud in ac-
cordance with camera internal parameters is as follows:
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FiGURE 2: Key frame reconstruction in submaps. (a) Local image of four segments of experiments. (b) Local image of four segments of

experiments after being constructed.

z =

>

d
N

] x=(u—cx)-(%)> 9)

e 3)

where f,, f ,c,,c, are internal parameters of the camera;
(u, v) is the image coordinate; (x, y, z) is the image coordinate
system; d is the distance of pixel point measured by the depth
camera, with unit of mm; and s is the scale coefficient of
actual distance and measured distance d. In this method, one
of the advantages of point cloud is that it can be generated
directly from RGB-D image efficiently without additional
processing, with very intuitive operation of filtering
(Algorithm 1).

3. Semantic Information Acquisition

The task of target detection includes classification and po-
sitioning, which not only gives the category information of
an object to be detected but also determines position and size
of the object in an image and surrounds it with a smallest
rectangular frame. The main steps of target detection include
preprocessing of input image and filtering of candidate areas
of the image by a sliding window. Then, one kind of feature
extraction algorithm is used including SIFT, HOG, or DPM
to extract features for candidate areas, and finally a

classification algorithm is used to classify extracted features.
However, some defects such as unstable matching, weak
antinoise ability, slow detection speed, and poor extraction
effect for fuzzy and smooth edges coexist in the traditional
object detection model. Compared with the traditional
object detection model, the object detection model based on
deep learning has more powerful feature expression ability,
strong generalization ability, and good robustness.

A BMASK-RCNN network is designed in this paper
which refers to Mask Scoring RCNN based on deep neural
networks. Mask Scoring RCNN evolves from Mask RCNN,
whose network framework is shown in Figure 3. The tra-
ditional Mask RCNN consists of two stages. The first stage is
realized by convolution of RPN. Regardless of the object
category, bounding box of a candidate object will be pro-
posed. The second stage is called RCNN stage, which uses
RoIAlign to extract features for each candidate where a
bilinear interpolation is used to complete pixel-level
alignment and finally generate candidate classification,
bounding box regression, and mask prediction.

The loss function of Mask RCNN consists of three parts,
namely, classification error, detection error, and segmen-
tation error. The expression is as follows:

L= Lcls + Lbox + Lmask’ (10)

where Ly, and Ly are the same with Faster RCNN; mask
branch has dimensions of km? for each ROI, which indicates
the solution is k binary masks with the solution of m x m; K
represents numbers of category, conducting sigmoid for
each pixel; and L, g is defined as average entropy loss of
binary cross.

mas
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(1) Input: map point data x
(2) Output: point cloud map y

P2 N((dy/ fb), (1/£b)
(6) Inverse deep fusion
(7) Isolated outlier secondary culling
(8) Get point cloud map

(3) The search range of scene depth measurement (P, Pmax) is defined as p; = (x;, y,-,zi)T
(4) The scene depth value limits the number of layers of matching cost in stereo matching
(5) Isolated outlier culling while p = z~! = d(fb)™d: N (d,, 1) then The inverse depth distribution after transformation is

ALGORITHM 1: 3D mapping method for inverse depth filtering.
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-7))

(11)

1
Lmask =7 Z [yl]logj)f] +(1 _yij)log(l

1<i,jsm

where y;; is the label of cell (i, j) in the real mask within
region of m x m and 7. is the predicted value of the same cell
in the k learning masI’< of ground truth value class.
However, the score for detecting (instance segmentation)
hypotheses is determined by the largest element in its clas-
sification score in the current Mask RCNN framework. Due to
clutter background, occlusion, and other problems, the score
for classification may be high but mask quality is low. To
overcome this problem, on the premise of generality of Mask

Scoring RCNN, MasklIoU head module is added to enable the
improved Mask RCNN for obtaining higher mask scores.
MaskIoU head is used to regress the IoU between
predicted mask and its true label mask. For this purpose,
feature concatenation and predicted mask of RoIAlign layer
are used as input of MaskloU head. A maximum pooling
layer with a kernel size of 2 and a step size of 2 is used to
make the predicted mask have the same space size as the Rol
feature, and only MaskIoU is chosen to return to real label
class. The MaskIoU head consists of four roll up layers and
three fully connected layers. The four roll up layers follow
mask head and set the kernel size and filter number of all the
convolution layers to 3 and 256, respectively. Three fully
connected (FC) layers follow RCNN head and set output of
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first two FC layers to 1024 and the final FC output to the
number of classes.

Table 1 is a comparison of results of MS RCNN algo-
rithm and other algorithms on COCO test set, which shows
that the MS RCNN algorithm has obvious advantages over
other algorithms.

4. 3D Semantic Mapping Method

In the process of semantic mapping, VSLAM not only obtains
geometric information in the environment but also recog-
nizes independent individuals and obtains semantic infor-
mation such as their position, posture, and functional
attributes. The key of semantic VSLAM is to accurately
recognize objects in the environment. Extracted features from
target frame correspond to stored target object and map data,
respectively, and then mapping relationship between the
image data and the target object is established. The core idea
of this paper can be expressed as follows: semantic infor-
mation is extracted from key frames during the process of 3D
mapping, and then the semantic information is fused into the
constructed 3D map to create a new 3D semantic map. The
flowchart of 3D semantic mapping is shown in Figure 4.

Firstly, Mask Scoring RCNN is used to train semantic
database and then determine whether the current frame is a
key frame. After key frame is determined, objects contained
in semantic database in frame are detected and segmented,
and then 2D image in the current key frame is semantically
labeled. Finally, points containing semantic information in
2D image are mapped to 3D point cloud. It is regarded as the
same object if there is the same semantic information.

For a system, system resources will be greatly consumed
if all the image frames acquired by the camera are processed,
so image key frame is usually selected for processing, and
front-end tracking module of SLAM algorithm determines
whether to select a current image frame as the key frame.
Rules of key frame selection are as follows:

(1) There must be a sequence interval between the
current frame and the previous key frame

(2) The thread of the local map is idle

(3) The current frame and previous key frame share a
build area below a certain range

(4) The current frame has enough feature points to
match, as shown in Algorithm 2

For each key frame, semantic information X, = {X,}"
can be obtained through instance segmentation algorithm of
Mask Scoring RCNN to obtain semantic information
X, = {XJV, whereX, = (x4, xb, x5); x2 represents category
of instance object; x? represents outline of instance object;
and xj, represents confidence level of instance object. The
result of semantic acquisition for a key frame is shown in
Figure 5.

The flowchart of semantic mapping is shown in Figure 4.
After a key frame is selected, the key frame will be processed
by two threads simultaneously: one is VSLAM algorithm,
which runs according to original VSLAM system; the other
is mainly the association and fusion process of object

semantic. The obtained semantic information is processed in
two aspects: on one aspect, feature points with dynamic
category are marked as unavailable to reduce the impact of
object movement on the mapping. On the other aspect, 2D
image with semantic annotation information in the key
frame is mapped to 3D point cloud so as to find mapping
relationship between map points through finding feature
points of object frame and semantic information. Algo-
rithm 3 is used for data fusion.

5. Experiments and Analysis

5.1. Introduction to Experiment Platform. This experiment
uses a self-built experimental platform, as shown in Figure 6,
which is equipped with Microsoft Kinect 3.0 depth camera.
The main body is composed of a main control unit, bracket,
driving wheel, and chassis. The operating system adopts ROS
(Robot Operating System) [30]. ROS is a robot-oriented
open source operating system, which provides services in-
cluding hardware abstraction, low-level device control,
implementation of commonly functions, interprocess
messaging, and package management. Operating frame is a
processing architecture where ROS communication module
is used to realize network connection of loose coupling
between modules. It performs various types of communi-
cation, including service-based synchronous RPC (Remote
Procedure Call) communication, topic-based communica-
tion of data flow, and data storage on parameter server. The
mobile robot independently designed in this paper is a
comprehensive experimental platform integrating envi-
ronment perception, dynamic decision making and plan-
ning, behavior control, and execution. Deep learning and
training are carried out in Ubuntu 18.04 system environ-
ment, with processor model of Intel i9-9900k and memory of
64 GB. In order to get higher training and testing speed, this
paper uses GTX 2080Ti graphics card to accelerate training.

5.2. Verification Experiments. In order to prevent irrelevant
semantic information from interfering with map con-
struction, the network structure of Mask Scoring RCNN is
adjusted. This experiment uses a TUM RGB-D SLAM
dataset, where 24 types of objects are selected as shown in
Table 2.

Since the onboard computer of the robot is not
equipped with a GPU processor, the target detection al-
gorithm of this paper is completed by a graphics work-
station which uses TensorFlow as the framework. ROS is
used for communication between the workstation and the
robot. The graphics workstation is equipped with a
GTX2080Ti graphics card for computing acceleration.
After the key frame is detected, the semantic information of
the target point cloud can be obtained according to the
coordinate correspondence. The image of target detection
and recognition effect and semantic map of dense point
cloud are shown in Figure 7.

Comparisons of loss iteration curves for four algorithms
are shown in Figure 8. The red line in Figure 8 represents the
loss value of the proposed BMASK-RCNN method, and its



8 Discrete Dynamics in Nature and Society
TaBLE 1: Comparative results of MS RCNN algorithm and other instance segment algorithms on COCO testing set.

Method Backbone AP AP@0.5 AP@0.75 APS APM APL
MNC [27] ResNet-101 23.2 43.2 251 4.5 24.8 44.3
FCIS [28] ResNet-101 28.9 48.7 — — — —

FCIS+++ [28] ResNet-101 34.2 53.7 — — — —

Mask RCNN [14] ResNeXt-101 FPN 36.9 61.2 38.6 17.1 38.7 52.4
MaskLab+ [29] ResNet-101(JET) 37.8 62.4 41.0 182 409 50.7
Mask RCNN ResNet-101 33.3 55.0 36.6 13.2 36.4 52.3
MS RCNN e 35.4 54.9 38.1 13.7 37.6 533
Mask RCNN 37.0 59.2 39.5 17.1 39.3 52.9
MS RCNN ResNet-101 FPN 383 58.8 45 17.8 40.4 54.4
Mask RCNN 38.4 61.2 41.2 18.0 40.5 55.2
MS RCNN ResNet-101-DEN+FPN 39.6 60.7 43.1 18.8 45 56.2
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FiGgure 4: Flowchart for construction of semantic map.

loss value is always smaller than Fast RCNN and Faster
RCNN. Although between 0.5 x 10* iterations and 1.5 x 10*
iterations, the loss value of BMASK-RCNN is comparable to
Mask RCNN, but after 15000 iterations, the curve of
BMASK-RCNN  stabilized below Mask RCNN. After
1.5 x 10* iterations, it can be seen that the proposed BMASK-
RCNN method is more accurate than three methods.
Comparisons of precision-recall curves for four algo-
rithms are shown in Figure 9, where the ordinate value

represents detection accuracy of a measured target. The
value of abscissa represents recall rate, namely, the total
number of correctly detected targets divided by the total
number of targets. Obviously, when the area under the curve
is larger, the performance of the algorithm is better, and the
detection effect is more accurate and complete. It can be seen
from Figure 9 that the area under the precise recall curve of
this algorithm is significantly larger than other three
methods. Simulation results show that the proposed
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Input: last key frame;
Output: new key frames;

1 if

(2) (1) The interval between the current and previous key frame sequence is 30 frames;

(3)  (2) Local map thread is idle;

(4)  (3) The current frame and previous key frame share a build area threshold of less than 90%;
(5)  (4) The number of matching point pairs is at least 100;

(6)  Select as key frame;

(7) else

(8)  discarded;

(9) end if

ALGORITHM 2: Key frame selection algorithm.

person 0.897

FIGURE 5: Acquisition of semantic information.

@
o)
3)
(4)
®)
(6)

™)
®)

Input: feature points and semantic features on the current key frame ;
Output: 3D global semantic map coordinates;

Coordinate system;

Mark unusable points on map;

Determine current frame;

if initial frames then

(1) Find map point coordinates corresponding to the target feature points;

(2) Get semantic information about the target p;, = (p;, p,» P3)> where p, is the category, p, is the confidence of the detection
result, and p; is the target contour;

(3) Semantic information is associated with geometric feature points through mapping relation so that feature points have both
geometric and semantic information;

(4) The relative motion of the camera is calculated according to feature matching, and the coordinates of the 3D map
corresponding to the target feature points are found;

else

(5) The new parameters are substituted into the built model;

(6) Insert a new key frame;

(7) Repeat step (1), step (2), step (3), and step (4);

(8) Save coordinate data;

end if

ALGORITHM 3: Data association and fusion processes.
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FIGURe 6: Experimental platform of robots.
TaBLE 2: Selection for 24 types of objects.
Chair Air conditioner Screen Robot Desk Bookcase
Door Keyboard Mouse Drone Cup Person
Trophy Switchbox Bottle Desk Flower pot Book
vV Jackboard Cell phone Potted plant Suitcase Umbrella
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FIGURE 7: Effect image of target detection and recognition (a) and semantic map of dense point cloud (b).
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FIGURE 8: Curve comparative chart of loss iteration.
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—— BMASK RCNN

FiGURre 9: Curve comparative chart of precision and recall.

BMASK-RCNN method has higher accuracy than other
three methods.

Figures 10 and 11 show error analysis graph generated
using TUM dataset of freiburg2_large with_Loop and
freiburgl_XYZ to run the proposed VSLAM algorithm.
freiburgl_xyz is a common small scenario dataset of TUM
dataset, and freiburg2_large_with_loop is a large scene
dataset from TUM. It can be seen from Figures 10 and 11
that overall effect of the proposed VSLAM algorithm is
better than RGB-D SLAM. In the small environment, two
systems have better stability; however, compared with
RGB-D SLAM, the red lines representing errors in the
absolute trajectory error diagram of the VSLAM algo-
rithm are significantly reduced. In large scenarios with
closed loops, under the influence of complex environ-
ment, RGB-D SLAM errors are relatively high and prone
to drift. However, through the semantic information in
the scene, the VSLAM algorithm can improve accuracy of
mapping and localization, and thus the peak value of blue

broken line in the relative pose error is small. In the same
period of time, the peak value of broken lines is kept
within 0.3 m, while the peak value of RGB-D SLAM lines
reaches 0.8 m at most. The attitude error of the proposed
VSLAM algorithm is closer to the same range, and the
error is relatively low. In large scenarios, the performance
of the proposed VSLAM algorithm is obviously better
than RGB-D SLAM.

In order to obtain more accurate experimental results,
the TUM RGB-D SLAM dataset is used which provides
RGB-D images at a frame rate of 30 Hz, with a resolution of
640 x 480, as shown in Figure 12, for the operation effect.

The front-end part of the algorithm is the SLAM pose
estimation and synchronous positioning module, which
performs target detection tasks at the same time. Then, key
frame pictures as well as all the useful data of key frame
images including corresponding map points, semantic in-
formation, and position information are saved. Finally, data
are transmitted to the server for data fusion calculation.
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Flower pot

FIGURE 13: 3D map (a) and 3D semantic map (b).

Additionally, a semantic map is built in the robot in real time
as shown in Figure 13.

6. Conclusion

This paper firstly uses a BRISK algorithm to extract feature
points, then a Mask Scoring RCNN algorithm is used to
detect targets and obtain semantic information of key targets
in the environment, and the relative position relationship
between target detection results is established. Then, targets
are matched, and the similarity is calculated between key
frames. Finally, the Mask Scoring RCNN algorithm is used
to complete segmentation of targets, and a dense 3D se-
mantic map surrounding the robot is constructed. The
proposed method in this paper has achieved good results on
the TUM RGB-D SLAM dataset and has verified the fea-
sibility of the application of semantic information in Visual
SLAM mapping. There is still room for improvement in this
research. For example, the relationship between line and
surface features in the target detection frame and the cat-
egory of the corresponding object can be established to
achieve stronger robustness and structure a semantic
VSLAM system with better performance.
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