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In this paper, the complex dynamical behaviors in a discrete neural network loop with self-feedback are studied. Specifically, an
invariant closed set of the system of neural network loops is built and the subsystem restricted on this invariant closed set is
topologically conjugate to a two-sided symbolic dynamical system which has two symbols. In the end, some illustrative numerical
examples are given to demonstrate our theoretical results.

1. Introduction

In recent years, researchers have found various chaotic
phenomena in the nervous system and that chaotic neural
networks play an important role in neural activities. Chaos
in neural networks systems have been applied to all kinds of
practical problems such as combinatorial optimizations,
associative recognition memory, deep learning, and bio-
technology (see [1-5]). In fact, some nervous systems consist
of large-scale and complex nonlinear dynamics. At present,
neuroscience has provided abundant evidence to prove that
the central nervous system has complex nonlinear dynamic
behavior at all levels [6]. So how to analyze the dynamical
behavior of neural networks plays an important role in
practical applications. In order to obtain a deep and clear
understanding of complex neural networks, there are

increasing studies on bifurcations and chaotic behaviors of
neural network systems [7].

Recently, Huang and Zou in [8] showed the discrete
network system consisting of two identical neurons with a
uniform delay demonstrates snapback repeller chaotic be-
haviors near an equilibrium point. For the Hopfield net-
works with two different neurons [9-11], the conditions that
the systems exhibit chaos are obtained. In [12], Wu et al.
analyzed the chaotic behaviors of the parameterized discrete
dynamics of recurrent m-neuron networks evoked by ex-
ternal inputs and obtained some conditions which the
subsystem is topologically conjugate to symbolic dynamical
system. In this paper, we will devote to analysis of the chaotic
behaviors of the following discrete neural network loops
with multiple delays and self-feedback:
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where ne Z, for i =1,2,...,m, ; € (0,1) is the internal
decay rate of the neurons, a;; is the self-feedback strength or
the connection strength of the ith neuron to the next neuron,
and the transmission delay k;; > 1 is a positive integer.
For the case of the neural network with m-identical
neurons, Cheng constructed a snapback repeller in [13] and
then justified chaos in neural networks. When the discrete
neural network with m-different neurons has multiple time
delays and self-feedback, it is challenging to rigorously
analyze the dynamical behaviors. In this paper, we consider
the chaotic behaviors of model (1). To this end, we first
rewrite the model (1) as a system of difference equations
without delay by a novel way. Especially, this transformation
requires a little skill. Then, we find an invariant set for the
transformed system by projection and show that the system
restricted on this set is topologically conjugate to the full
shift map on the symbolic dynamical system. This implies
that the system has chaotic behaviors. The obtained results
extend the related ones in [10, 11, 13]. Also, we provide some
numerical simulations to verify the theoretical results.

2. Invariant Subsystem of Model (1)

Let [, denote the Banach space of bounded sequences of real
numbers with the supremum norm defined on it. The norm
is denoted by || - [|. Let 0: I, — [, be shift map defined by
(08),= (&) uppnez, for E= (.8 ..., 6 &, &, ...,
&, ...) el Thatis,

oo 8 b )
=(c b &b ).

Clearly, the shift map o on [ is continuously invertible,

and its inverse o™ ! is being defined by (07 '¢),=¢, ,, n € Z.
itimes

(2)

The ith iterate of o, 00-'0, is denoted as o'. Let
e =1{( . iqigiy . i, €{1,2,...,k, neZ} denote a
symbolic space with k symbols. Endowing it with the metric

d(st) = max{Z_lnlltn #5,,1 € Z},t =(...tytoty .- .)
s=(. 5188 ...) € Zp,
(3)

Y, becomes a compact and totally disconnected metric
space. The shift map o: X, — X is defined by (ot), = t,,,;.
Then, (%, 0) is a two-sided symbolic system. To proceed, let
m,1>2,1i, j be positive integers.

Lemma 1. Let q<m be a positive integer. a, ,a, , . ..,a, are
I different real numbers with | > 2 and a; is a real number with
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1<i#gq<m. A= {(fn) € Lol &mnsi = Q> Epnag = aq]} be a
subset of I . Then, (A, 0™) is topological conjugate to (%, 0).

Proof. Define g: A— %, by g(§)=(...¢ g
f,mw,fq,...,fmmq,...), for £=(£,) € A. In fact, g(&) is
defined by deleting the elements whose indexes are con-
gruent i modulo m in W, where 1<i#g<m. It is not
difficult to see that g is a homeomorphism. By definition of
g> we have go o™ =00g. So (A,0™) and (I}, 0) are topo-
logical conjugacy. O

Lemma 2 (see [14]). Let X and Y be Banach spaces, L is an
invertible linear map from X to'Y, and S is a bounded linear
map from X to Y. If |SI| < |IL~ 1| U then L + S is an invertible
linear map from X to Y.

Lemma 3 (see [15]). Let (A, d) be a metric space, Y and X be
Banach spaces, and U c AxY be open. Suppose that
F: U — X is a continuous map and that there exists a point
(Ag> ¥o) € U with the following conditions:

(i) F (g, y9) = 0.

(ii) DF, (A, y) is continuous at (A y,), where
DF, (A, y) is Frechet partial derivative of F(A, y)
with respect to y.

(iii) DF, (Ag> ¥o): Y — X is an invertible linear map.

Then, there exist open balls Bs (o) = {y: lly = yoll < 8o}
and B, (Ag) = {A: d(A,Ay) <r,}, where §,>0,ry>0 such
that, for any A € B, (1), the equation F(A,y) =0 has a
unique continuous solution y =h(A) € B; (y,) with
h(Ao) = ¥o-

For convenience, we set i —1 =m when i—1=0. Let
a=0a,,Cj= (ajla)(i€{l,2,...,m} j=i-1lori). With-
out losing generality, we may suppose that
Ky = Ky 2 K11 2 K =+ = koyp 2 k5 > kyy >k, . Inthe
other cases, we can discuss it in a similar way. The activation
functions f;(i=1,...,m) have the following conditions
(G1):

(G1) For every i € {1,2,...,m}, f; is a continuously
differentiable function from R to R. f, has two distinct
zero  points X1, %7,  satisfying  f, (31" =
fi (%) =0, flEM+0, andfl'(a?qz) +0, and
fiie{2,...,m}) has a zero point X satisfying
f:(x) = 0and fi:(x) #0.

Let p; = mkyy, py = mky; + Z£=2 (m—i+1)(kj— ki)
2<l<m, p=p,, +m and define
n(n) = (n,(n),...,n,(n), where
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[ pjui (1) = x;(n=k;; + j), 0<j<ky, l<i<m,

Mpprjimonyei (M) = x;(n =k + kg + j), 1< j<hky —kyy, 2<i<m,

1 Mpyrjimeayei (M) = x;(n =Ky +kyy + j), 1< j<ksyy—ky, 3<i<m, VneZ. (4)

L ﬂpm,l+m+j(n) = Xj (1’1 - kiz’ + km—lm—l + ])’ 1 Sjgkmm - km—lm—1> i=m.

n(n+1)=F,(n(n),

where F: R — RP? is defined as

nez, (5)
For any 1<i<m, there exists 1<[;<m —1 such that

ki <kiioy = kj_y <kj141- Then, we transform system (1)
into the discrete dynamical system without delays on R?:

rlm+1 (1’1)
11 (n) ()
1, (n) .
}1?1;1 (n) Bittp, 1 () + Cryafyy (1, (m) + Clm‘xflm(”Pll(kmm_klm_kllll) (m_ll)m(”))
Mpy+2 () Np 4ms1 (n)
F, : = : , (6)
Mp,+i (1) Bittp+i(m) + Cigyafiioy (’7;1,- (”)> + Cyaf 3 (1 ()
ﬂp,+i4‘r1 (n) - (n)
Np—1 (n) 7, (n)
1, (n)

ﬂm”p (7’1) + Cmm—l(xfmm—l <’1;Im (I’l)) + Cmm‘xfmm ((nm) (n))

where p; = p; + (ki_y;y =Koy =Ky )(m=1) +i-1,2<i<
m.

To investigate chaos in System (1), we only consider the
chaotic behavior of the system (R?,F,). Next, by the
projection approach, we are going to find the invariant set

) (/1’ f)m(n+1)+1 = A(_Em(n+1)+1 + ﬁlfrmﬁl) + C11f1<£(m(n—k“))+l> + Clmfm<f(m (n—klm))+m>’

q.>(,1, Omnenyi = A(—fm(nn)ﬂ' + ﬁigmnd-i) + Cii—lfi—l<5m(n-k,.,.,1)+i-1) + Ciifi<€m(n—k,-i)+i>’

It is easy to see that if &={¢,}, ., €l satisfies
O(1/a,&) =0, then the sequence {x,(n),x,(n),
e X, (M}e; with x;(n) =&, satisfies (1). On the

A, of F,, such that the subsystem (F,, A,) has chaotic be-
havior for « being sufficiently large.

We consider a family of maps ®(A,-): [, — I
depending on a parameter A € R, and the class of maps is
defined by

VE=(¢,) el 2<i<m.

(7)

contrary, if the sequence {x, (n),x, (n),...,x,, (1)}, sat-
isfies (1), then & ={¢,},., €1, with &, = x;(n) satisfies
D(1/a, &) = 0.



Let

Discrete Dynamics in Nature and Society

={E=(&,) € lolEpi =%, & =X or2”, 2<i<m, nez},
by =1Cy max{ /(=)L 73]}
by, :|c21|min{| f;(xq1)|, | f;(xq2)|},
(8)
i =[Cafi(®)| e ... om)),
. =|c,.,,,1 (%) | (i€{l,3,4,...,m}),
b2 !
Cmax{by} by by b b e+ b b bbby, V2<ism)

Lemma 4. Under the assumption (Gl1), if by, >b,,, and
b; > b, +b;_, (2<i<m), then we have the following:

(i) There exist positive real numbers ry and &, such that,
for any E € T and —ry<A<r,, there exists a umque
point £E(A) € By, (é), satisfying ® (A, E()) =

(ii) For every 0< 8 < 0,, there exists 0 <r <r, such that,
for any —r <A <r and & € I, there is a unique pomt
§(A), satisfying [E(A) - §ll <& and ®(A,E(1)) =

(Dq)f (0, E)E)m(m-l)ﬂ = C11f1’<zm(n—k“)+1>£m(n—k11)+1 + Clmfrr,l(zm(n—klmﬁm)fm (n-ky,,)+m>
(Do, (0, z)f)m(ml)ﬂ» =Cii i—1<zm(n—k,[,l)+i—1>fm(n—k,-,-,

Firstly, we have to show the invertibility of D®; (0, &).
We denote that D®; (0, &) = L, (&) + L, (&), where

mn+D+l C11f1,<zm (n—k11)+1>£m(n—k”)+l’

mn+D+l Clmf,m<£m (n—klm)+m>£m (n=ky,, )+m>
=0,

m(n+1)+i

Let

. (=
-1 = Ci—l+1i—lfi—l<€m(n+kii—kii,1+-~-+ki,l+1i,l+17k,»,l,v,,

1 T
a; = Cijiqf’ H(fm(mk S

m(n+1)+i = Cii—lfr"—l<zm (n—k,-,‘,l)+i—l>£m (n—k,-,-,l)-f—i—l + Cllf;<§m (n—k[,-)-f—i)gm (n—k,-,-)-f—i’

Bs, (&) is the open ball in I, centered at & with radius d,.

Proof. For a given sequence & € T, we have @ (0,&) = 0. By
the assumption (G1) and the definition of @ (A, £), this can
ensure the continuous differentiability of ®(A,&). The
Fréchet derivative of @ (0, &) with respect to & at the point
(0,) be denoted as D (0, &) which is represented as

B nezZ, 2<i<m. 9)
-1t Ciif;<£m(n—kﬁ)+i>£m (nky)+i
nezZ,2<i<m,
(10)
ne’z.
l 1+l-,,,1)>(0515i -1),
(11)

Hin l))(OSlSi—l).
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It follows from (G1) that the linear operator L, () is
1nvert1ble By directing calculation, the inverse operator
L&)t
(Ll (Z)_ lf)m(n—l)-*—l = a_(l)lfm(”"'kn)"'l’
Lo
p (L ('f) f)m(n D+ = E%‘m(m—kﬁ)ﬂ aOall 1 lfm(n+k,X —ky ki )+ie 1 nez, 2<i<m. (12)
1, 1 1
+(-1) ' % ?1 ISNERRREL zla; 1€m(n+k —k_y ey ey )10
il ii 1
_ 1
Since £ €T, &, ., =xTorx? &, .. =%, 2<i<m. This max{|C11| |Cail |f1 (x) - fi% ( ql)| <W (17)
implies that o
. for x € By (X1),
L (2)71 <5 1
1L, I b (13) max{|C11| |Cy | |f1(x) f1 (xq2)| <op (18)
nLZ (E)" =byy for x € By, (%9%), and
i 1
% o B max{|cii—1|> lci—li—1|}|f£—1 (%) = fﬁq(f 1>| Sm) (19)
[ @7 > O (14)

by the fact that b, >b,,, and b; > b,,,, + b;;_; (2<i<m). This
shows the invertibility of D(Df (0 &) by Lemma 2.
Therefore, according the implicit function theorem,
there exist positive constants rz, 0z such that, for every
—r: </\<r there is a unique point & = (1) € B(;_(f) with
(L EW) =
To complete the proof of (i), it only needs to prove that
there exist two positive constants r,, §, which are inde-
pendent of £ € T such that the conclusion is satisfied in (i).
From the proof of the implicit function theorem, for the
given & € T, the constants rz and J; above are chosen such

that, for —Tg <A< 5 and & € B(;E (), we have
1
(D@1, ) - (Do (0,)| < iy
(15)
(A, 8
< —.
DA, &)l 2
Here, M— is the constant such that

(DD, (0,8) ' < M.
We now give the above estimates which are independent
of EeT. Firstly, we have, for any Eel,

1 1
Do, (0, f) —< =M
I(Poc0)] L@ @] b bm

(16)

where b is given by (8). Secondly, by assumption (G1), there
exists §; such that

for x € B;, (1), 1<i+2<m. Note that
[ (DD (1,§) - DD (0,8)%)

m(n+1)+1

m(n+1)+1 +ﬁ1 m(n+1)+1)

=M=
+C11( ( m (n- k“)+1) - f{(zm(n—k”)ﬂ)fm(n—k“)ﬂ)

+C1m(f ( m(n—klm)er) - f;n(gm(n—klm)wn)gm(n—klm)er)’
] (DO (A, &) - DO (0, )¢)
=M(-¢

m(n+1)+i

m(n+1)+i + /5 gm(nﬂ)ﬂ)

+Cyi 1(f1 1( ((n—kyy )+i- 1) flr(gm((n)—kﬁ,l)ﬂa)
fm ((n—k,»,-,l)Jri—l)

+ Cii(f;(fm(n—ki[)+i) - fi(fm (n,kii)ﬂ-))fm(n,kﬁ)m 2<i<m.
(20)

Taking 0y =07, = (1/4M (1 +a)), where
a2 max{f;li =1,2,...,m}, we have that, for £ €T, £ e
with [|E - &|| <8, and |A| <7y:

|DD, (A, &) - D, (0, £)||<|/\|(1+a)+m<ﬁ 1)

On the contrary, let r, = (8,/2M (1 + a)), and it follows
from the definition of ® (A, -) that

lo (A, )l <Al (1 +b)S26—]€/I, (22)

when [A| <7,.



Finally, take ry = min{r;,7,} and then the constants r,
and 9§, satisfy (i).

For every 0<d§<§, (ii)) follows by taking
r = min{(1/4M (1 + a)), (6/2M (1 +a))}(<r,) and the
proof of (i). O

3. Chaos in System (1)

In this section, we shall show that the system (1) exists
chaotic behaviors. By Lemma 4, for sufficiently large a >0,
we define the map T, from I' to [ b

T, ®=¢(2), (23)

where &(1/a) is the unique solution of ®((1/a),¢) =0,
satisfying [|€(1/a) — &[| <8. Then, we have the following
proposition.

Proposition 1. For sufficiently large a >0, let I', =T, (),
then the map T, and the shift map o™ are commutative, i.e.,

0"oT,=T,o00". (24)

Moreover, ™ (I'y) =T

Proof. Note that if £ is a solution of @ ((1/«),&) =0 so is
0" (). Thus, for any Eel,o™ T, (&) = 0™ (£(1/a)) is a so-

lution of ® ((1/a),£&) = 0. On the contrary, [|&(1/a) — £l<o

by Lemma 4, which  leads to  Jlo™ (T,
(&) =" () = llo™ (§(1/a)) = o™ (O = 1§ (1/a) — &l < 0.

Hence, by the uniqueness of (1) in Lemma 4, we have

a" (T, (E)) T, (6™ (£)). Note that " (T) = T, it follows that
o™ ([,) =T,
For every k € Z, we define the projection IT;: I, — R?
by
I (§) =n(k), VEel,, (25)
where for & = (&,) € I, (k) = (1, (k),..., 7, (k) € R is
given by

M (K) = fm(kfkm)”, 0<j<k, 1<i<m,
77p1+j(m—1)+i(k) = fm(k—ki,+kll+j)+i’ 1<j<ky, —ky, 2<i<m,
ﬂp2+j(m—2)+i(k) = gm (k=k+hkyy+j)+i2 1<j<ks; —ky,3<i<m,

Mp,+m+j (k) = Em (k=K1 +7) 02 1< j <k = Kppoymer-

(26)
O

Proposition 2. Let A, = I1,(I',), then A, is invariant for F ,.

Proof. Foreach #(0) € A, then there exists £ € T, such that

I1, (&) = 1(0). Therefore,

o (7(0)) = (1) = Thy (0" (8)) € Ty (" (To)) = Ty (Te) = Ay
(27)

This proves F, (A,) C A,.
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On the contrary, by Proposition 1, we have ¢ (T',) =T,
Thus, there exists &' € T', such that £ = ™ (¢'). Thus,

100 = 10O =T (0" €)=/ D =F,(' 0)
=F, (HO (EI)) €F, (Aa)’

which shows that A, CF (A,). Therefore,

F (A,) = A, O

Theorem 1. Under the assumption of (G1), ifb,, >b,,, and
b; > by, +b;_ (2<i<m), then there exists ay >0 such that,
for any a>ay, (A, F,) is topologically conjugate to the full
shift map (X,,0), and therefore, the system is chaotic in the
sense of Devaney.

Proof. Note that(I',0™) is an invariant subsystem. By
Lemma 1 and Proposition 1, we only need to prove that there
is &y >0 such that, for any a>«ay, (A, F,) is topological
conjugate to (I, 0™).

Let Q = IT; (), then Q is a set in R? consisting of 2ku+1
elements, denoted by

Q=1{b,by ... by}, (29)

Let §, and r, be given as in Lemma 4, and let § € (0, §,)
be small enough such that the family of closed balls

{4; = B(b,,(S)}2 " in R? is s piecewise disjoint.

For the given § and any & = (£,) € T, by (ii) in Lemma 4,
there exists an &y = (1/r) > 0 such that, for every a > «, there
exists a unique T, (&) = £(1/a) satisfying [1€(1/a) - & <6
and @ ((1/@),&(1/a)) = 0. By the definition of the projec-

tions II, and T, we have IT; (T) = I, (T) = Q. So we let
S :{s = (eSS0 Sph - )ls; € {1,2, . .,2k“+1}, 30)
55,- =11, (§), forsomeé ¢ T}.
The set S is a subset of Z,«. For every
s=(...,5.1,8,8,...) €S, for all 4, j >0, we set

Vs,ims s =F ]<A]>ﬂ nAsoﬂ ﬂfo(Asi),
(31)
V.=

S_jerSgonS;t

J

n
i>0,j>0
We claim the following:

(1) For every s € S, V contains a unique point.
(2) USESVS = A(X'

In fact, for each s € S, we note that

|4

S_juanSgen

{;7 € RPIF, (1) € A,,...,Fl(n) € AS)}.

(32)

Therefore, there exists a unique & € T such that, for all
ieZ, I (6 = f € Q. Then, by the definition of T, and
Lemma 4 there exists a unique T, (&) = E(1/a), satlsfymg
I1E(1/a) - & <6 and CD((l/oc) &) = So
{I1,, (£ (1/a)) = n(n)},..» is a bounded orbit of Fa, that is,
n(n) = F1(n(0)) € A, , Vn € Z. Therefore, 11(0) € V, which
implies V is nonemp;ty.
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On the contrary, for any ' € V, for all n € Z, there are
F' (') € A, . Thus, {F"(1')},.7 is a bounded orbit of F,,.
Then, there exists ¢ el such that II,(§) = F (n"). So
1€ — &l <6, and @ ((1/a), &) = 0. Again by Lemma 4 (ii), there
is £ =T, (&), and hence, ' = 7(0). Claim (1) holds.

For Claim (2), let € A,,. Then, there exists a £ € ' such
that # =TIy (T, (§)) Let s=(...s_,50,5,...) €S be the
corresponding sequence of . Similar to the above argument,
we have n € V. Therefore,

A, C sLerV (33)

From Claim (1), each V contains a unique point which
belongs to A,, so the converse inclusion holds. This proves
Claim (2).

For every a>a, define a map h:I — A, by
h =TI, T,. We claim that / is a conjugacy from ¢ to F,,. To
prove this, we need to show that both h and A~ ! are con-
tinuous and

hoo™ =F,oh, onT. (34)

By Claim (2) and the definition of , it is easy see that h is
surjective. From Claim (1) and Lemma 4, it follows that / is
injective. Therefore, h is bijective. Since h is a map from a
compact metric space I' to a Hausdorff space A, to prove
that /1 is homeomorphic, we just need to show the continuity
of h. Let the corresponding subindex sequence of £ € T be

5=(...54,55...) €8S. It follows from Claim (1) that
Jlim dlam(v ) -0, (35)

x; (n+1)

x,(n+1)

xy(n+1)

x4(n+1)

In Figure 1, for every « value, the initial values were reset

to  x;(1) =-0.1,x,(2) = 0.1,x, (3) = 0.12, x, (4) = -0.2,
x,(5)=0.9 x,(1)=0.11,x,(2) =-0.2,x,(3) =

X, (4) =0.2,, (5) = 0.1, x5 (1) = 0.12, x5 (2) = 0.15, x5 (3) =
—0.2,x5(4) = 0.22, x;(5) = 1.1, and x,(1) = —0.1,x,(2) =

-0.23,x,(3) = -0.1,x,(4) = 0.2,x, (5)=0.11. After 10*
time steps being iterated, we plot the data consisting of 500
points for per a value. The plotting is for x,, x5 vs the pa-
rameter «. The bifurcation figures illustrate that the fixed

such that diam (V5 . ) <e. Take &, = (1/2"m0kumntD)y,
Then, for any EeT with d (&< 8y, it follows that & agrees
with & in those terms with lower indices from i = —m (n +
Ky + 1) toi=m(n+k,, +1). Let 5,5 € S be the symbolic
sequences corresponding to & and &, respectively. We have
agrees with s in those terms with subscripts from i = —n to
i=n+k,,+1.  Thus, h(),h(E) eV, 5.5,  and
|k (f) h (£)|| < ¢. This shows the continuity of h. Hence, we
conclude that / is a homeomorphism.

Finally, for any & € T, we have

(@) =Tl o Ty (@) = 7(0) = (1, ()., 7, ()", (36)

Thus,
Fo(h(®) = (1, (1,1, (s (D)
=Ty oo T (©)by (1) -
=T, 00" (&), by Proposition 1
=hoo" (&).
The Theorem 1 holds. O

4. Some Simulations

In this section, we will give some numerical simulation
results to verify our theoretical results. We choose 3, = f3; =
(1/4), B, = By = (3/4)3/4, f,(t) =sin  (1),f,(t) = tanh(2),
f5(t) =cos(t), f,(t) =tanh(t),a;; = 0.5, 04 = @, 0y =

—0.40,ap, = 20k = 1,ky = 2,kyy = 3,ky, = 4, ks, = 3,
ksys = 1,ky3 =2, and ky, = 4. In this case, system (1) becomes

= ixl (n) + L5asin (x; (n— 1)) + atanh (x, (n - 3)),

= sz (n) — 0.4asin (x; (n —2)) + 2atanh (x, (n — 4)),

Vn>5. (38)

= ix3 (n) + atanh (x, (n - 3)) + L.5a cos (x5 (n — 1)),

= Zx4 (n) — 0.4a cos (x5 (n —2)) + 2a tanh (x, (n — 4)),

point of x; loses stability and period bifurcation occurs when
a = 0.95, and the fixed point of x; loses stability and period
bifurcation occurs when o = 1.1. Making the bifurcation
figures of the x, vs a and the x, vs a similar, they are omitted.

In Figure 2, we show the largest Lyapunov exponent
diagram for « € [0, 6]. For every « value, the initial values
were the same as Figure 1. From the simulation results in
Figure 2, we can find that the largest Lyapunov exponent is
negative when « € (0, 1) and is positive when « > 2.8. Thus,
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FIGURE 2: Largest Lyapunov exponents diagram.

a=0.72 a=168 a=21
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0 ” -17.5
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34 -40 1000
32 —45 900
—~ 30 —~ =50 —
g g Z 800
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(d) (e) (f)

FiGgure 3: Continued.
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FIGURE 3: Chaos diagram.

the figures illustrate that the system (38) has chaotic be-
haviors when « is large enough.

In Figure 3, we show the chaotic figures. For each «
value, after 6 x 10° time steps being iterated, plot the 6000
data points. The figure illustrates that there are no chaos for
small « (e.g., &« =0.72,2.1) and chaotic behavior occurs
when « is larger (e.g., a =1.68,3.0,6.7,100). Those nu-
merical simulations support the theoretical results in
Section 2.

5. Conclusion

In this paper, the chaos of a discrete neural network loops
with self-feedback is studied. The discrete neural network
loops with multiple delays and self-feedback can demon-
strate chaotic behavior when the interconnection strengths
are large enough. Numerical simulations support the the-
oretical results. The theoretical results are to provide some
new methods for the design of chaotic neural networks.
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