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A generalized chikungunya virus (CHIKV) infection model with nonlinear incidence functions and two time delays is proposed
and investigated. )e model takes into account both modes of transmission that are virus-to-cell infection and cell-to-cell
transmission. Furthermore, the local and global stabilities of the disease-free equilibrium and the chronic infection equilibrium
are established by using the linearization and Lyapunov functional methods. Moreover, the existence of Hopf bifurcation is also
analyzed. Finally, an application is presented in order to support the analytical results.

1. Introduction

)e CHIKV belongs to the family Togaviridae, a term built
from the Roman toga, to describe the draped appearance of
their envelope [1]. Its genetic material consists of a single-
stranded, thermosensitive RNA, about 15,000 nucleotides
long. )e multiplication of the viral genome in the cell is not
strictly accurate, a common property of RNA viruses, which
results in mutations that can affect not only the infective and
pathogenic powers of the virus but also its passage from one
kind of Aedes to another. Viral RNA of the infecting virion is
included in a spherical particle made up of viral or nucle-
ocapsid proteins assembled regularly and is of a size of
around 70 nanometres. )e virus multiplies with great ease
in vitro, but also in vivo in mosquito cells, which explains the
high infective power of contaminated Aedes. )e female
mosquito infects itself during a blood meal (necessary for
laying) on a contaminated individual (man especially in the
epidemic phase and also bats, monkeys, and other verte-
brates). )e virus proliferates in the insect. It is injected into
a man or animal during a subsequent blood meal, during the
initial phase of the bite, which includes the injection of

“saliva” from the infected insect, before the blood meal itself
[2].

In [3], the authors described the CHIKV replication
cycle (see Figure 1) and the results of chikungunya virus
infection particularly intense joint and muscle pain that
forces patients to lean forward. After about one week of
incubation, the pain appears, especially in the wrists, fingers,
knees, ankles, and feet. )e hips and shoulders are more
rarely affected. )ese pains are accompanied by severe
headaches, fever (over 38.5°C), and rash in the chest and
limbs, as well as lymph node swelling and conjunctivitis.
Other symptoms sometimes appear, including bleeding of
the gums or nose and neurological disorders.

Medical management is purely symptomatic, based on
pain and anti-inflammatory treatments. However, these
treatments have no preventive effect on the occurrence of a
chronic evolution. First isolated in Uganda in 1953, CHIKV
circulates mainly in the intertropical zone. )is disease is
particularly virulent in Africa and South Asia. However,
cases were detected in the French territory as early as 2010
(in the south of France) and in 2013 and 2014 in the West
Indies [4]. It can be responsible for important epidemics [5].
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)e risk of emergence in Europe is ever increasing due to the
increase in “tiger mosquito,” Aedes albopictus [6]. First
observed in 2004 in the Alpes-Maritimes, the vector was
established and active in 33 metropolitan departments in
May 2017 [7]. )is emergence has made it possible to
highlight the need to strengthen the knowledge of health
professionals with regard to arboviroses. )erefore, a few
mathematical models have been established to describe
dynamics of CHIKV viral infection, mostly focusing on
virus-to-cell transmission [8, 9]. However, CHIKV can be
spread by cell-to-cell transmission mode [10–13].

In view of this, we will formulate and analyse a gener-
alized within-host CHIKV viral infection model taking into
the account both modes of transmission and two discrete
delays, in which the first delay τ1 describes the time nec-
essary for the newly produced virions to become mature and
infectious and the second delay τ2 represents the time
needed to activate the humoral immune response. )en, the
model is presented as follows:

_U � s − d1U(t) − f(U(t), I(t), C(t))C(t) − g(U(t), I(t))I(t),

_I � f(U(t), I(t), C(t))C(t) + g(U(t), I(t))I(t) − d2I(t),

_C � υI t − τ1(  − d3C(t) − pA(t)C(t),

_A � σ + qA t − τ2( C t − τ2(  − d4A(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where the general incidence functions f(U, I, C) and
g(U, I) assumed to be continuously differentiable satisfy the
following hypotheses [14, 15]:

(i) (H0): g (0, I)� 0, for all I≥ 0; (zg/zU)(U, I)≥ 0 (or
g(U, I) is a monotone increasing function with
respect to T when f ≡ 0), and (zg/zI)(U, I)≤ 0, for
all U≥ 0 and I≥ 0

(ii) (H1): f(0, I, C) � 0, for all I≥ 0 and C≥ 0
(iii) (H2): f(U, I, C) is a monotone increasing function

with respect to U (or (zf/zU)(U, I, C)≥ 0 when
g(U, I) is a strictly monotone increasing function
with respect to U), for any fixed I≥ 0 and C≥ 0

(iv) (H3): f(U, I, C) is a monotone decreasing function
with respect to I and C

In biological terms, U(t), I(t), C(t), and A(t) indicate
the densities of susceptible cells, infected cells, CHIKV
particles, and antibodies at time t, respectively. )e pa-
rameter s is the recruitment rate of uninfected cells, and υ is
the production rate of free CHIKV particles by infected cells.
)e CHIKV particles are attacked by the antibodies at rate
pAC. )e antibodies are created at rate σ and multiplicated
at rate qAC. )e parameters d1, d2, d3, and d4 are, re-
spectively, the death rates of susceptible cells, infected cells,
free CHIKV virions, and antibodies. Moreover, susceptible
cells become infected either by free virus at rate f(U, I, C)C

or by direct contact with an infected cell at rate g(U, I)I. In
addition, particular cases of the incidence function f and g

are used by Elaiw et al. [16] to model the dynamics of
CHIKV with cellular infection and delays. On the other
hand, system (1) extends the model presented in [17] when
τ1 � τ2 � 0 and the model proposed in [8] when
f(U, I, C) � β1U and g(U, I) � 0.
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Figure 1: Schematic representation of CHIKV dissemination to different tissues and organs [3].
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)e rest of this paper is organized as follows. In Section
2, we provide some preliminary results concerning the
existence, positivity, and boundedness of solutions. Also, we
discuss the existence of equilibria. In Section 3, we analyse
the stability for the equilibria. We investigate the existence of
Hopf bifurcation in Section 4. An application is presented in
Section 5. )is paper ends with a conclusion in Section 6.

2. Preliminary Results

In this section, we first prove the existence, positivity, and
boundedness of solutions. After that, we discuss the exis-
tence of equilibria.

2.1. Existence, Positivity, and Boundedness of Solutions.
According to biological meanings, the initial condition of
system (1) is given as follows:

U(θ) � ϕ1(θ)≥ 0,

I(θ) � ϕ2(θ)≥ 0,

C(θ) � ϕ3(θ)≥ 0,

A(θ) � ϕ4(θ)≥ 0, θ ∈ [− τ, 0],

(2)

where τ �max τ1,τ2  and (ϕ1(θ),ϕ2(θ),ϕ3(θ),ϕ4(θ)(∈C+ �

C([− τ,0], IR4
+))). C+ is the Banach space of continuous

functions mapping the interval [− τ,0] into IR4
+ with the to-

pology of uniform convergence.
It follows from the fundamental theory of functional

differential equations [18] that there exists a unique solution
of system (1) with initial condition (ϕ1, ϕ2,ϕ3, ϕ4) ∈ C+.

Next, we investigate the positivity and boundedness of
this solution under initial condition (2).

Theorem 1. Under the initial condition (2), the solution of
system (1) remains bounded and positive for all t> 0.

Proof. We first demonstrate that U(t)> 0 for all t≥ 0. By
contradiction, we assume that there exists a first time t1 > 0
such that U(t1) � 0 and _U(t1)≤ 0. From the first equation of
system (1), we have _U(t1) � s> 0, which leads a contra-
diction. )en, U(t)> 0 for all t≥ 0. Since _A(t) � η> 0, and
similar to the above, we deduce that A(t) > 0 for all t≥ 0.
According to (1), we have

I(t) � ϕ2(0)e
− d2t 

t

0
g(U(θ), I(θ))dθ

+ 
t

0
f(U(ξ), I(ξ), C(ξ))C(ξ)e

− d2(t− ξ)+ 
t

0
g(U(θ), I(θ))dθ

dξ,

C(t) � ϕ3(0)e
− d3t− p 

t

0
A(θ)dθ

+ υ
t

0
I ξ − τ1( e

− d3(t− ξ)− 
t

0
pA(θ)dθ

dξ,

(3)

which implies that I(t) andC(t) are nonnegative for all t≥ 0.
We consider the following function:

N(t) � U(t) + I(t) +
d2

2υ
C t + τ1(  +

pd2

2qυ
A t + τ1 + τ2( .

(4)

)en,

_N(t) � s − d1U(t) −
d2

2
I(t) −

d2d3

2υ
C t + τ1( 

+
pd2σ
2qυ

−
pd2d4

2qυ
A t + τ1 + τ2( ≤ s +

pd2σ
2qυ

− δN(t),

(5)

where δ � min d1, (d2/2), d3, d4 . Hence,

lim sup
t⟶∞

N(t)≤
s

δ
+

pd2σ
2qυδ

, (6)

which implies that all solutions of system (1) are bounded.
)is completes the proof.

2.2. Existence of the Equilibria. Presently, we examine the
existence of equilibria. By a basic calculation, system (1) has
constantly one infection-free equilibrium of the form
Qf((s/d1), 0, 0, (σ/d4)). )us, we characterize the basic re-
production number of our model as follows:

R0 �
υf s/d1( , 0, 0(  + d3 + p σ/d4( ( g s/d1( , 0( 

d2 d3 + p σ/d4( ( 
. (7)

To locate different equilibria of (1), we solve the ac-
companying system:

s − d1U − f(U, I, C)C − g(U, I)I � 0, (8)

f(U, I, C)C + g(U, I)I − d2I � 0, (9)

υI − d3C − pAC � 0, (10)

σ + qAC − d4A � 0. (11)

From (8)–(11), we obtain A � (σ/d4 − qC), I � ((d3
(d4 − qC) + pσ)/υ(d4 − qC)C) �φ1(C), U � ((s − d2φ1(C))/
d1) �φ2(C), and
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υ d4 − qC( f φ2(C),φ1(C), C(  + d3 d4 − qC(  + pσ g φ2(C), φ1(C)(  � d2 d3 d4 − qC(  + pσ) . (12)

A � σ/d4 − qC≥ 0 leads to C<d4/q. Hence, there is no
biological equilibrium when C≥d4/q. Accordingly, we
consider the function ψ defined on [0, (d4/q)) by

ψ(C) � υ d4 − qC( f φ2(C),φ1(C), C(  + d3 d4 − qC(  + pσ 

· g φ2(C),φ1(C)(  − d2 d3 d4 − qC(  + pσ) .

(13)

We have φ2(0) � (s/d1)> 0 and

lim
C⟶ d4/q( )

−
φ2(C) � − ∞ andφ2′ (C) � −

d2

d1
φ1′ (C)< 0, (14)

with φ1′(C) � ((d3(d4 − qC)2 + pσd4)/υ(d4 − qC)2)> 0.
)en, the equation φ2(C) � 0 admits a unique solution
C ∈ (0, (d4/q)). )us, A � (σ/(d4 − qC))> 0 andψ(C)

� − d2[d3(d4 − qC) + pσ]< 0. Since ψ(0) � d2(d3d4+

pσ)(R0 − 1)> 0 if R0 > 1, we deduce that there exists
C∗ ∈ (0, C) such that ψ(C∗) � 0.

From (10) and (11), we find
A∗ � (σ/(d4 − qC∗))> 0 and I∗ � ((d3 + pA∗)/υ)C∗ > 0.

Substitute C � C∗ and I � I∗ in (8), and define a
function φ3 as φ3(U) � s − d1U − f(U, I∗, C∗)C∗ − g(U,

I∗)I∗. Due to the fact that φ3(0) � s> 0, φ3(s/d) � − f((s/
d1), I∗, C∗)C∗ − g((s/d), I∗)I∗ < 0, and φ3 is a strictly de-
creasing function of U, we deduce that there exists a unique
U∗ ∈ (0, (s/d1)) such that φ3(U∗) � 0. )erefore, model (1)
has a unique chronic infection equilibrium Q∗(U∗, I∗,

C∗, A∗) when R0 > 1.
)e precedent conversations can be summed up in the

accompanying outcome.

Theorem 2

(i) For R0 ≤ 1, model (1) has one infection-free equilib-
rium Qf((s/d1), 0, 0, (σ/d4))

(ii) For R0 > 1, model (1) has a unique chronic infection
equilibrium Q∗(U∗, I∗, C∗, A∗) with
U∗ ∈ (0, (s/d1)), I∗ > 0, C∗ > 0, and A∗ > 0

3. Stability Analysis of Equilibria

In this section, we concentrate on the stability of infection-
free equilibrium of system (1). )e characteristic equation of
system (1) is noted as

− d1 − C
zf

zU
− I

zg

zU
− ξ − C

zf

zI
− I

zg

zI
− g(U, I) − C

zf

zC
− f(U, I, C) 0

C
zf

zU
+ I

zg

zU
C

zf

zI
+ I

zg

zI
+ g(U, I) − d2 − ξ C

zf

zC
+ f(U, I, C) 0

0 υe
− ξτ1 − d3 − pA − ξ − pC

0 0 qAe
− ξτ2 qCe

− ξτ2 − d4 − ξ





� 0. (15)

First, we have the following result.

Theorem 3. For any τ2 and τ1 � 0, the infection-free
equilibrium Qf is locally asymptotically stable if R0 < 1 and
becomes unstable if R0 > 1.

Proof. Examining (15) at Qf, we obtain

ξ + d1(  ξ + d4( 

ξ2 + d3 + d2 + p
σ
d4

− g
s

d1
, 0  ξ − υe

− ξτ1f
s

d1
, 0, 0 

− d3 + p
σ
d4

  g
s

d1
, 0  − d2 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0. (16)

When τ1 � 0, from equation (16), we obtain

ξ + d1(  ξ + d4(  ξ2 + d3 + d2 + p
σ
d4

− g
s

d1
, 0  ξ + d2 d3 + p

σ
d4

  1 − R0(   � 0. (17)
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)erefore, the roots of this equation are

ξ1 � − d1,

ξ2 � − d4,

ξ3 �
− d2 + d3 + p σ/d4(  − g s/d1, 0( (  −

��
Δ

√

2
,

ξ4 �
− d2 + d3 + pσ/d4 − g s/d1, 0( (  +

��
Δ

√

2
,

(18)

of which Δ � (d2 + d3 + pσ/d4 − g(s/d1, 0))2 − 4d2
(d3 + pσ/d4)(1 − R0). Obviously, ξ1, ξ2, and ξ3 are negative.
Furthermore, ξ4 is negative if R0 < 1 and positive if R0 > 1.
Consequently, Qf is locally asymptotically stable if R0 < 1
and unstable if R0 > 1.

)e following theorem characterizes the global stability
of the infection-free equilibrium Qf when R0 ≤ 1.

Theorem 4. For any τ1 and τ2, the infection-free equilibrium
Qf is globally asymptotically stable if R0 ≤ 1.

Proof. We establish a Lyapunov function as follows:

L(t) � I(t) +
f s/d1( , 0, 0( 

d3 + p σ/d4( 
C(t) +

υf s/d1( , 0, 0( 

d3 + p σ/d4( 


t

t− τ1
I(θ)dθ.

(19)

Computing the time derivative of L along the solutions
of (1), we find

dL

dt
� f(U, I, C) −

d3 + pA

d3 + p σ/d4( 
f

s

d1
, 0, 0  C

+ d2
υf s/d1, 0, 0(  + d2 + p σ/d4( ( g(U, I)

d2 d3 + p σ/d4( ( 
− 1 I

≤ f(U, 0, 0) − f
s

d1
, 0, 0  C + a R0 − 1( I≤ a R0 − 1( I.

(20)

Given that R0 ≤ 1, we have (dL/dt)≤ 0. Likewise, it is not
difficult to show that the largest invariant set in
(U, I, C, A)|(dL/dt) � 0{ } is Qf . By the LaSalle’s invariance
principle [19], Qf is globally asymptotically stable for R0 ≤ 1.

Next, we focus on the global stability of the chronic
infection equilibrium Q∗ by assuming that R0 > 1, and for all
U, I, C> 0, we consider the following hypothesis:

1 −
f(U, I, C)

f U, I
∗
, C
∗

( 
 

f U, I
∗
, C
∗

( 

f(U, I, C)
−

C

C
∗ ≤ 0,

1 −
f U
∗
, I
∗
, C
∗

( g(U, I)

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 
 

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
−

I

I
∗ ≤ 0.

(21)

Theorem 5. Assume that (21) holds. For any τ1, if τ2 � 0 and
R0 > 1, then the chronic infection equilibrium Q∗ is globally
asymptotically stable.

Proof. Consider the following Lyapunov function:

W(t) � U(t) − U
∗

− 
U

U∗

f U
∗
, I
∗
, C
∗

( 

f X, I
∗
, C
∗

( 
dX + I

∗Φ
I(t)

I
∗  +

f U
∗
, I
∗
, C
∗

( C
∗

υI
∗ C

∗Φ
C(t)

C
∗ 

+
qf U

∗
, I
∗
, C
∗

( C
∗

qυI
∗ A

∗Φ
A(t)

A
∗  + f U

∗
, I
∗
, C
∗

( C
∗


t

t− τ1
Φ

I(θ)

I
∗ dθ,

(22)

where Φ(x) � x − 1 − lnx, x> 0. )us, the time derivative
of W along the positive solutions of (1) satisfies

dW

dt
� 1 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
  _U + 1 −

I
∗

I
  _I +

f U
∗
, I
∗
, C
∗

( C
∗

υI
∗ 1 −

C
∗

C
  _C

pf U
∗
, I
∗
, C
∗

( C
∗

qυI
∗ 1 −

A
∗

A
  _A + f U

∗
, I
∗
, C
∗

( C
∗ d

dt


t

t− τ1
Φ

I(θ)

I
∗ dθ,

(23)
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where (d/dt ) 
t

t− τ1
Φ(I(θ)/I∗)dθ � (I − I(t − τ1)/I∗)

+ln(I(t − τ1)/I). )erefore, we have

dW

dt
� 1 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
  s − d1U − f(U, I, C)C − g(U, I)I( 

+ 1 −
I
∗

I
  f(U, I, C)C + g(U, I)I − d2I(  +

f U
∗
, I
∗
, C
∗

( C
∗

υI
∗ 1 −

C
∗

C
  υI t − τ1(  − d3C − pAC( 

+
pf U

∗
, I
∗
, C
∗

( C
∗

qυI
∗ 1 −

A
∗

A
  σ + qAC − d4A(  + f U

∗
, I
∗
, C
∗

( C
∗ I − I t − τ1( 

I
∗ + ln

I t − τ1( 

I
 .

(24)

Substituting s � d1U
∗ + f(U∗, I∗, C∗)C∗ + g(U∗, I∗)I∗,

υI∗ � d3C
∗ + qA∗C∗, and σ � d4A

∗ − qA∗C∗, we obtain

dW

dt
� d1U

∗ 1 −
U

U
∗  1 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
  + f U

∗
, I
∗
, C
∗

( 

C
∗

− 1 −
C

C
∗ +

f(U, I, C)C

f U, I
∗
, C
∗

( C
∗ +

f U, I
∗
, C
∗

( 

f(U, I, C)
  + f U

∗
, I
∗
, C
∗

( C
∗

4 −
f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
−

f U, I
∗
, C
∗

( 

f(U, I, C)
−

f(U, I, C)CI
∗

f U
∗
, I
∗
, C
∗

( C
∗
I

−
C
∗
I t − τ1( 

CI
∗ + ln

I t − τ1( 

I
 

+ g U
∗
, I
∗

( I
∗

− 1 −
I

I
∗ −

f U
∗
, I
∗
, C
∗

( g(U, I)I

f U, I
∗
, C
∗

( g U
∗
, I
∗

( I
∗ +

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
 

+ g U
∗
, I
∗

( I
∗ 3 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
−

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
−

g(U, I)

g U
∗
, I
∗

( 
 

−
pσf U

∗
, I
∗
, C
∗

( C
∗

qυI
∗
A
∗
A

A − A
∗

( 
2
.

(25)

)us,

dW

dt
� d1U

∗ 1 −
U

U
∗  1 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
 

+ f U
∗
, I
∗
, C
∗

( C
∗

− 1 −
C

C
∗ +

f(U, I, C)C

f U, I
∗
, C
∗

( C
∗ +

f U, I
∗
, C
∗

( 

f(U, I, C)
 

+ g U
∗
, I
∗

( I
∗

− 1 −
I

I
∗ −

f U
∗
, I
∗
, C
∗

( g(U, I)I

f U, I
∗
, C
∗

( g U
∗
, I
∗

( I
∗ +

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
 

− f U
∗
, I
∗
, C
∗

( C
∗ Φ

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
  +Φ

f U, I
∗
, C
∗

( 

f(U, I, C)
  +Φ

C
∗
I t − τ1( 

CI
∗  +Φ

f(U, I, C)CI
∗

f U
∗
, I
∗
, C
∗

( C
∗
I

  

− g U
∗
, I
∗

( I
∗ Φ

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
  +Φ

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
  +Φ

g(U, I)

g U
∗
, I
∗

( 
  

−
pσf U

∗
, I
∗
, C
∗

( C
∗

qυI
∗
A
∗
A

A − A
∗

( 
2
.

(26)
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By (H2), we find that

1 −
U

U
∗  1 −

f U
∗
, I
∗
, C
∗

( 

f U, I
∗
, C
∗

( 
 ≤ 0. (27)

By (21), we obtain

− 1 −
C

C
∗ +

f(U, I, C)C

f U, I
∗
, C
∗

( C
∗ +

f U, I
∗
, C
∗

( 

f(U, I, C)
� 1 −

f(U, I, C)

f U, I
∗
, C
∗

( 
 

f U, I
∗
, C
∗

( 

f(U, I, C)
−

C

C
∗ ≤ 0,

− 1 −
I

I
∗ −

f U
∗
, I
∗
, C
∗

( g(U, I)I

f U, I
∗
, C
∗

( g U
∗
, I
∗

( I
∗ +

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)

� 1 −
f U
∗
, I
∗
, C
∗

( g(U, I)

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 
 

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
−

I

I
∗ ≤ 0.

(28)

SinceΦ(x)≥ 0, we have (dW/dt)≤ 0 with equality if and
only if U � U∗, I � I∗, C � C∗, and A � A∗. From LaSalle’s
invariance principle, we deduce that the chronic infection
equilibrium Q∗ is globally asymptotically stable when
R0 > 1.

4. Hopf Bifurcation Analysis

In this section, we investigate the bifurcation at the infection
equilibrium Q∗. By computing the characteristic equation
for system (1) at Q∗, we find

ξ4 + a1ξ
3

+ a2ξ
2

+ a3ξ + a4 + b1ξ
3

+ b2ξ
2

+ b3ξ + b4 e
− ξτ2

+ c1ξ
2

+ c2ξ + c3 e
− ξτ1 + r1ξ + r2( e

− ξ τ1+τ2( ) � 0,

(29)

where

a1 � d1 + d3 + d4 + M + A
∗

− N,

a2 � d1 + M − N(  d3 + d4 + pA
∗

(  + d4 d3 + pA
∗

(  + d1 d2 − N(  + Md2,

a3 � d1 d2 − N(  d3 + d4 + pA
∗

(  + d3 + pA
∗

(  d4 d1 + M − N(  + Md2  + Md2d4,

a4 � d4 d3 + pA
∗

(  d1 d2 − N(  + Md2 ,

b1 � − qC
∗
,

b2 � − qC
∗

d1 + d3 + M − N( ,

b3 � − qC
∗

d2 M − pA
∗

(  + d1 d2 − N(  + d3 d1 + M − N(  ,

b4 � − qC
∗

pA
∗

Nd1 − Md2 + d3 + pA
∗

(  d1 d2 − N(  + Md2 ( ,

c1 � − υQ,

c2 � − υQ d4 + 1( ,

c3 � − υQd4,

r1 � qC
∗υ,

r2 � qC
∗υd1,

(30)

with M � C∗(zf/zU)(U∗, I∗, C∗) + I∗(zg/zU)(U∗, I∗),
Q � C∗(zf/zC)(U∗, I∗, C∗) + f(U∗, I∗, C∗), and N � C∗

(zf/zI)(U∗, I∗, C∗) +I∗(zg/zI)(U∗, I∗) + g(U∗, I∗).

However, when τ1 > 0, equation (29) is too complicated.
)erefore, in the following discussions, we assume that τ1 �

0 and τ2 > 0. )en, equation (29) is diminished to

ξ4 + H1ξ
3

+ H2ξ
2

+ H3ξ + H4 + I1ξ
3

+ I2ξ
2

+ I3ξ + I4 e
− ξτ2 � 0, (31)
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where

H1 � a1 � d1 + d3 + d4 + M + A
∗

− N,

H2 � a2 + c1 � d1 + M − N(  d3 + d4 + pA
∗

(  + d4 d3 + pA
∗

(  + d1 d2 − N(  + Md2 − υQ,

H3 � a3 + c2 � d1 d2 − N(  d3 + d4 + pA
∗

(  + d3 + pA
∗

(  d4 d1 + M − N(  + Md2 

+ Md2d4 − υQ d4 + 1( ,

H4 � a4 + c3 � d4 d3 + pA
∗

(  d1 d2 − N(  + Md2  − υQd4,

I1 � b1 � − qC
∗
,

I2 � b2 � − qC
∗

d1 + d3 + M − N( ,

I3 � b3 + r1 � − qC
∗

d2 M − pA
∗

(  + d1 d2 − N(  + d3 d1 + M − N(  − υ ,

I4 � b4 + r2 � − qC
∗

pA
∗

Nd1 − Md2 + d3 + pA
∗

(  d1 d2 − N(  + Md2  − υd1( .

(32)

Let ξ � iω(ω> 0) be a purely imaginary root of (31).
Separating real and imaginary parts, it follows that

ω4
− H2ω

2
+ H4 � I2ω

2
− I4 cos τ2ω(  + I1ω

3
− I3ω sin τ2ω( ,

− H1ω
3

+ H3ω � I1ω
3

− I3ω cos τ2ω(  − I2ω
2

− I4 sin τ2ω( .

⎧⎪⎨

⎪⎩

(33)

Squaring and adding the two equations of (33), it follows
that

ω8
+ L1ω

6
+ L2ω

4
+ L3ω

2
+ L4 � 0, (34)

where

L1 � H
2
1 − 2H2 − I

2
1,

L2 � H
2
2 − 2H1H3 + 2H4 + 2I1I3 − I

2
2,

L3 � H
2
3 − 2H2H4 + 2I2I4 − I

2
3,

L4 � H
2
4 − I

2
4.

(35)

Let z � ω2, then equation (34) becomes

Ψ(z) ≔ z
4

+ L1z
3

+ L2z
2

+ L3z + L4 � 0. (36)

It is clear that when L4 < 0, equation (36) has at least one
positive root because Ψ(0) � L4 < 0 and limz⟶+∞Ψ(z) �

+∞. Moreover, we obtain

Ψ′(z) � 4z
3

+ 3L1z
2

+ 2L2z + L3. (37)

Denote that

c1 �
8L2 − 3L

2
1

16
,

δ1 �
L
3
1 − 4L1L2 + 8L2

32
,

Δ �
c1

2
 

3
+

δ1
2

 

3

,

j � e
i(2π/3)

� −
1
2

+ i

�
3

√

2
.

(38)

Applying the Cardano formula, the cubic equation (37)
has the following roots:

]1 �

��������

−
δ1
2

+
��
Δ

√3



+

��������

−
δ1
2

+
��
Δ

√3



−
L1

4
,

]2 � j

��������

−
δ1
2

+
��
Δ

√3



+ j
2

��������

−
δ1
2

+
��
Δ

√3



−
L1

4
,

]3 � j
2

��������

−
δ1
2

+
��
Δ

√3



+ j

��������

−
δ1
2

+
��
Δ

√3



−
L1

4
.

(39)

When Δ> 0, the first root ]1 is a real number and the
other two, ]2 and ]3, are conjugate complex numbers. In this
situation,

Ψ′(z) � 4 z − ]1(  z
2

− 2Re ]2( z + ]2



2

 . (40)

We assume that Ψ(z) is a decreasing function on the
interval (− ∞, ]1] and increasing function on []1, +∞).
Since z2 − 2Re(]2)z + |]2|

2 > 0 for all z ∈ R, it attains its
strict global minimum at z � ]1.

When Δ � 0, all roots are real with
]1 � (3c1/δ1) − (L1/4) and ]2 � ]3 � (3c1/2δ1) − (L1/4).
)en,

Ψ′(z) � 4 z − ]1(  z − ]2( 
2
. (41)

Hence, Ψ(z) is a decreasing function on (− ∞, ]1] and
increasing function on []1, +∞). Also, it attains its strict
global minimum at z � ]1. Consequently, if L4 ≥ 0 and Δ≥ 0,
then equation (36) has a positive root if and only if ]1 > 0 and
Ψ(]1)≤ 0.

When Δ< 0, all three roots are real and distinct. In this
case, Ψ′(z) can be changed as

Ψ′(z) � 4 z − ]1(  z − ]2(  z − ]3( . (42)

Similarly, we obtain that if L4 ≥ 0 and Δ< 0, then
equation (36) has a positive root if and only if there exists at
least one ]∗ ∈ ]1, ]2, ]3  such that ]∗ > 0 and Ψ(]∗)≤ 0.

Outlining the above discussions, we obtain the following
lemma.
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Lemma 1. For the polynomial equation (36), the following
results are true:

(i) If L4 < 0, then equation (36) has at least one positive
root

(ii) If L4 ≥ 0 and Δ≥ 0, then equation (36) has positive
root if and only if ]1 > 0 and Ψ(]1)≤ 0

(iii) If L4 ≥ 0 and Δ< 0, then equation (36) has a positive
root if and only if there exists at least one
]∗ ∈ ]1, ]2, ]3  such that ]∗ > 0 and Ψ(]∗)≤ 0

In light of this lemma, we acknowledge the following
conditions:

(a) L4 < 0
(b) L4 ≥ 0, Δ≥ 0, ]1 > 0, and Ψ(]1)≤ 0

(c) L4 ≥ 0, Δ< 0, and there exists at least one
]∗ ∈ ]1, ]2, ]3  such that ]∗ > 0 and Ψ(]∗)≤ 0

In the case that the conditions (a) − (c) are not fulfilled,
then equation (14) has no positive roots. Consequently, the
infection equilibrium Q∗ is locally asymptotically stable for
all delay τ2 ≥ 0. As a result, the existence of Hopf bifurcation
is preposterous.

Presently, we expect that one of the conditions, (a) − (c),
is fulfilled. We suppose that equation (36) has k0 positive
roots, where k0 ∈ 1, 2, 3, 4{ }. Denote the positive root of (36)
by zk, k � 1, 2, . . . , k0. )en, equation (34) has positive roots
ωk �

��
zk

√ . In accordance with (33), we obtain

cos ωkτ2(  �
ω4

k − H2ω
2
k + H4  I2ω

2
k − I4  + − H1ω

3
k + H3ωk  I1ω

3
k − I3ωk 

I2ω
2
k − I4 

2
+ I1ω

3
k − I3ωk 

2 � Υ1 ωk( ,

sin ωkτ2(  �
ω4

k − H2ω
2
k + H4  I1ω

3
k − I3ωk  − − H1ω

3
k + H3ωk  I2ω

2
k − I4 

I2ω
2
k − I4 

2
+ I1ω

3
k − I3ωk 

2 � Υ2 ωk( .

(43)

Define

τ(n)
2,k �

1
ωk

arccos Υ1 ωk( (  + 2nπ , If Y2 ωk( ≥ 0,

1
ωk

2π − arccos Υ1 ωk( (  + 2nπ , If Υ2 ωk( < 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(44)

where k � 1, 2, . . . , k0 and n ∈ N. Hence,

τ0 � τ(0)
2,k0

� min
1≤k≺k0

τ(0)
2,k ,

ω0 � ωk0
and z0 � zk0

.

(45)

Let ξ(τ) � α(τ) + iω(τ) be the root of equation (31) at
τ � τ0 satisfying α(τ0) � 0 and ω(τ0) � ω0. )en, we obtain
the following result.

Lemma 2. IfΨ′(]0)≠ 0, then dRe ξ(τ2)/dτ2|τ2�τ0 andΨ′(τ2)
have the same sign.

Proof. Differentiating both sides of equation (31) with re-
spect to τ2 and noticing that ξ is a function of τ yield

dξ
dτ2

 

− 1

�
4ξ3 + 3H1ξ

2
+ 2H2ξ + H3

− ξe
− ξτ2 I1ξ

3
+ I2ξ

2
+ I3ξ + I4 

+
3I1ξ

2
+ 2I2ξ + I3

ξI1ξ
3

+ I2ξ
2

+ I3ξ + I4
−
τ2
ξ

�
4ξ3 + 3H1ξ

2
+ 2H2ξ + H3

− ξ ξ4 + H1ξ
3

+ H2ξ
2

+ H3ξ + H4 
+

3I1ξ
2

+ 2I2ξ + I3

ξ I1ξ
3

+ I2ξ
2

+ I3ξ + I4 
−
τ2
ξ

4ξ3 + 3H1ξ
2

+ 2H2ξ + H3 
dξ
dτ2

+ e
− ξτ2 3I1ξ

2
+ 2I2ξ + I3 

dξ
dτ2

− e
− ξτ2 I1ξ

3
+ I2ξ

2
+ I3ξ + I4  τ2

dξ
dτ2

+ ξ  � 0.

(46)
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)e fact that

sign
dReξ τ2( 

dτ2
|τ2�τ0  � sign Re

dξ τ2( 

dτ2
 

− 1

|τ2�τ0
⎡⎣ ⎤⎦, (47)

leads to

sign
dReξ τ2( 

dτ2
|τ2�τ0  � sign Re

4ξ3 + 3H1ξ
2

+ 2H2ξ + H3

− ξ ξ4 + H1ξ
3

+ H2ξ
2

+ H3ξ + H4 
⎡⎢⎣ ⎤⎥⎦|τ2�τ0

⎡⎢⎣

+Re
3I1ξ

2
+ 2I2ξ + I3

ξ I1ξ
3

+ I2ξ
2

+ I3ξ + I4 
⎡⎢⎣ ⎤⎥⎦|ξ�iω0

⎤⎥⎦ � sign
4ω6

0 + 3L1ω
4
0 + 2L2ω

2
0 + L3

I2ω
2
0 − I4 

2
+ I1ω

3
0 − I3ω0 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

� sign
Ψ′ ω2

0 

I2ω
2
0 − I4 

2
+ I1ω

3
0 − I3ω0 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ � sign

Ψ′ z0( 

I2ω
2
0 − I4 

2
+ I1ω

3
0 − I3ω0 

2
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(48)

)us, sign dReξ(τ2)/dτ2|τ2�τ0  � sign Ψ′(z0) .
Summarizing the above and the Hopf bifurcation the-

orem [20] allows us to state the following results.

Theorem 6. If R0 > 1 and (21) are satisfied, then the fol-
lowing results hold:

(i) If the conditions (a) − (c) are all not satisfied, then
the infection equilibrium Q∗ is locally asymptotically
stable for all delay τ2 ≥ 0, which is called the delay-
independent stability

(ii) If one of the conditions (a) − (c) is satisfied, then the
infection equilibrium Q∗ is locally asymptotically
stable for all τ ∈ (0, τ0)

(iii) If one of the conditions (a) − (c) is satisfied and
Ψ′(z0)≠ 0, then the transversality condition holds
and model (1) undergoes a Hopf bifurcation at in-
fection equilibrium Q∗ when τ2 � τ0

From Lemma 2, we see that, to ensure the condition of
transversality, it is mandatory that the positive roots of
equation (36) are simple. First, we need the following lemma
given by Hattaf [21].

Lemma 3. Let P(x) be a polynomial of degree 4 with real
coefficients:

(i) If the quartic equation P(x) � 0 has only a single
positive and simple root x1, then P′(x1)> 0

(ii) If the quartic equation P(x) � 0 has only two positive
and simple roots x1 and x2 (setting x2 <x1), then
P′(x1)> 0 and P′(x2)< 0

(iii) If the quartic equation P(x) � 0 has only three
positive and simple roots x3 <x2 <x1, then
P′(x1)> 0, P′(x2)< 0, and P′(x3)> 0

(iv) If the quartic equation P(x) � 0 has only four
positive roots x4 <x3 < x2 <x1, then P′(x1)> 0,
P′(x2)< 0, P′(x3)> 0, and P′(x4)< 0

Theorem 7. Assume that R0 > 1 and (21) holds. Define τ(n)
2,k0

by (45).

(i) If equation (36) has only a single positive and simple
root z1, then Q∗ is locally asymptotically stable for
τ2 ∈ (0, τ(0)

2,1 ) and unstable for τ2 > τ
(0)
2,1 . Besides, a

Hopf bifurcation happens when τ2 > τ
(n)
2,1 , n ∈ N.

(ii) If equation (36) has only two positive and simple
roots z1 and z2 with z2 < z1, then there exists a finite
number of intervals such that if the delay τ2 is fixed in
these intervals, the equilibrium Q∗ is locally as-
ymptotically stable, while unstable if τ2 does not
belong to the ones. In this case, Q∗ changes from
stability to instability.

(iii) If equation (36) has a minimum of three positive and
simple roots, then there exists at least one stability
change.

Proof. According to )eorem 5, Q∗ is locally asymptotically
stable for τ2 � 0. )en, equation (31) has complex roots with
negative real parts for τ2 � 0. If equation (36) has only one
positive and simple root z1, then ±iω1 is a pair of purely
imaginary roots of equation (31) with τ2 � τ(n)

2,1 .
By applying Lemmas 2 and 3, we obtain

sign
dReξ τ2( 

dτ2
|τ2�τ(n)

2,1
  � sign Ψ′ z0(  > 0. (49)

)en, all roots of (31) have negative real parts for
τ2 ∈ [0, τ(0)

2,1 ) and it has at least one root with positive real
part for τ2 > τ

(0)
2,1 . )erefore, we obtain (i).

For (ii), we have z2 < z1. From (44), we find that there
exists l ∈ N such that τ(l)

2,1 − τ(l− 1)
2,1 � (2π/ω1)< (2π/ω2) �

τ(l)
2,2 − τ(l− 2)

2,2 . From Lemma 2, we obtain that Ψ′(z1)> 0 and
Ψ′(z2)< 0. Hence, dReξ(τ2)/dτ2|τ2�τ(n)

2,1
> 0 and dReξ(τ2)/

dτ2|τ2�τ(n)
2,2
< 0. We deduce that l switches from stability to

instability when the parameters τ(0)
2,1 <τ

(0)
2,2 <τ

(1)
2,1 < · · · <τ(l− 1)

2,1

<τ(l− 1)
2,2 <τ

(l)
2,1; Q∗ is locally asymptotically stable when
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τ2 ∈ [0,τ(0)
2,1 ]∪[τ(0)

2,2 ,τ(1)
2,1 ]∪ , . . . , ∪[τ(l− 1)

2,2 ,τ(l)
2,1] and unstable

when τ2 ∈ [τ
(0)
2,1 ,τ(0)

2,2 ] ∪[τ(1)
2,1 ,τ(1)

2,2 ]∪ , . . . , ∪[τ(l− 1)
2,1 ,τ(l− 1)

2,2 ]∪
[τ(l)

2,1,+∞]. )is demonstrates (ii) and, additionally, we can
undoubtedly obtain the outcome yielding (iii).

5. Application

)e purpose of this section is to illustrate our theoretical
results to the following model, which is a special case of
system (1) by letting f(U, I, C) � (β1U/1 + α1C) and
g(U, I) � (β2U/1 + α2I):

_U � s − d1U(t) −
β1U(t)C(t)

1 + α1C(t)
−
β2U(t)I(t)

1 + α2I(t)
,

_I �
β1U(t)C(t)

1 + α1C(t)
+
β2U(t)I(t)

1 + α2I(t)
− d2I(t),

_C � υI t − τ1(  − d3C(t) − pA(t)C(t),

_A � σ + qA t − τ2( C t − τ2(  − d4A(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(50)

where α1 and α2 are positive constants that measure the
saturation effect, β1 is the virus-to-cell infection rate, and β2

is the cell-to-cell transmission rate. Apparently, the hy-
potheses (H0)–(H3) hold and we have

1 −
f(U, I, C)

f U, I
∗
, C
∗

( 
 

f U, I
∗
, C
∗

( 

f(U, I, C)
−

C

C
∗  �

− α1 C − C
∗

( 
2

C
∗ 1 + α1C(  1 + α1C

∗
( 

≤ 0,

1 −
f U
∗
, I
∗
, C
∗

( g(U, I)

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 
 

f U, I
∗
, C
∗

( g U
∗
, I
∗

( 

f U
∗
, I
∗
, C
∗

( g(U, I)
−

I

I
∗  �

− α2 I − I
∗

( 
2

I
∗ 1 + α2I(  1 + α2I

∗
( 

≤ 0.

(51)

)erefore, hypothesis (21) is verified. From )eorems 4
and 5, we have the following result.

Corollary 1
(i) If R0 ≤ 1, then the infection-free equilibrium Qf of

system (50) is globally asymptotically stable
(ii) If R0 > 1, then the infection-free equilibrium Qf be-

comes unstable and the chronic infection equilibrium
Q∗ of system (50) is globally asymptotically stable for
τ2 � 0

Furthermore, theorem 7 holds true for system (50).

6. Conclusion

In this paper, we have presented a delayed CHIKV infection
model with general incidence functions that include various
forms existing in the literature. Initially, we have examined
the nonnegativity, boundedness of the solutions, and the
existence of equilibria. By building appropriate Lyapunov
function, utilizing Lyapunov–LaSalle invariance principle
and Hopf bifurcation theory, we have demonstrated the
following outcomes: (i) when R0 ≤ 1, the infection-free
equilibrium Qf is globally asymptotically stable for any time
delays τ1 ≥ 0 and τ2 ≥ 0, which naturally implies that the
virus is cleared and the infection vanishes; (ii) when R0 > 1
and (H4) holds, the chronic infection equilibrium Q∗ is

globally asymptotically stable for anytime delay τ1 ≥ 0 and
τ2 � 0, meaning that the infection perseveres in the host; (iii)
when τ2 > 0 and τ1 � 0, we obtain the sufficient conditions
on the existence of Hopf bifurcation at Q∗.
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