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,is paper is concerned with the existence of extremal solutions for periodic boundary value problems for conformable fractional
differential equations with deviating arguments. We first build two comparison principles for the corresponding linear equation
with deviating arguments. With the help of new comparison principles, some sufficient conditions for the existence of extremal
solutions are established by combining the method of lower and upper solutions and the monotone iterative technique. As an
application, an example is presented to enrich the main results of this article.

1. Introduction

In recent years, people have been paying attention to the
progress of the fractional differential equations. In fact, it
is the generalization of the ordinary differential equa-
tions to a noninteger order. Significantly, fractional
differential equations appear more frequently in different
fields of science and engineering, such as viscoelasticity,
circuit, and neuron modeling [1–3]. Gradually, fractional
differential equations are increasingly regarded as ef-
fective assistants. We have observed that many papers are
exploring the existence of solutions of boundary value
problems for fractional differential equations by using
nonlinear functional analysis methods such as fixed
point theorems, fixed point index on cone, variational
methods and critical point theory, the theory of Mawhin
coincidence degree, and the upper and lower solution
method; see the monographs of Kilbas et al. [1], Pod-
lubny [2], Diethem [3], the papers [4–26], and the ref-
erences therein. Among them, the monotone iterative
technique is an ingenious and effective method that offers
theoretical, as well constructive existence results for

nonlinear problems via linear iterates [9–15, 17, 23, 26].
It yields monotone sequences that converge to the
extremal solutions in a sector generated by the upper and
lower solutions. For example, the authors of [22] adopted
the method of monotone iteration combined with the
method of upper and lower solutions to consider the
following system of nonlinear fractional differential
equations:

D
α
v(t) � f(t, v(t), w(t)), t ∈ (0, T],

D
α
w(t) � g(t, w(t), v(t)), t ∈ (0, T],

t
1− α

v(t)|t�0 � x0,

t
1− α

w(t)|t�0 � y0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where 0<T<∞, f, g ∈ C([0, T] × R × R,R), x0, y0 ∈ R,
and x0 ≤y0. In addition, [15, 24] used these methods to
study the initial value problems for nonlinear fractional
differential equations with no deviating arguments. On the
basis of [22], Jian et al. [13] successfully investigated the
following nonlinear fractional order differential systems
with deviating arguments:
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D
α
v(t) � f(t, v(t), v(θ(t)), w(t), w(θ(t))), t ∈ (0, 1],

D
α
w(t) � g(t, w(t), w(θ(t)), v(t), v(θ(t))), t ∈ (0, 1],

t
1− α

v(t)|t�0 � x0,

t
1− α

w(t)|t�0 � y0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where θ ∈ C([0, 1], [0, 1]). ,ey introduce two well-defined
monotone sequences that converge to the solution of the
system and, then, establish the existence and uniqueness of
the solution of the system. Finally, a numerical iterative
scheme is introduced to obtain an accurate approximate
solution for the systems.

Motivated by the abovementioned papers, in this paper,
we devote ourselves to the existence of solutions to the
following boundary value problems with deviation
arguments:

D
δϕ(t) � f(t,ϕ(t), ϕ(θ(t))), t ∈ [0, T],

ϕ(0) � ϕ(T),

⎧⎨

⎩ (3)

where δ ∈ 0, 1], θ ∈ C([0, 1], [0, 1]), and f ∈ C([0, 1] × R×

R,R), and Dδϕ is the conformable fractional derivative of
order δ. ,e conformable fractional calculus which was
introduced in the work of Khalil et al. [27], then developed
by Abdeljawad [28], have been receiving a lot of attention
due to the wide application in physics and engineering
[29, 30]. ,e reader is referred to [14, 16, 17, 27–33] and
references therein for some recent advances in conformable
fractional calculus and its applications.

In this paper, by establishing two comparison results and
using the monotone iterative technique combined with the
method of upper and lower solutions, some sufficient
conditions are presented for the existence of extremal so-
lutions for periodic boundary value problem (3).

2. Preliminaries

Definition 1 (See [27]). Let f: [0, +∞⟶ R and t> 0, and
the conformable fractional derivative of order 0< α≤ 1 is
defined by

Dαf(t) � lim
ρ⟶0

f t + ρt
1− α

􏼐 􏼑 − f(t)

ρ
, (4)

for t> 0, and the conformable fractional derivative at 0 is
defined as Dαf(0) � lim

t⟶0+
(Dαf)(t). If f is differentiable,

then Dαf(t) � t1− αf′(t).

Definition 2 (See [27]). Let α ∈ 0, 1]. ,e conformable
fractional integral of a function f: [0, +∞⟶ R of order α
is denoted as

Iαf(t) � 􏽚
t

0
s
α− 1

f(s)ds. (5)

Lemma 1 (See [32]). Let T> 0. Assume that f ∈ C[0, T] and
Dαf ∈ C(0, T)∩ L(0, T) with 0< α≤ 1. 2en, we have

IαDαf(t) � f(t) − f(0). (6)

Lemma 2 (See [27]). Let α ∈ 0, 1, l1, l2, q, K ∈ R, and the
functions f, h be α-differentiable on [0, +∞). 2en,

(a) DαK � 0 for all constant functions f(t) � K

(b) Dα(l1f + l2f) � l1Dαf(t) + l2Dαh(t)

(c) Dαtq � qtq− α

(d) Dα(fh) � f(t)Dαh(t) + h(t)Dαf(t)

(e) Dα(f/h) � ((hDαf − fDαh)/h2) when h(t)≠ 0

Lemma 3 (See [34]). LetA: X⟶ X linear operator, r(A)

be the spectral radius of A, and ‖A‖ � max‖ϕ‖�1‖Aϕ‖. 2en,

(1) r(A)≤ ‖A‖

(2) if r(A)< 1, then (I − A)− 1 exists and
(I − A)− 1 � 􏽐

∞
n�0 A

n, where I stands for the
identity operator

It is given that T> 0. Let E � C[0, T]; then, E is a Banach
space with the norm ‖x‖ � maxt∈[0,T]|x(t)|.

Let us introduce the following values and functions
which will be used in the rest paper.

K1 �
K

δ
,

l � e
− K1Tδ

,

M �
e

K1Tδ

e
K1Tδ

− 1
,

Ψ1(t) ≡Ml,

Ψ2(t) ≡M,

t ∈ [0, T],

M � Ml +
δN

2
M

2
l
2
T
δ

K δ2 − N
2
M

2
l
2
T
2δ

􏼐 􏼑

−
δ2NM

K δ2 − N
2
M

2
T
2δ

􏼐 􏼑
,

􏽥M � Ml −
M

2
NT

δ

δ
+

δN
2
M

2
l
2
T
δ

K δ2 − N
2
M

2
l
2
T
2δ

􏼐 􏼑

−
N

3
M

3
T
2δ

K δ2 − N
2
M

2
T
2δ

􏼐 􏼑
.

(7)

For the forthcoming analysis, we first consider the fol-
lowing two boundary value problems for a linear differential
fractional equations:
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D
δϕ(t) + Kϕ(t) � h(t), t ∈ [0, T],

ϕ(0) � ϕ(T) + a,

⎧⎨

⎩ (8)

D
δϕ(t) + Kϕ(t) + Nϕ(θ(t)) � h(t), t ∈ [0, T],

ϕ(0) � ϕ(T) + a.

⎧⎨

⎩ (9)

Lemma 4. Let K> 0, a ∈ R, and h ∈ E. 2en, problem (8)
has the unique solution:

ϕ(t) � 􏽚
T

0
G(t, s)h(s)ds + aΨ(t), (10)

where Ψ(t) � (1/(1 − e− K1Tδ
))e− K1tδ and

G(t, s) �

e
K1Tδ

e
K1Tδ

− 1
e

− K1 tδ − sδ( )s
δ− 1

, 0< s≤ t≤T,

1

e
K1Tδ

− 1
e

− K1 tδ − sδ( )s
δ− 1

, 0≤ t< s≤T.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Proof. Multiply both sides of the first equation of (8) by
eK1tδ , namely,

e
K1tδ

D
δϕ(t) + Ke

K1tδϕ(t) � e
K1tδ

h(t). (12)

By using Lemma 2 (d), equation (12) is equivalent to

D
δ

e
K1tδϕ(t)􏼔 􏼕 � e

K1tδ
h(t). (13)

In view of Lemma 1 and Definition 2, we get

e
K1tδϕ(t) − ϕ(0) � 􏽚

t

0
s
δ− 1

e
K1sδ

h(s)ds, (14)

so

ϕ(t) � e
− K1tδ ϕ(0) + 􏽚

t

0
s
δ− 1

e
K1sδ

h(s)ds􏼢 􏼣. (15)

,e boundary condition ϕ(0) � ϕ(T) + a leads to

ϕ(0) � ϕ(T) + a � e
− K1Tδ

ϕ(0) + 􏽚
T

0
s
δ− 1

e
K1sδ

h(s)ds􏼢 􏼣 + a.

(16)

Clearly,

ϕ(0) �
1

e
K1Tδ

− 1
􏽚

T

0
s
δ− 1

e
K1sδ

h(s)ds +
a

1 − e
− K1Tδ . (17)

Substituting (17) into (15), it follows that linear problem
(8) has the following integral representation of the solution:

ϕ(t) � e
− K1tδ 1

e
K1Tδ

− 1
􏽚

T

0

s
δ− 1

e
K1sδ

h(s)ds + 􏽚

t

0

s
δ− 1

e
K1sδ

h(s)ds
⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

+
a

1 − e
− K1Tδ e

− K1tδ
,

�
e

K1Tδ

e
K1Tδ

− 1
􏽚

t

0

s
δ− 1

e
− K1 tδ − sδ( )h(s)ds

+
1

e
K1Tδ

− 1
􏽚

T

t

s
δ− 1

e
− K1 tδ − sδ( )h(s)ds +

a

1 − e
− K1Tδ e

− K1tδ
,

� 􏽚

T

0

G(t, s)h(s)ds + aΨ(t).

(18)

,is completes the proof.
For all 0< δ ≤ 1, Green’s function G admits the following

properties:

1

e
K1Tδ

− 1
s
δ− 1 ≤G(t, s)≤

e
K1Tδ

e
K1Tδ

− 1
s
δ− 1

, t ∈ [0, T], s ∈ (0, T].

(19)

Namely,

Mls
δ− 1 ≤G(t, s)≤Ms

δ− 1
, t ∈ [0, T], s ∈ (0, T]. (20)

In addition, for Ψ given in Lemma 4, we can get

Ψ1(t) �
e

− K1Tδ

1 − e
− K1Tδ ≤Ψ(t)≤

1

1 − e
− K1Tδ � Ψ2(t). (21)

We define the operator A on E by

(Ah)(t) � 􏽚
T

0
G(t, s)h(s)ds, h ∈ E. (22)

It is easy to see that A: E⟶ E is a positive linear
continuous operator. □

Lemma 5. ‖A‖ � (1/K).

Proof. By direct computation, one has

􏽚
T

0
G(t, s)ds �

e
K1Tδ

e
K1Tδ

− 1
􏽚

t

0
s
δ− 1

e
− K1 tδ − sδ( )ds +

1

e
K1Tδ

− 1

􏽚
T

t
s
δ− 1

e
− K1 tδ − sδ( )ds,

�
e

K1Tδ

δK1 e
K1Tδ

− 1􏼒 􏼓

1 − e
− K1tδ

􏼒 􏼓 +
1

δK1 e
K1Tδ

− 1􏼒 􏼓

e
K1Tδ − K1tδ

− 1􏼒 􏼓,

�
1

δK1
�
1
K

.

(23)

,en, for any h ∈ E, we have
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‖Ah‖ � max
t∈[0,T]

|(Ah)(t)|≤ max
t∈[0,T]

􏽚
T

0
G(t, s)ds · ‖h‖ �

1
K

‖h‖,

(24)

which implies that ‖A‖≤ (1/K). On the other hand, take
h0(t) ≡ 1, then h0 ∈ E, ‖h0‖ � 1, and

Ah0
����

���� � max
t∈[0,T]

|(Ah)(t)| � 􏽚
T

0
G(t, s)ds �

1
K

h0
����

����. (25)

,is yields ‖A‖≥ (1/K). ,erefore, ‖A‖ � (1/K). ,is
completes the proof.

We recall that l � e− K1Tδ . ,en, l ∈ (0, 1). For
∀h ∈ C([0, T], [0, +∞)), it follows from (20) that

(Ah)(t) � 􏽚
T

0
G(t, s)h(s)ds≤M 􏽚

T

0
s
δ− 1

h(s)ds, t ∈ [0, T],

(Ah)(t) � 􏽚
T

0
G(t, s)h(s)ds≥Ml 􏽚

T

0
s
δ− 1

h(s)ds, t ∈ [0, T].

(26)

,e abovementioned two inequalities show that

(Ah)(t)≥ l(Ah)(s), ∀t, s ∈ [0, T], ∀h ∈ C([0, T), [0, +∞)].

(27)

Based on the above analysis, we have the following result
on (9). □

Lemma 6. Let K> 0, 0≤N<K, a ∈ R, θ ∈ C([0, T], [0, T]),
and h ∈ E. 2en, problem (9) has a unique solution.

Proof. From Lemma 4, it follows that ϕ ∈ E is a solution of
(9) if and only if

ϕ(t) � 􏽚
1

0
G(t, s)[− Nϕ(θ(s)) + h(s)]ds + aΨ(t). (28)

Now, we introduce an operator B: E⟶ E as follows:

(Bϕ)(t) � Nϕ(θ(t)), t ∈ [0, T]. (29)

It is easy to see that B is a positive linear operator with
‖B‖ � N. ,us, (28) reduces to

(I + AB)ϕ(t) � Ah(t) + aΨ(t). (30)

Note from Lemma 5 that ‖AB‖≤ ‖A‖ · ‖B‖ � (N/
K)< 1. ,us, it follows from Lemma 3 that (I + AB)− 1

exists and

(I + AB)
− 1

� 􏽘
∞

i�0
(− 1)

i
(AB)

i
� I − AB +(AB)

2
+ · · ·

+(− 1)
n
(AB)

n
+ · · · .

(31)

,erefore, the unique solution of (9) is given by

ϕ(t) � 􏽘
∞

i�0
(− 1)

i
(AB)

i
Ah(t) + a 􏽘

∞

i�0
(− 1)

i
(AB)

iΨ(t).

(32)

,e proof is complete.
Now, we present two comparison results. □

Lemma 7. Let K> 0, 0≤N≤Kl2, a ∈ R, and
θ ∈ C([0, T], [0, T]). Assume that ϕ ∈ E satisfies Dδϕ ∈ E

and

D
δϕ(t)≤ − Kϕ(t) − Nϕ(θ(t)), t ∈ [0, T],

ϕ(0)≤ϕ(T).

⎧⎨

⎩ (33)

2en, ϕ(t)≤ 0 for all t ∈ [0, T].

Proof. Take h(t) � Dδϕ(t) + Kϕ(t) + Nϕ(θ(t)), a � ϕ(0)−

ϕ(T). ,en,

h(t)≤ 0,

a≤ 0.
(34)

Applying Lemma 6, (32) holds, and (32) can be
expressed by

ϕ(t) � 􏽘
∞

i�0
(AB)

2i
(I − AB)Ah(t) + a 􏽘

∞

i�0
(AB)

2i
(I − AB)Ψ(t).

(35)

Since h≤ 0, it implies that h0(t) ≡ − (Ah)(0)≥ 0. ,us,
from (27), we obtain

− Ah≥ lh0,

− Ah≤
1
l
h0.

(36)

With the help of positivity of operator AB, the defi-
nition of operator B, and (23), we have

− (AB)Ah≤
1
l

(AB)h0 �
N

lK
h0. (37)

Consequently, we conclude that

(I − AB)Ah≤ − lh0 +
N

lK
h0 � − l −

N

lK
􏼒 􏼓h0 ≤ 0. (38)

On the other hand, by (21), we infer that

(I − AB)Ψ(t) �
e

− K1tδ

1 − e
− K1Tδ − N 􏽚

T

0
G(t, s)

e
− K1(θ(s))δ

1 − e
− K1Tδ ds

≥
e

− K1Tδ

1 − e
− K1Tδ −

N

1 − e
− K1Tδ 􏽚

T

0
G(t, s)ds,

�
1

1 − e
− K1Tδ l −

N

K
􏼒 􏼓≥ 0.

(39)

Hence, ϕ(t)≤ 0 holds for all t ∈ [0, T] that follow from
a≤ 0 and (35). ,is completes the proof. □

Lemma 8. Let K> 0, 0≤NMTδ < δ, 0≤N<K, 􏽥M> 0,
M> 0, and θ ∈ C([0, T], [0, T]). Assume that ϕ ∈ E satisfies
Dδϕ ∈ E and (33). 2en, ϕ(t)≤ 0 for all t ∈ [0, T].
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Proof. Take again h(t) � Dδϕ(t) + Kϕ(t) + Nϕ(θ(t)),
a � ϕ(0) − ϕ(T). ,en,

h(t)≤ 0,

a≤ 0.
(40)

Applying Lemma 6, (32) holds, and (32) can be
expressed by

ϕ(t) � 􏽘
∞

i�0
(AB)

2i
Ah(t) − 􏽘

∞

i�0
(AB)

2i+1
Ah(t)

+ a 􏽘
∞

i�0
(AB)

iΨ(t) − 􏽘
∞

i�0
(AB)

2i+1Ψ(t)⎡⎣ ⎤⎦.

(41)

Taking notice of the fact that h(t)≤ 0, by (20), we have

(Ah)(t) � 􏽚
T

0
G(t, s)h(s)ds≤Ml 􏽚

T

0
s
δ− 1

h(s)ds, (42)

and for n≥ 1,

(AB)
2n

(Ah)(t) � N
2n

􏽚
T

0
G(t, s) 􏽚

T

0
G θ(s), τ2n− 1( 􏼁

􏽚
T

0
G θ τ2n− 1( 􏼁, τ2n− 2( 􏼁 · · · 􏽚

T

0
G θ τ2( 􏼁, τ1( 􏼁

􏽚
T

0
G θ τ1( 􏼁, τ0( 􏼁h τ0( 􏼁dτ0dτ1, . . . , dτ2n− 1ds

≤N
2n

􏽚
T

0
G(t, s)ds Ml 􏽚

T

0
s
δ− 1ds􏼠 􏼡

2n− 1

· 􏽚
T

0
Mlτδ− 1

0 h τ0( 􏼁dτ0,

�
N

2n
M

2n
l
2n

K

Tδ

δ
􏼠 􏼡

2n− 1

􏽚
T

0
τδ− 1
0 h τ0( 􏼁dτ0,

(43)

and for n≥ 1,

(AB)
2n+1

(Ah)(t) � N
2n+1

􏽚
T

0
G(t, s) 􏽚

T

0
G θ(s), τ2n( 􏼁

􏽚
T

0
G θ τ2n( 􏼁, τ2n− 1( 􏼁 . . . 􏽚

T

0
G θ τ2( 􏼁, τ1( 􏼁

􏽚
T

0
G θ τ1( 􏼁, τ0( 􏼁h τ0( 􏼁dτ0dτ1, . . . , dτ2nds

≤N
2n+1

􏽚
T

0
G(t, s)ds Ml 􏽚

T

0
s
δ− 1ds􏼠 􏼡

2n

· 􏽚
T

0
Mlτδ− 1

0 h τ0( 􏼁dτ0,

�
N

2n+1
M

2n+1

K

Tδ

δ
􏼠 􏼡

2n

􏽚
T

0
τδ− 1
0 h τ0( 􏼁dτ0.

(44)

,ese lead us to

􏽘

∞

i�0
(AB)

2i
Ah(t) − 􏽘

∞

i�0
(AB)

2i+1
Ah(t)

≤ Ml + 􏽘
∞

i�1

N
2i

M
2i

l
2i

K

Tδ

δ
􏼠 􏼡

2i− 1

− 􏽘
∞

i�0

N
2i+1

M
2i+1

K

Tδ

δ
􏼠 􏼡

2i

⎡⎣ ⎤⎦

􏽚
T

0
s
δ− 1

h(s)ds � M 􏽚
T

0
s
δ− 1

h(s)ds≤ 0.

(45)

By (20)–(23) and the positivity of operatorAB, we have

Ψ(t)≥
e

− K1Tδ

1 − e
− K1Tδ � Ml,

(AB)Ψ(t)≤ (AB)Ψ2(t) � N 􏽚
T

0
G(t, s)Ψ2(θ(s))ds,

≤M
2
N 􏽚

T

0
s
δ− 1ds �

M
2
NT

δ

δ
,

(46)

and for n≥ 1,

(AB)
2nΨ(t)≥ (AB)

2nΨ1(t)

� N
2n

􏽚
T

0
G(t, s) 􏽚

T

0
G θ(s), τ2n− 1( 􏼁

· 􏽚
T

0
G θ τ2n− 1( 􏼁, τ2n− 2( 􏼁

. . . 􏽚
T

0
G θ τ2( 􏼁, τ1( 􏼁Ψ1 θ τ1( 􏼁( 􏼁dτ1dτ2, . . . , dτ2n− 1ds

≥N
2nΨ1(t) 􏽚

T

0
G(t, s)ds 􏽚

T

0
Mls

δ− 1ds􏼠 􏼡

2n− 1

,

�
N

2n

K
Ml

MlTδ

δ
􏼠 􏼡

2n− 1

�
N

2n
M

2n
l
2n

T
(2n− 1)δ

Kδ2n− 1 ,

(47)

and for n≥ 1,

(AB)
2n+1Ψ(t)≤ (AB)

2n+1Ψ2(t)

� N
2n+1

􏽚
T

0
G(t, s) 􏽚

T

0
G θ(s), τ2n( 􏼁

· 􏽚
T

0
G θ τ2n( 􏼁, τ2n− 1( 􏼁

. . . 􏽚
T

0
G θ τ2( 􏼁, τ1( 􏼁Ψ2 θ τ1( 􏼁( 􏼁dτ1dτ2, . . . , dτ2nds

≤N
2n+1Ψ2(t) 􏽚

T

0
G(t, s)ds 􏽚

T

0
Mls

δ− 1ds􏼠 􏼡

2

,

�
N

2n+1

K
Ml

MTδ

δ
􏼠 􏼡

2n

�
N

2n+1
M

2n+1

Kδ2n
T
2nδ

.

(48)

,ese, together with the fact that a≤ 0, ensure that
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a 􏽘

∞

i�0
(AB)

iΨ(t) − 􏽘

∞

i�0
(AB)

2i+1Ψ(t)⎡⎣ ⎤⎦

� a Ψ(t) − (AB)Ψ(t) + 􏽘

∞

i�1
(AB)

iΨ(t) − 􏽘

∞

i�1
(AB)

2i+1Ψ(t)⎡⎣ ⎤⎦

≤ a Ml −
M

2
NT

δ

δ
+ 􏽘

∞

i�1

N
2i

M
2i

l
2i

T
(2i− 1)δ

Kδ2i− 1 − 􏽘

∞

i�1

N
2i+1

M
2i+1

Kδ2i
T
2iδ⎡⎣ ⎤⎦,

� a 􏽥M≤ 0.

(49)

,us, by (41), (45), and (49), we have that ϕ(t)≤ 0 for all
t ∈ [0, T], and the lemma is proved. □

3. Main Results

Now, we are in the position to prove the existence of
extremal solutions of (3) by using the monotone iterative
method of lower and upper solutions. To this end, we define
the lower and upper solutions of (3).

Definition 3. A function u0 ∈ E satisfyingDδu0 ∈ E is called
a lower solution of problem (3) if it satisfies

D
δ
u0(t)≤f t, u0(t), u0(θ(t))( 􏼁, t ∈ [0, T],

u0(0)≤ u0(T).

⎧⎨

⎩ (50)

Analogously, a function w0 ∈ E satisfying Dδw0 ∈ E is
called an upper solution of (3) if the inequalities

D
δ
w0(t)≥f t, w0(t), w0(θ(t))( 􏼁, t ∈ [0, T],

w0(0)≥w0(T),

⎧⎨

⎩ (51)

hold.

Theorem 1. Assume that the following conditions hold:

(H1)θ ∈ C([0, T], [0, T])

(H2): the functions u0 and w0 are lower and upper
solutions of problem (3), respectively, such that
u0(t)≤w0(t) on [0, T]

(H3)f ∈ C([0, T] × R2,R) and there exist K> 0, N≥ 0
such that

f(t, x, z) − f(t, x, z)≥ − K(x − x) − N(z − z), (52)

for all t ∈ [0, T], u0(t)≤x≤ x≤w0(t), u0(t)≤ z≤
z≤w0(t)

(H4): the inequality N≤Kl2 holds or the inequalities
NMTδ < δ, N<K, 􏽥M> 0, M> 0 hold

2en, (3) has minimal and maximal solution u, w in the
sector [u0, w0], which can be obtained by monotone iterative
sequences starting from u0 and w0, where
[u0, w0] � z ∈ E: u0(t)≤ z(t)≤w0(t), t ∈ [0, T]􏼈 􏼉.

Proof. For k � 1, 2, . . ., let us define

D
δ
uk(t) + Kuk(t) + Nuk(θ(t)) � f t, uk− 1(t), uk− 1(θ(t))( 􏼁 + Kuk− 1(t) + Nuk− 1(θ(t)), t ∈ [0, T],

uk(0) � uk(T),

⎧⎨

⎩ (53)

D
δ
wk(t) + Kwk(t) + Nwk(θ(t)) � f t, wk− 1(t), wk− 1(θ(t))( 􏼁 + Kwk− 1(t) + Nwk− 1(θ(t)), t ∈ [0, T],

wk(0) � wk(T).

⎧⎨

⎩ (54)

By Lemma 6, for any k � 1, 2, . . ., we know that linear
problems (53) and (54) have a unique solution uk(t), wk(t),
respectively, which implies that the sequences uk(t)􏼈 􏼉,
wk(t)􏼈 􏼉 are well defined. Furthermore, uk(t), wk(t) can be
expressed as

uk(t) � (I + AB)
− 1
AFuk− 1(t),

wk(t) � (I + AB)
− 1
AFwk− 1(t),

(55)

where F: E⟶ E is a bounded operator defined by

(Fu)(t) � f(t, u(t), u(θ(t))) + Ku(t) + Nu(t), u ∈ E.

(56)

By the integral expression of operatorA, it is easy to see
thatA is completely continuous. Hence, (I + AB)− 1AF is
completely continuous.

Firstly, let us prove that

u0 ≤ u1 ≤w1 ≤w0. (57)

To do this, let v(t) � u0(t) − u1(t). By the definition of
the lower solution, we get

D
δ
v(t) � D

δ
u0(t) − D

δ
u1(t)

≤f t, u0(t), u0(θ(t))( 􏼁 − f t, u0(t), u0(θ(t))( 􏼁

+ K u1(t) − u0(t)( 􏼁

+ N u1(θ(t)) − u0(θ(t))( 􏼁,

� − Kv(t) − Nv(θ(t)), t ∈ [0, T],

v(0) � u0(0) − u1(0)≤ u0(T) − u1(T) � v(T).

(58)

,is shows, by Lemma 7 or Lemma 8, that v(t)≤ 0 on
[0, T], and hence, u0 ≤ u1. Similarly, we can deduce that
w1 ≤w0.
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Now, let v(t) � u1(t) − w1(t); by (H2) and (H3), we
obtain

D
δ
v(t) � D

δ
u1(t) − D

δ
w1(t),

� f t, u0(t), u0(θ(t))( 􏼁 − K u1(t) − u0(t)( 􏼁

− N u1(θ(t)) − u0(θ(t))( 􏼁

− f t, w0(t), w0(θ(t))( 􏼁 + K w1(t) − w0(t)( 􏼁

+ N w1(θ(t)) − w0(θ(t))( 􏼁

≤ − K u0(t) − w0(t)􏼂 􏼃 − N u0(θ(t)) − w0(θ(t))􏼂 􏼃

− K u1(t) − u0(t) − w1(t) + w0(t)􏼂 􏼃

+ N − u1(θ(t)) + u0 + w1(θ(t)) − w0(θ(t))􏼂 􏼃,

� − Kv(t) − Nv(θ(t)), t ∈ [0, T],

v(0) � u1(0) − w1(0) � u1(T) − w1(T) � v(T).

(59)

,en, from Lemma 7 or Lemma 8, we get v(t)≤ 0, which
yields u1 ≤w1.

Secondly, we need to show that u1 and w1 are the lower
and upper solutions of problem (3), respectively. In fact, it
follows from (H2) and (H3) that

D
δ
u1(t) � f t, u0(t), u0(θ(t))( 􏼁 − K u1(t) − u0(t)( 􏼁 − N u1(θ(t)) − u0(θ(t))( 􏼁

− f t, u1(t), u1(θ(t))( 􏼁 + f t, u1(t), u1(θ(t))( 􏼁

≤ − K u0(t) − u1(t)􏼂 􏼃 − N u0(θ(t)) − u1(θ(t))􏼂 􏼃 − K u1(t) − u0(t)( 􏼁

− N u1(θ(t)) − u0(θ(t))( 􏼁 + f t, u1(t), u1(θ(t))( 􏼁 ,

� f t, u1(t), u1(θ(t))( 􏼁,

u1(0) � u1(T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

which show that v1 is a lower solution of problem (3).
Similarly, we can conclude that w1 is an upper solution of
problem (3).

Repeating the foregoing arguments, we can prove that
the sequences uk(t)􏼈 􏼉, wk(t)􏼈 􏼉 are lower and upper solutions
of problem (3), respectively, and satisfy the following
inequality:

u0 ≤ u1 · · · ≤ uk ≤ · · · ≤wk ≤ · · · ≤w1 ≤w0. (61)

Obviously, the sequences uk(t)􏼈 􏼉, wk(t)􏼈 􏼉 are uniformly
bounded in E and by (55) and the complete continuity of
operator (I + AB)− 1AF, and it follows that uk(t)􏼈 􏼉,
wk(t)􏼈 􏼉 are relatively compact. ,is, together with the
monotonicity of the sequences uk(t)􏼈 􏼉, wk(t)􏼈 􏼉, guarantees
that the sequences uk(t)􏼈 􏼉, wk(t)􏼈 􏼉 converge uniformly to
u, w, respectively, and that u, w ∈ [v0, w0] are solutions of
(3).

Finally, we prove theminimal andmaximal property of u

and w on [v0, w0]. We assume that z ∈ [v0, w0] is any so-
lution of (3) and there exists a positive integer k such that
uk(t)≤ z(t)≤wk(t) for t ∈ [0, T].

Let v(t) � uk(t) − z(t), then

D
δ
v(t) � D

δ
uk(t) − D

δ
z(t),

� f t, uk− 1(t), uk− 1(θ(t))( 􏼁 − K uk(t) − uk− 1(t)( 􏼁

− N uk(θ(t)) − uk− 1(θ(t))( 􏼁 − f(t, z(t), z(θ(t)))

≤ − K uk− 1(t) − z(t)􏼂 􏼃 − N uk− 1(θ(t)) − z(θ(t))􏼂 􏼃

− K uk(t) − uk− 1(t)( 􏼁 − N uk(θ(t)) − uk− 1(θ(t))( 􏼁,

� − Kv(t) − Nv(θ(t)),

v(0) � uk(0) − z(0) � uk(T) − z(T) � v(T),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

undoubtedly, a(t)≤ 0, namely, uk(t)≤ z(t). By a similar
method, we can show that z(t)≤wk(t). ,us, uk ≤ z≤wk,
k � 1, 2, . . .. It is easy to find that u(t)≤ z≤w(t) when
k⟶∞. ,at is u, w are minimal and maximal solutions of
(1) in the sector [u0, w0]. ,e proof is completed.

,en, by applying Lemma 7 or Lemma 8, we get v(t) ≤ 0,
that is uk(t)≤ z(t) on [0, T]. Similarly, we can show that
z(t)≤wk(t) on [0, T]. Notice that u0(t)≤ z(t)≤w0(t) on
[0, T]. So, uk(t)≤ z(t)≤wk(t) hold for every k from
mathematical induction. Hence, by taking k⟶ +∞, we
have u(t)≤ z(t)≤w(t) on [0, T]. ,e proof is complete. □

Example 1. We consider the following BVP:

Discrete Dynamics in Nature and Society 7



D
(1/2)ϕ(t) � −

1
3(1 +

���
2π

√
)
2(1 + ϕ(t))

3
+

�
2

√

60π
cos

ϕ2 t
2

􏼐 􏼑

4
, t ∈ [0, 1],

ϕ(0) � ϕ(1).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(63)

Obviously, δ � (1/2), T � 1, θ(t) � t2, and

f(t, u, v) � −
1

3(1 +
���
2π

√
)
2(1 + u)

3
+

�
2

√

60π
cos

v
2

4
. (64)

Let u0(t) � − 1, w0(t) �
���
2π

√
; then,

D
(1/2)

u0(t) � 0<
�
2

√

60π
cos

1
4

� f t, u0(t), u0(θ(t))( 􏼁, t ∈ [0, 1],

u0(0) � u0(1) � − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

D
(1/2)

w0(t) � 0> −
1 +

���
2π

√

3
� f t, w0(t), w0(θ(t))( 􏼁, t ∈ [0, 1],

w0(0) � w0(1) �
���
2π

√
.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(65)

,is shows that u0, w0 are lower and upper solutions of
(63). On the other hand, it is easy to verify that (H3) holds
for K � 1 and N � (1/60). Furthermore, we have

K1 � 2,

l � e
− 2 ∈ (0, 1),

M �
1

1 − e
− 2 ≈ 1.1565,

N �
1
60
< 1 � K,

NMT
δ ≈ 0.0193<

1
2

� δ,

M ≈ 0.1388> 0,

􏽥M ≈ 0.1119> 0.

(66)

Hence, all conditions of ,eorem 1 hold. ,erefore,
equation (63) has the extremal solution in [v0, w0].
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