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.e two-stage assembly scheduling problem is widely used in industrial and service industries..is study focuses on the two-stage
three-machine flow shop assembly problemmixed with a controllable number and sum-of-processing times-based learning effect,
in which the job processing time is considered to be a function of the control of the truncation parameters and learning based on
the sum of the processing time. However, the truncation function is very limited in the two-stage flow shop assembly scheduling
settings..us, this study explores a two-stage three-machine flow shop assembly problem with truncated learning to minimize the
makespan criterion. To solve the proposed model, we derive several dominance rules, lemmas, and lower bounds applied in the
branch-and-bound method. On the other hand, three simulated annealing algorithms are proposed for finding approximate
solutions. In both the small and large size number of job situations, the SA algorithm is better than the JS algorithm in this study.
All the experimental results of the proposed algorithm are presented on small and large job sizes, respectively.

1. Introduction

For decades, scheduling models usually assumed that the
processing time of the job is known and fixed [1]. But, in a
real production system, both the efficiency of the machine
and the skill of the worker can increase with the working
time, thereby reducing the actual work processing time with
the development of production. Many researchers indicated
certain types of learning effects, such as [2] in the position-
based learning effect and [3] in the time-dependent learning
effect..is topic continues to attract a lot of research interest
[4–6].

On the other hand, Biskup, Kuo and Yang [2, 3], and
Kuolamas and Kyparisis [7] introduced models that involve
a learning effect on two-machine scheduling or flow shop
scheduling settings following the same or different learning
ideas. .ere are a multitude of studies related to two-ma-
chine scheduling or flow shop scheduling settings with the
learning effect consideration, including [8–11] and [12].
Besides, there are some two-stage models also with the

learning effect consideration. Wu et al. [13] adopted the
learning model developed by Biskup [2] to solve a two-stage
flow shop scheduling problem with three machines to
minimize the makespan. .ey devised three simulated
annealing (SA) algorithms and three cloud theory-based SA
algorithms. Adopting the learning model in [3, 14], a
branch-and-bound (B&B) algorithm is devised incorpo-
rating six (hybrid) particle swam optimization (PSO)
methods to solve the two-stage flow shop assembly sched-
uling problem to minimize the total job completion time.

Most studies using the learning model are applied in the
single-machine or flow shop setting. However, the two-stage
assembly scheduling problem is relatively unexplored. Re-
cently, Wu et al. and Zou et al. [15, 16] considered position-
based learning in connection with a two-stage assembly
scheduling problem. .ey proposed different versions of
simulated annealing and cloud theory-based simulated
annealing to solve this problem. Moreover, Wu et al. [17]
considered this problem with general learning effects. .ey
developed and evaluated the performances of six hybrid

Hindawi
Discrete Dynamics in Nature and Society
Volume 2020, Article ID 4085718, 14 pages
https://doi.org/10.1155/2020/4085718

mailto:056298@mail.fju.edu.tw
https://orcid.org/0000-0002-6303-8917
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4085718


particle swarm optimizations (PSO). Wu et al. [18] have
conducted the research about a combined approach for two-
agent scheduling with a sum-of-processing-times-based
learning effect. To the best of our knowledge, no other re-
search considers the two-stage assembly scheduling problem
with learning effects. Table 1 presents a comparative study of
existing models to solve the considered scheduling problem.
Many studies claim that most of the productive items in
manufacturing systems may be formulated in a two-stage
assembly scheduling model. However, the literature neglects
accumulated learning experience in solving a two-stage
assembly scheduling problem. In fact, the sum-of-processing
times-based learning model is pertinent to process
manufacturing in which an initial setup is often followed by
a lengthy uninterrupted production process. Motivated by
this observation, this study introduces the 2-stage 3-machine
assembly problem with a sum-of-processing times of already
processed jobs learning to minimize the makespan criterion.
.is model assumes that there are two machines in the first
stage and an assembly machine in the second stage. .is
study first provides some dominances and a lower bound
applied in the branch-and-bound method for an optimal
solution. .ree heuristics modified from Johnson’s rule with
and without improving by an interchange pairwise method
are, then, separately applied in three simulated annealing
algorithms for finding near-optimal solutions. Finally, the
statistical results of the three proposed algorithms are
evaluated and reported.

2. Problem Statement

.e considered two-stage assembly scheduling problem is
formally described in this section. We assume a series of n
given jobs to be processed on three machines. .e main idea
of the studied problem is executing n given jobs on three

machines in two stages. Each job has strictly more than two
operations. For the operations of the n job, the first stage is
performed in a parallel way in two machines. .e operation
processing of the second stage only begins when the op-
erations of the first stage are completed. All jobs are available
at time zero. Each job j is decomposed on three tasks as
follows: the ordinary processing times (without learning
effect) of job j are aj, bj, and cj onmachinesM1,M2, andM3,
respectively. Other assumptions are no machine can process
more than one job at a time; no idle time is allowed on
machinesM1 andM2; and once a job has begun processing, it
cannot be interrupted.

Following the works of Kuo and Yang [3] and Liu et al.
[19], the real processing times of Jj, if Jj scheduling on the
position r of a job sequence S, are considered as
aj max α, (1 + 􏽐

r− 1
k�1a[k])

a1􏽮 􏽯, bj max α, (1 + 􏽐
r− 1
k�1b[k])

a2􏽮 􏽯,
and cj max α, (1 + 􏽐

r− 1
k�1c[k])

a3􏽮 􏽯 on machines M1, M2, and
M3, respectively, where α denotes the controllable parameter
with α< 0, and a1, a2, a3 denote the learning indices forM1,
M2, andM3. For a schedule S, the finishing time of a job, say
Jj, to be scheduled on the rth position (in S) onmachineM3 is
defined, and denoted, as C3[r](S):

C3[r](S) � max t1 + aj max α, 1 + 􏽘

r− 1

k�1
a[k]

⎛⎝ ⎞⎠

a1
⎧⎨

⎩

⎫⎬

⎭, t2 + bj max α, 1 + 􏽘

r− 1

k�1
b[k]

⎛⎝ ⎞⎠

a2
⎧⎨

⎩

⎫⎬

⎭, t3
⎧⎨

⎩

⎫⎬

⎭ + cj max α, 1 + 􏽘

r− 1

k�1
c[k]

⎛⎝ ⎞⎠

a3
⎧⎨

⎩

⎫⎬

⎭,

(1)

where t1, t2, and t3 are denoted as the beginning times of Jj
on machinesM1,M2, and M3 in S, respectively. .e optimal
criterion of this study is to find a scheduled S to minimize the
makespan (or C3[n](S)).

3. Lower Bounds and Some Lemmas

.is section proposes some useful lower bounds used in a
branch-and-bound method. Before deriving the lower
bounds, we define some notations. Suppose t1, t2, and t3
denote the starting time of the first job in sUS on all three
machines. .en, we assume that sPS are the partially

scheduled k jobs and sUS are the remaining unscheduled
(n − k) jobs. a(1) ≤ a(2) ≤ · · · ≤ a(n− k), b(1) ≤ b(2) ≤ · · · ≤
b(n− k), and c(1) ≤ c(2) ≤ · · · ≤ c(n− k) denote increasing se-
quences of a1, a2, . . . , an− k; b1, b2, . . . , bn− k; and
c1, c2, . . . , cn− k in σUS, respectively. Notably, ai, bi, ci are not
necessarily from the same job, and sspt1, sspt2, and sspt3 are
three subsequences of n jobs n increasing sequences of
a1, a2, . . . , an− k; b1, b2, . . . , bn− k; and c1, c2, . . . , cn− k in sUS,
respectively.

Additionally, by using the ideas of Kuo and Yang [3] and
Liu et al. [19], a lower bound for a subsequent can be yielded
as follows:

Table 1: Small size number of jobs parameters.

Parameter n� 10, m� 3
Ti 10− 3

Tf 10− 8

cf 0.95
Nr 10
β 0.2
α1 − 0.1
α2 − 0.1
α3 − 0.2
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C[k+1](s) � max t1 + a[k+1] max α, 1 + 􏽘
k

i�1
a[i]

⎛⎝ ⎞⎠

a1

⎡⎢⎢⎣ ⎤⎥⎥⎦, t2 + b[k+1] max α, 1 + 􏽘
k

i�1
b[i]

⎛⎝ ⎞⎠

a2

⎡⎢⎢⎣ ⎤⎥⎥⎦, t3
⎧⎨

⎩

⎫⎬

⎭

+ c[k+1] max α, 1 + 􏽘
k

i�1
c[i]

⎛⎝ ⎞⎠

a3

⎡⎢⎢⎣ ⎤⎥⎥⎦

≥ t1 + a[k+1]

α + 1 + 􏽘
k
i�1a[i]􏼐 􏼑

a1

2
+ c[k+1]

α + 1 + 􏽘
k
i�1c[i]􏼐 􏼑

a3

2

C[k+2](s)≥ t1 + a[k+1]

α + 1 + 􏽘
k
i�1a[i]􏼐 􏼑

a1

2
+ a[k+2]

α + 1 + 􏽘
k
i�1a[i]􏼐 􏼑

a1

2
+ c[k+2]

α + 1 + 􏽘
k
i�1c[i]􏼐 􏼑

a3

2

⋮

C k+n1[ ](s)≥ t1 + 􏽘

n1

j�1
a[k+i]

α + 1 + 􏽘
k+j− 1
i�1 a[i]􏼐 􏼑

a1

2
+ c k+n1[ ]

α + 1 + 􏽘
k+n1− 1
i�1 c[i]􏼐 􏼑

a3

2

lower bd1 � t1 + 􏽘

n1

j�1
a(n− j+1)

α + 1 + 􏽘
k+j− 1
i�1 a(i)􏼐 􏼑

a1

2
+ c(1)

α + 1 + 􏽘
n− 1
i�1 c(i)􏼐 􏼑

a3

2
.

(2)

In a similar way,

lower bd2 � t2 + 􏽘

n1

j�1
b(n− j+1)

α + 1 + 􏽘
k+j− 1
i�1 b(i)􏼐 􏼑

a2

2

+ c(1)

α + 1 + 􏽘
n− 1
i�1 c(i)􏼐 􏼑

a3

2
,

lower bd3 � t3 + 􏽘

n1

j�1
c(n− j+1)

α + 1 + 􏽘
k+j− 1
i�1 c(i)􏼐 􏼑

a3

2
,

lower bd � max lower bd1, lower bd, lower bd3􏼈 􏼉.

(3)

In what follows, we will propose four properties used in a
branch-and-bound to improve its search power. Before
deriving our properties, we first give four useful lemmas
which will be used in the proof of Property 1.

Lemma 1. If y≥ x> 0, T> 0, and e< 0, then
y(T + x)e ≥ x(T + y)e.

Lemma 2. If λ≥ 1, 0≤ t, and e< 0, then
λ[1 − (1 + t)e]≥ 1 − (1 + λt)e.

Lemmas 1 and 2 have been proved by Kuo and Yang and
Liu et al. [3, 19], respectively.

Lemma 3. If y≥ x> 0, T> 0, e< 0, and 0< α< 1, then
y · max α, (T + x)e

{ }≥ x · max α, (T + y)e
􏼈 􏼉.

Proof. Note that (T + x)e ≥ (T + y)e. □

Case 1. As α> (T + x)e,

y · max α, (T + x)
e

􏼈 􏼉 � y · α,

x · max α, (T + y)
e

􏼈 􏼉 � x · α.
(4)

So, the inequality holds.

Case 2. As (T + x)e ≥ α> (T + y)e,

y · max α, (T + x)
e

􏼈 􏼉 � y · (T + x)
e
,

x · max α, (T + y)
e

􏼈 􏼉 � x · α.
(5)

.e inequality holds.

Case 3. As (T + y)e ≥ α,

y · max α, (T + x)
e

􏼈 􏼉 � y · (T + x)
e
,

x · max α, (T + y)
e

􏼈 􏼉 � x · (T + y)
e
.

(6)

From Lemma 1, the inequality holds.

Lemma 4. If λ≥ 1, t≥ 0, e< 0, and 0< β< 1, then λ[max{

β, 1} − max β, (1 + t)e
􏼈 􏼉] ≥max β, 1􏼈 􏼉 − max β, (1 + λt)e

􏼈 􏼉.

Proof. Note that (1 + λt)≥ 1 + t> 0; thus, (1 + λt)e ≤
(1 + t)e ≤ 1 because e< 0. □

Case 1. As β≤ (1 + λt)e ≤ 1,

λ max β, 1􏼈 􏼉 − max β, (1 + t)
e

􏼈 􏼉􏼂 􏼃 � λ 1 − (1 + t)
e

􏼂 􏼃,

max β, 1􏼈 􏼉 − max β, (1 + λt)
e

􏼈 􏼉 � 1 − (1 + λt)
e
.

(7)

From Lemma 2, the inequality holds.
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Case 2. As (1 + λt)e < β< (1 + t)e ≤ 1,

λ max β, 1􏼈 􏼉 − max β, (1 + t)
e

􏼈 􏼉􏼂 􏼃 � λ 1 − (1 + t)
e

􏼂 􏼃,

max β, 1􏼈 􏼉 − max β, (1 + λt)
e

􏼈 􏼉 � 1 − β,
(8)

which is less than 1 − (1 + λt)e. From Lemma 2, the equality
holds.

Case 3. As (1 + t)e ≤ β< 1,

λ max β, 1􏼈 􏼉 − max β, (1 + t)
e

􏼈 􏼉􏼂 􏼃 � λ[1 − β],

max β, 1􏼈 􏼉 − max β, (1 + λt)
e

􏼈 􏼉 � 1 − β.
(9)

.e equality holds because λ≥ 1.

Case 4. As β≥ 1,

λ max β, 1􏼈 􏼉 − max β, (1 + t)
e

􏼈 􏼉􏼂 􏼃 � λ[β − β] � 0,

max β, 1􏼈 􏼉 − max β, (1 + λt)
e

􏼈 􏼉 � β − β � 0.
(10)

In summary, the inequality always holds for the given
conditions.

To show max β, 1􏼈 􏼉 − max β, (1 + λt)e
􏼈 􏼉 � β − β � 0 is no

less than S2, it suffices to show C3j(S1)≤C3i(S2).

Property 1. If ai < aj, bi < bj, ci > cj, t3 >max t1 + aj􏽮

max α, (1 + 􏽐
k− 1
i�1 a[i])

e1 , t2 + bj max α, (1 + 􏽐
k− 1
i�1 b[i])

e2􏽮 􏽯􏽮 􏽯},
and t1+aimax α, (1+􏽐

k− 1
i�1 a[i])

e1􏽮 􏽯+ajmax α, (1+{ 􏽐
k− 1
i�1 a[i] +

ai)
e1}>max t2+bimax α, (1+􏽐

k− 1
i�1 b[i])

e2􏽮 􏽯+bjmax􏽮 α, (1+{

􏽐
k− 1
i�1 b[i] +bi)

e2},t3+cimax α, (1+􏽐i�1􏼈 k − 1c[i])
e3 }}, then S1

is no less than S2.

Proof. For a job sequence S, if the job Jj is assigned to the rth

position of S, then according to the definition of the
completion time of a job,

C3[r](S) � max t1 + aj max α, 1 + 􏽘
r− 1

i�1
a[i]

⎛⎝ ⎞⎠

e1
⎧⎨

⎩

⎫⎬

⎭, t2 + bj max α, 1 + 􏽘
r− 1

i�1
b[i]

⎛⎝ ⎞⎠

e2
⎧⎨

⎩

⎫⎬

⎭, t3
⎧⎨

⎩

⎫⎬

⎭ + cj max α, 1 + 􏽘
r− 1

i�1
c[i]

⎛⎝ ⎞⎠

e3
⎧⎨

⎩

⎫⎬

⎭.

(11)

To simplify the proof, let TA � (1 + 􏽐
k− 1
i�1 a[i])

e1 ,
TB � (1 + 􏽐

k− 1
i�1 b[i])

e2 , and TC � (1 + 􏽐
k− 1
i�1 c[i])

e3 . .en,

C3j S1( 􏼁 � max t1 + ai max α, (TA)
e1􏼈 􏼉 + aj max α, TA + ai( 􏼁

e1􏼈 􏼉, t2 + bi max α, (TB)
e2􏼈 􏼉 + bj max α, TB + bi( 􏼁

e2􏼈 􏼉,􏽮

max t3, t1 + ai max α, (TA)
e1􏼈 􏼉, bi max α, (TB)

e2􏼈 􏼉􏼈 􏼉 + ci max α, (TC)
e3􏼈 􏼉􏼉 + cj max α, TC + ci( 􏼁

e3􏼈 􏼉,

C3i S2( 􏼁 � max t1 + aj max α, (TA)
e1􏼈 􏼉 + ai max α, TA + aj􏼐 􏼑

e1
􏽮 􏽯, t2 + bj max α, (TB)

e2􏼈 􏼉 + bi max α, TB + bj􏼐 􏼑
e2

􏽮 􏽯,􏽮

max t3, t1 + aj max α, (TA)
e1􏼈 􏼉, bj max α, (TB)

e2􏼈 􏼉􏽮 􏽯 + cj max α, (TC)
e3􏼈 􏼉􏽯 + ci max α, TC + cj􏼐 􏼑

e3
􏽮 􏽯.

(12)

Using the given conditions ai < aj, bi < bj, and
t3 >max t1 + aj max α, (TA)e1 , t2 + bj max α, (TB)e2{ }􏽮 􏽯􏽮 􏽯,
one has

C3j S1( 􏼁 � max t1 + ai max α, (TA)
e1􏼈 􏼉 + aj max α, TA + ai( 􏼁

e1􏼈 􏼉, t2 + bi max α, (TB)
e2􏼈 􏼉 + bj max α, TB + bi( 􏼁

e2􏼈 􏼉,􏽮

t3 + ci max α, (TC)
e3􏼈 􏼉􏼉 + cj max α, TC + ci( 􏼁

e3􏼈 􏼉,

C3i S2( 􏼁 � max t1 + aj max α, (TA)
e1􏼈 􏼉 + ai max α, TA + aj􏼐 􏼑

e1
􏽮 􏽯, t2 + bj max α, (TB)

e2􏼈 􏼉 + bi max α, TB + bj􏼐 􏼑
e2

􏽮 􏽯,􏽮

t3 + cj max α, (TC)
e3􏼈 􏼉􏽯 + ci max α, TC + cj􏼐 􏼑

e3
􏽮 􏽯.

(13)
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Applying the given condition,

t1 + ai max α, (TA)
e1􏼈 􏼉 + aj max α, TA + ai( 􏼁

e1􏼈 􏼉>max t2 + bi max α, (TB)
e2􏼈 􏼉 + bj max α, TB + bi( 􏼁

e2􏼈 􏼉,􏽮

t3 + ci max α, (TC)
e3􏼈 􏼉􏼉,

(14)

and then,

C3j S1( 􏼁 � t1 + ai max α, (TA)
e1􏼈 􏼉 + aj max α, TA + ai( 􏼁

e1􏼈 􏼉 + ci max α, TC + cj􏼐 􏼑
e3

􏽮 􏽯, (15)

C3i S2( 􏼁 � t1 + aj max α, (TA)
e1􏼈 􏼉 + ai max α, TA + aj􏼐 􏼑

e1
􏽮 􏽯 + ci max α, TC + cj􏼐 􏼑

e3
􏽮 􏽯. (16)

Equation (16) holds by showing t1 + ajmax α, (TA)e1{ }+

aimax α, (TA + aj)
e1􏽮 􏽯>[t1 + aimax α, (TA){ e1} + ajmax α,{

(TA + ai)
e1}].

aj max α, (TA)
e1􏼈 􏼉 + ai max α, TA + aj􏼐 􏼑

e1
􏽮 􏽯 − ai max α, (TA)

e1􏼈 􏼉 − aj max α, TA + ai( 􏼁
e1􏼈 􏼉

� aj max α, (TA)
e1􏼈 􏼉 − max α, TA + ai( 􏼁

e1􏼈 􏼉􏼂 􏼃 − ai max α, (TA)
e1􏼈 􏼉 − max α, TA + ai( 􏼁

e1􏼈 􏼉􏼂 􏼃,

� ai(TA)
e1 ·

aj

ai

max
α

(TA)
e1

, 1􏼨 􏼩 − max
α

(TA)
e1

, 1 +
ai

(TA)e1
􏼠 􏼡

e1

􏼨 􏼩􏼢 􏼣 − max
α

(TA)
e1

, 1􏼨 􏼩􏼢􏼨

− max
α

(TA)
e1

, 1 +
aj

ai

ai

(TA)e1
􏼠 􏼡

e1

􏼨 􏼩􏼣􏼩,

� ai(TA)
e1 · λ max β, 1􏼈 􏼉 − max β, (1 + t)

e1􏼈 􏼉􏼂 􏼃 − max β, 1􏼈 􏼉 − max β, (1 + λt)
e1􏼈 􏼉􏼂 􏼃􏼈 􏼉,

(17)

where λ � (aj/ai) (> 1), β � (α/(TA)e1) (> 0), and
t � (ai/(TA)e1)(> 0). Applying Lemma 4,
t1 + aj max α, (TA)e1{ } + ai max α, (TA + aj)

e1􏽮 􏽯> [t1 + ai

max α, (TA)e1{ } + aj max α, (TA + ai)
e1􏼈 􏼉] follows and,

thus, completes the claim.
Finally, one needs to show that C3i(S2) − C3j(S1)≥ 0 to

fulfill the proof. From equations (15) and (16), one obtains,
applying ai < aj, ci > cj and the fact
(TA + aj)

e1 < (TA + ai)
e1 and (TC + cj)

e3 > (TC + ci)
e3 , that

all three terms of C3i(S2) − C3j(S1) are greater than or equal
to 0, i.e., C3i(S2) − C3j(S1)≥ 0.

.e details of the proofs of Property 2–4 are omitted because
they can be obtained in a similar way to Property 1. □

Property 2. If ai < aj, bi < bj, ci > cj,

t3 >max t1 + aj max α, (1 + 􏽐
k− 1
i�1 a[i])

a1 , t2 + bj max α{􏽮􏽮

, (1 + 􏽐
k− 1
i�1 b[i])

a2}}}, and t2 + bi max α, (1+{ 􏽐
k− 1
i�1 b[i])

a2} +

bj max α, (1 + 􏽐
k− 1
i�1 b[i] + bi)

a2􏽮 􏽯>max t1 + ai max􏼈 α, (1+{

􏽐
k− 1
i�1 a[i])

a1} + aj max α, (1 + 􏽐
k− 1
i�1 a[i] + ai)

a1􏽮 􏽯, t3 + ci max
α, (1 + 􏽐

k− 1
i�1 c[i])

a3􏽮 􏽯}, then S1 is no less than S2.

Property 3. If ai < aj, bi < bj, ci > cj,

t1 + ai max α, (1 + 􏽐
k− 1
i�1 a[i])

a1􏽮 􏽯>max t3, t2 + bj max􏽮

α, (1 + 􏽐
k− 1
i�1 b[i])

a2􏽮 􏽯}, and aj max α, (1 + 􏽐
k− 1
i�1 a[i])

a1􏽮 􏽯+

cj max α, (1 + 􏽐
k− 1
i�1 c[i])

a3􏽮 􏽯> ai max α, (1 + 􏽐
k− 1
i�1 a[i])

a1􏽮 􏽯+

ci max α, (1 + 􏽐
k− 1
i�1 c[i])

a3􏽮 􏽯, then S1 is no less than S2.

Property 4. If ai < aj, bi < bj, ci > cj,

t2 + bi max α, (1 + 􏽐
k− 1
i�1 b[i])

a2􏽮 􏽯>max t3, t1 + aj􏽮 max α,{

(1 + 􏽐
k− 1
i�1 a[i])

a1}}, and bj max α, (1+{ 􏽐
k− 1
i�1 b[i])

a2} + cj max
α, (1 + 􏽐

k− 1
i�1 c[i])

a3􏽮 􏽯> bi max α, (1 + 􏽐
k− 1
i�1 b[i])

a2􏽮 􏽯 + ci max
α, (1 + 􏽐

k− 1
i�1 c[i])

a3􏽮 􏽯, then S1 is no less than S2.

Discrete Dynamics in Nature and Society 5



4. Heuristics and Metaheuristics

.is section validates the performance levels of nine algo-
rithms, namely, JS_max, JS_min, JS_mean, JS_maxpi,
JS_minpi, JS_meanpi, SA_max, SA_min, and SA_mean.
Note that all algorithms were developed in FORTRAN and
executed on a computer with a 3.00-GHz Intel® Core™i9-
10980XE CPU and 16-GB RAM. Our experiments are di-
vided into two parts. .e first part is dedicated to the small
size instances, and the second is devoted to the large size
instances. For the two cases, we randomly generated the
normal processing times from uniform distribution U (1,
100) on M1, M2, and M3 by fixing an individual seed for
each case. .e factor β would be set at 0.2, 0.4, and 0.6. .e
learning effect would be set at − 0.1, − 0.1, and − 0.2, and the
computational results for each small and large size instances
are shown. .is section describes the considered two-stage
assembly scheduling problem.

4.1. Small Size Number of Jobs. .e parameters of the small
size number of jobs are selected as the number of work
pieces (n) at 10, number of machines (m) of 3, and the final
temperature (Tf) is fixed to 10− 8, β is 0.2, α1 is − 0.1, α2 is
− 0.1, and α3 is − 0.2. .e selections of other parameters are
shown in Table 1.

As a result of parameter selection, the starting tem-
perature (Ti) is 10− 3, cooling coefficient is 0.95, and the
number of tests (Nr) of Johnson’s algorithm is 10.

Next, the parameter selection process is explained in
detail.

We select the parameter starting temperature (Ti). .e
range is from 10− 4 to 104 at 10 times the interval, and the
cooling coefficient (cf) is fixed at 0.95. .e number of tests
of Johnson’s algorithm (Nr) is 5, and there are also gen-
erated data and parameters defined before selecting
parameters.

By observing Figure 1, it is obvious that only the initial
temperature (Ti) is changed. In this range, it can be observed
that the AEP is relatively low at 10− 3, so the initial tem-
perature (Ti) is 10− 3.

After fixing the starting temperature (Ti) to 10− 3, we
select the parameter cooling coefficient (cf), ranging from
0.05 to 0.95 with 0.05 intervals, and fix the number of tests
(Nr) of the Johnson’s algorithm as 5. .ere are also gen-
erated data and parameters defined before selecting the
parameters.

By selecting the parameter of the cooling coefficient (cf),
the overall decline in its value is obvious. It becomes flat after
reaching 0.80, so we choose a lower value in this part. .e
cooling coefficient (cf) is fixed at 0.95. After fixing the
starting temperature (Ti) to 10− 3 and the cooling coefficient
(Cf) to 0.95 (please see Figure 2), we select the parameter
Johnson’s algorithm test times (Nr) with a range of 1 to 20
and the interval of 1 and see the difference. .e generated
data and parameters are fixed and defined before selecting
the parameters.

When selecting the parameter Johnson’s algorithm test
times (Nr), we can see from Figure 3 that although it

fluctuates up and down, its AEP value is actually very low, so
we choose a lower value in this part. Johnson’s algorithm test
times (Nr) is 10. It shows when the number of work pieces
of the B&B algorithm is 12. .e results of finding the best
solution in a few cases cannot be found, so only a few values
(in the Fs column) are recorded. From the viewpoint of the
number of nodes and CPU time, the difference in the
number of jobs can also be clearly seen.

Table 2 uses the β values of 0.2, 0.4, and 0.6 to distinguish
the table. It can be seen regardless of whether the number of
work pieces is 8, 10, or 12, the smaller the β value, the greater
the number of nodes. Also, there is no best solution for the
CPU time.

Table 3 is a table distinguished by three different situ-
ations of α1, α2, α3. It can be observed that regardless of
whether the number of work pieces is 8, 10, or 12, the
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number of nodes and CPU time for finding the best solution
for the second case are all more than the third case, and the
third case is more than the first case.

.e simulation result for the small size number of jobs
from the total mean at the bottom shows that the SA-related
algorithm performs better in the small size number of jobs.

Table 4 has β values of 0.2, 0.4, and 0.6, and no obvious
features are noted.

Table 5 is divided into three different situations of
α1, α2, α3. Clearly, in the case of various numbers of jobs, the
AEP of the second case is better than the AEP of the first
case. .e AEP for each case is better than the AEP for the
third case.

Table 6 compares nine algorithms in total. .ere are
three changes in the number of jobs (n) and β and 2 changes
in α1, α2, α3.

Before comparing algorithms, normality verification is
carried out on the data. If the data is normal, you can use the
average of the algorithm to compare pairwise.

.e residuals are not in line with the normal state, so
they cannot be compared using means. We instead use the
Kruskal–Wallis test to observe whether the medians of the
data are the same (please see Table 7). If they are not the
same, we can use the median of the algorithm to make
pairwise comparisons and observe the calculations for the
difference in the median between methods.

.e null hypothesis is that the median of each group is
the same, where the P value <0.05, so the null hypothesis is
rejected, meaning the median of each group is not the same
andmultiple comparative analysis can be performed to show
the difference between each group (please see Table 8).

Figure 4 is a box diagram of the nine algorithms scored
by nonparametric statistics. Clearly, the results of the SA-
related algorithms under the small size number of jobs are
superior.

Table 9 shows the results of the pairwise comparison. We
take the significance level of 0.05 as the standard. .e
JS_max algorithm and the JS_mean algorithm are grouped
into one group, the JS_mean algorithm is divided into a
group with the JS_maxpi algorithm, and the JS_maxpi al-
gorithm is divided into a group with the JS_meanpi algo-
rithm. Finally, the SA-related algorithms are all divided into
a group. From this, it can be seen that the SA algorithm is a
relatively better group for the small size number of jobs,
followed by the JS_meanpi Algorithm, JS_maxpi algorithm,
JS_mean algorithm, JS_max algorithm, and finally, the
JS_minpi algorithm and JS_min algorithm. .ere are two
key points clearly observed in the grouping. First, the JS
algorithm with pi is better. Second, the result obtained by
mean is better than max, and max is better than min.

4.2. Large Size Number of Jobs. .e parameters of the large
size number of jobs are selected when the number of work
pieces (n) is 10, the number of machines (m) is 3, and the
final temperature (Tf) is fixed to 10− 8, β is 0.2, α1 is − 0.1, α2
is − 0.1, and α3 is − 0.2. .e selections of other parameters are
shown in Table 10.

From the summary of Tables 11 and 12, the SA algorithm
is the best in calculating the RPD. However, the CPU_time
shows that the SA algorithm takes a relatively long time.
With pi or without pi, the JS algorithm clearly shows that the
solution with pi to the run out of RPD is slightly inferior to
the solution without pi. .e JS algorithm with pi for the
CPU_time is the fastest.

Table 13 shows the residual error in the large size
number of jobs is not in line with the normal state, so we also

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nr

0.100

0.075

0.050

0.025

A
EP

 (%
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Figure 3: Parameter selection of Johnson’s algorithm test times
(Nr) change.

Table 2: Different β for the mean of nodes and CPU time.

Parameter Node CPU time
N β Mean Mean

8
0.2 9871 0.11
0.4 4474 0.05
0.6 2825 0.03

10
0.2 751491 10.33
0.4 262445 3.89
0.6 196723 3.13

12
0.2 51984213 978.76
0.4 27751022 585.76
0.6 16943700 327.17

Table 3: Different β for the mean of nodes and CPU time.

n
Parameter Node CPU time

α1 α2 α3 Mean Mean

8
− 0.1 − 0.1 − 0.1 4448 0.06
− 0.1 − 0.1 − 0.2 7860 0.08
− 0.2 − 0.2 − 0.1 4861 0.05

10
− 0.1 − 0.1 − 0.1 281133 3.71
− 0.1 − 0.1 − 0.2 608118 8.73
− 0.2 − 0.2 − 0.1 321109 4.91

12
− 0.1 − 0.1 − 0.1 22327360 467.04
− 0.1 − 0.1 − 0.2 41700559 775.61
− 0.2 − 0.2 − 0.1 32651016 649.04

Discrete Dynamics in Nature and Society 7



use the same method as the small size number of jobs to
compare the relationship between the algorithms.

In the Kruskal–Wallis test, the null hypothesis is rejected
as with the small size number of jobs, meaning the median of
each group is not the same andmultiple comparison analysis

Table 4: Simulation result for β values.

Parameter JS_max JS_min JS_mean JS_maxpi JS_minpi JS_meanpi SA_max SA_min SA_mean
N β Mean Mean Mean Mean Mean Mean Mean Mean Mean

8
0.2 2.92 6.69 1.96 1.81 4.43 1.15 0.10 0.09 0.08
0.4 2.87 7.77 2.50 1.78 5.51 1.61 0.07 0.09 0.05
0.6 2.25 7.21 2.01 1.43 5.07 1.29 0.07 0.08 0.06

10
0.2 1.95 5.94 1.67 1.21 4.18 1.12 0.05 0.06 0.05
0.4 2.09 6.70 1.60 1.33 4.95 1.01 0.06 0.06 0.06
0.6 1.59 6.11 1.38 1.09 4.40 0.93 0.07 0.10 0.08

12
0.2 1.70 5.99 1.36 1.04 4.75 0.88 0.11 0.08 0.10
0.4 1.59 5.93 1.40 0.97 4.59 0.93 0.05 0.09 0.08
0.6 1.32 6.24 1.26 0.92 4.88 0.95 0.10 0.09 0.10

Mean 2.03 6.51 1.68 1.28 4.75 1.10 0.08 0.08 0.07

Table 5: Simulation result for α values.

Parameter JS_max JS_min JS_mean JS_maxpi JS_minpi JS_meanpi SA_max SA_min SA_mean
n α1 α2 α3 Mean Mean Mean Mean Mean Mean Mean Mean Mean

8
− 0.1 − 0.1 − 0.1 2.10 7.14 1.72 1.26 5.15 1.07 0.06 0.08 0.05
− 0.1 − 0.1 − 0.2 1.89 5.52 1.80 1.32 3.82 1.11 0.05 0.07 0.04
− 0.2 − 0.2 − 0.1 4.04 9.01 2.95 2.43 6.04 1.88 0.13 0.11 0.10

10
− 0.1 − 0.1 − 0.1 1.57 6.13 1.42 0.98 4.53 0.98 0.05 0.06 0.06
− 0.1 − 0.1 − 0.2 1.48 4.52 1.37 1.04 3.20 0.93 0.06 0.06 0.07
− 0.2 − 0.2 − 0.1 2.58 8.10 1.87 1.60 5.79 1.15 0.07 0.10 0.06

12
− 0.1 − 0.1 − 0.1 1.37 6.41 1.23 0.90 4.91 0.85 0.11 0.14 0.10
− 0.1 − 0.1 − 0.2 1.09 4.32 0.99 0.79 3.55 0.76 0.03 0.02 0.02
− 0.2 − 0.2 − 0.1 2.15 7.43 1.80 1.24 5.76 1.15 0.12 0.09 0.15

Mean 2.03 6.51 1.68 1.28 4.75 1.10 0.08 0.08 0.07

Table 6: Small size number of jobs analysis variable.

Class level information
Class Levels Values
Algorithm 9 JS_max, JS_maxpi, JS_mean, JS_meanpi, JS_min, JS_minpi, SA_max, SA_mean, and SA_min
N 3 8 10 12
β 3 0.2 0.4 0.6
α1 2 − 0.1 − 0.2
α2 2 − 0.1 − 0.2
α3 2 − 0.1 − 0.2

Table 7: Normality test of residual error of the GLM model in the small size number of jobs.

Normality test
Test Statistics P value
Shapiro–Wilk W 0.936652 Pr<W <0.0001
Kolmogorov–Smirnov D 0.086882 Pr<D <0.0100
Cramer–von Mises W-Sq 0.532874 Pr<W-Sq <0.0050
Anderson–Darling A-Sq 3.734124 PR<A-Sq <0.0050

Table 8: Kruskal–Wallis verification of the small size number of
jobs.

Kruskal–Wallis test
Chi-square DF Pr>ChiSq
214.5511 8 <0.0001
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can be performed to show the differences between each
group (please see Table 14).

Figure 5 is a box diagram of nine algorithms scored by
nonparametric statistics. .e figure shows clear differences
among SAs and others under the large size number of jobs.

Table 15 shows the results of the pairwise comparison. If
the P value value is greater than 0.05, it means the effect
between the pair is not significant, but they are correlative. In
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Figure 4: Scoring box of the nine algorithms.

Table 9: Pairwise comparison of nine algorithms for the small size
number of jobs.

Small n
Algorithm Statistic P value
JS_max vs. JS_min 8.5999 <0.0001
JS_max vs. JS_mean 1.8843 0.9218
JS_max vs. JS_maxpi 5.3095 0.0054
JS_max vs. JS_minpi 7.7925 <0.0001
JS_max vs. JS_meanpi 6.9494 <0.0001
JS_max vs. SA_max 8.9241 <0.0001
JS_max vs. SA_min 8.9268 <0.0001
JS_max vs. SA_mean 8.9231 <0.0001
JS_min vs. JS_mean 8.7717 <0.0001
JS_min vs. JS_maxpi 8.8692 <0.0001
JS_min vs. JS_minpi 5.0645 0.0103
JS_min vs. JS_meanpi 8.8938 <0.0001
JS_min vs. SA_max 8.9239 <0.0001
JS_min vs. SA_min 8.9267 <0.0001
JS_min vs. SA_mean 8.9229 <0.0001
JS_mean vs. JS_maxpi 4.3435 0.0547
JS_mean vs. JS_minpi 8.6249 <0.0001
JS_mean vs. JS_meanpi 5.9589 0.0008
JS_mean vs. SA_max 8.9246 <0.0001
JS_mean vs. SA_min 8.9273 <0.0001
JS_mean vs. SA_mean 8.9236 <0.0001
JS_maxpi vs. JS_minpi 8.7224 <0.0001
JS_maxpi vs. JS_meanpi 1.7866 0.9418
JS_maxpi vs. SA_max 8.9243 <0.0001
JS_maxpi vs. SA_min 8.9270 <0.0001
JS_maxpi vs. SA_mean 8.9233 <0.0001
JS_minpi vs. JS_meanpi 8.8449 <0.0001
JS_minpi vs. SA_max 8.9239 <0.0001
JS_minpi vs. SA_min 8.9267 <0.0001

Table 9: Continued.

Small n
Algorithm Statistic P value
JS_minpi vs. SA_mean 8.9229 <0.0001
JS_meanpi vs. SA_max 8.9244 <0.0001
JS_meanpi vs. SA_min 8.9272 <0.0001
JS_meanpi vs. SA_mean 8.9234 <0.0001
SA_max vs. SA_min 0.6278 1.0000
SA_max vs. SA_mean 0.4790 1.0000
SA_min vs. SA_mean 1.1795 0.9959

Table 10: Parameter selection of the large size number of jobs.

Parameter n� 90, m� 3
Ti 10− 3

Tf 10− 8

cf 0.95
Nr 90
β 0.2
α1 − 0.1
α2 − 0.1
α3 − 0.2

Discrete Dynamics in Nature and Society 9
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Table 13: Normality test of residual error of the GLM model with the large size number of jobs.

Normality test
Hypothesis test Statistics P value
Shapiro–Wilk W 0.916964 Pr<W <0.0001
Kolmogorov–Smirnov D 0.120337 Pr<D <0.0100
Cramer–von Mises W-Sq 0.862822 Pr<W-Sq <0.0050
Anderson–Darling A-Sq 5.519845 PR<A-Sq <0.0050

Table 14: Kruskal–Wallis test of the small size number of jobs.

Kruskal–Wallis test
Chi-square DF Pr>ChiSq
204.1873 8 <0.0001
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e

JS_max JS_min JS_mean JS_maxpi JS_maxpi JS_meanpi SA_max SA_min SA_mean

pr > ChiSq < 0.0001

Algorithm

Figure 5: Scoring box of nine algorithms.

Table 15: Pairwise comparison of nine algorithms for the large size number of jobs.

Big n
Algorithm Statistic P value
JS_max vs. JS_min 8.9219 <0.0001
JS_max JS_mean 1.5462 0.9754
JS_max JS_maxpi 2.6857 0.6144
JS_max JS_minpi 8.9231 <0.0001
JS_max JS_meanpi 3.0313 0.4434
JS_max SA_max 8.2129 <0.0001
JS_max vs. SA_min 6.3166 0.0003
JS_max SA_mean 8.4541 <0.0001
JS_min JS_mean 8.9231 <0.0001

12 Discrete Dynamics in Nature and Society



the pairwise comparison, JS_max and JS_mean are in the
same group, JS_max and JS_maxpi are in the same group,
JS_max and JS_meanpi are in the same group, JS_min and
JS_minpi are in the same group, JS_mean and JS_meanpi are
in the same group, JS_maxpi and JS_meanpi are in the same
group, and SA_max and the SA_mean are in the same group.
.e results of the SA algorithm and JS algorithms are also
significant, so they would not be divided into the same
group. .e RPD summary of the large size number of jobs
shows the solution of the SA algorithm is comparatively
better. .e SA algorithm is better than the JS algorithm in
this case.

5. Conclusions

.is study focuses on two-stage three-machine flow shop
assembly problems mixed with a controllable number and
sum-of-processing times-based learning effect, in which job
processing time is considered to be a function of the control
of the truncation parameter and learning based on the sum
of the processing time. We derive several dominance rules,
lemmas, and lower bounds applied in the branch-and-bound
method. On the other hand, three simulated annealing al-
gorithms are proposed for finding approximate solutions.
Computational results show that the SA algorithm is rela-
tively better for the small size number of jobs. In the large
size number of jobs, the solution of the SA algorithm is
comparatively better. Both in the small and large size
number of jobs situation, the SA algorithm is better than the

JS algorithm in this study. For future research, it would be
interesting to develop more powerful dominance rules and a
sharper lower bound on the optimal solution for medium-
size instances.
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