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The first general Zagreb (FGZ) index (also known as the general zeroth-order Randi¢ index) of a graph G can be defined as
MY (G) = YveeG) [dS ! (u) + dS 1 (v)], where y is a real number. As M? (G) is equal to the order and size of G when y = 0 and
y = 1, respectively, y is usually assumed to be different from 0 to 1. In this paper, for every integer y >2, the FGZ index M? is
computed for the generalized F-sums graphs which are obtained by applying the different operations of subdivision and Cartesian
product. The obtained results can be considered as the generalizations of the results appeared in (IEEE Access; 7 (2019)

47494-47502) and (IEEE Access 7 (2019) 105479-105488).

1. Introduction

Graph theory concepts are being utilized to model and study
the several problems in different fields of science, including
chemistry and computer science. A topological index (TT) of
a (molecular) graph is a numeric quantity that remained
unchanged under graph isomorphism [1,2]. Many topo-
logical indices have found applications in chemistry, espe-
cially in the quantitative structure-activity/property
relationships studies; for detail, see [3-13].

Wiener index is the first TI introduced by Harry Wiener
in 1947, when he was working on the boiling point of
paraffin [14]. In 1972, Trinajsti¢ and Gutman [15] obtained a
formula concerning the total energy of m electrons of
molecules where the sum of square of valences of the vertices
of a molecular structure was appeared. This sum is nowadays
known as the first Zagreb index. In this paper, we are
concerned with a generalized version of the first Zagreb
index, known as the general first Zagreb index as well as the
general zeroth-order Randi¢ index.

There are several operations in graph theory such as
product, complement, addition, switching, subdivision, and
deletion. In many cases, graph operations may be helpful in
finding graph quantities of more complicated graphs by
considering the less complicated ones. In chemical graph

theory, by using different graph operations, one can develop
large molecular structures from the simple and basic
structures. Recently, many classes of molecular structures
are studied with the assistance of graph operations.

In 2007, Yan et al. [6] listed the five subdivision oper-
ations with the help of their vertices and edges. They also
discussed the different features of Wiener index of graphs
under these operations. After that, Eliasi and Taeri [16]
introduced the F,-sum graphs I';, p T, with the assistance of
Cartesian product on graphs F, (T';) and I';, where F, (T) is
obtained by applying the subdivision operations S;, R, Q;,
and T,. They also defined the Wiener indices of these
resulting graphs I'y g I';, Iy, g Iy, 14, I, and Ty,p T Later
on, Deng et al. [17] calculated the 1st and 2nd Zagreb to-
pological indices, and Imran and Akhtar [18] calculated the
forgotten topological index of the F,-sums graph. In 2019,
Liu et al. [19] computed the first general Zagreb index of
F,-sums graphs.

Recently, Liu et al. [20] introduced the generalized
version of the aforesaid subdivided operations of graphs
denoted by S;,R;,Q, andT;, where k>1 is counting
number. They also defined the generalized F-sums graphs
using these generalized operations and calculated their 1st
and 2nd Zagreb indices. In the present work, we compute the
Ist general Zagreb index of the generalized F-sums graphs
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[y,p L, for Fy € {S;, R, Qi Ty} The remaining work is
arranged as follows: Section 2 contains some basic defini-
tions, Section 3 contains the key outcomes, and Section 4
contains the some particular applications. Conclusions of
the obtained results are presented in Section 5.

2. Preliminaries

Let T = (V (), E(T)) be a simple graph having |V (T)| the
order and |E(T)| the size of a graph, where V (I) is con-
sidered as node set and E(I)CV (T') x V(T) is a bond set.
Every vertex is considered as an atom in a graph, and
bonding within the two atoms is known as edge. The valency
or degree of any node is the number of total edges which are
incident to the node. Now, few useful TT’s are explained
given below:

Definition 1. If T be a connected graph, then the 1st and 2nd
Zagreb topological indices as

M, (D)= Y [dr(u)+dr(v)],

uveV (T) (1)
M,(D)= ) [dr(wdr (v)].

uveV ()

These two descriptors of the graph were introduced by
Trinajsti and Gutman [15]. Such type of TI’s have been
utilized to discuss the QSAR/QSPR of the different chemical
structures such as chirality, complexity, hetero-system, ZE-
isomers, 7 electron energy, and branching [9, 10].

Definition 2. If R is the real number, y € R — {0, 1}, and I be
a connected graph, so the Ist general Zagreb topological
index is given as

M (D)= Y [di7 ) +dl ). )

uveE(T)

dr (x) +dp, ()
(i)d<dr+srz(x)’) _an It Y

)-1,
(i) d(dr, 1, r, (7)) =
(iii) d(drl+riz (x, y))

( )-

(iv)d dr1+T T, (x,9)
¢ Tk(l" ) (%),

T (r)(x +d (y)

{drl (x) +dp, (),
do, (r,) (%),
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Definition 3. If R is the real number, y € R, and I be a
connected graph, so the general Randic is given as

R = Y [dswd,]", 3)

uveE(T)

where R_(; ;) is considered as the classical Randic connec-
tivity topological index.

The generalized F-sums graph is defined in [20] as
follows:

(i) St (G) graph is obtained by inserting k vertices in
each edge of G.

(ii) Ry (G) is obtained from S, (G) by joining the old
vertices which are adjacent G.

(iii) Qx (G) is obtained from S, (G) by joining the new
vertices lying on edge to the corresponding new
vertices of other edge, if these edges have some
common vertex in G.

(iv) T4 (G) is union of R, (G) and Q, (G) graphs. For
further details, see Figure 1.

Definition 4. 1f T, &I, be two connected molecular struc-
tures, Fj € {S;, R, Qi Ty} and Fi (T}) be a structure ob-
tained after using F) on I', with bonds (edges) E (F,(I))
and nodes (vertices) V (Fy (I';)). So, the generalized F-sums
graph (I',p I',) is a structure with nodes:

V(Ty,5T,) = V(F (T))) x V(T),

(4)
= (V(T,)VE(T,)) x V(T,),

in such a way two nodes (a,,b;) & (a,,b,) of V(I';, 5 I;) are
adjacent if [a;, =4, e V([)& (b},b,) € E(T,)] or
[b, =b, e V(T,) & (ay,a,) € E(F(I'1))]. For more details,
see Figures 2 and 3.

Lemma 1. FO?’ Fk € {Sk’Rk’Qk’ Tk} and (x,y) € F1+FkF2’
the degree of (x,y) in I'j+p I, is

if x e V(I)Ay € V(T,),
if x e V(S (T,)) - V(I;))Ay € V(L)
Rk(r)(x)+d 672)

if x € V(I))Ay € V(T,),
if x € V(S (T))) - V(I))Ay € V(T,),

if x € V(I,)Ay € V(T,), )
if x € V(Qe(I))) = V(I)Ay € V(Iy),

ifx e V([)Ay e V(T,),
if x € V(T (T,)) - V([))Ay € V().
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Figure 1: (a) T, (b). S, (T), (c) R, (D), (d) Q,(T), and (e) T, ().

1 2 3 a b (62, a) (fli a)

(3,b)

(a) (c)
(e}, a)
(1,2) (3,2)
(1,b) (3,b)

(d)

FIGURE 2: (a) I} = P5. (b) I, = P,. (¢) Ty, 15 (d) Tiyp I

3. Main Results «/a N
- 1
M (rgts) = 305+
The main results of FGZ index of the generalized F-sum =0\ 1
graphs are presented in this section. I N
+ Z( i >MFZM¥1 +2% (k- Dnper

i=1

Theorem 1. Let I'} and I, be two simple graphs and (6)

y € N — {0, 1}. The FGZ index of the generalized S-sum graph
Iy+g T is where N is the set of natural numbers and o =y — 1.
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(e}, ) X (f}, a) (£, ) (e}, ) (e22) i (f;, a) (£, 2)
(1,a) (3,a) (L a) (3,a)
(1,b) (3,b) (1b) (3,b)
(e, b) (e b) (2,b) D) (f,, b) (e, b) b (2,b) (6.5) (f,, b)
(a) (b)
FIGURE 3: (a) I',q,T5. (b) Ty I
Proof. Let For a = y — 1, then the above equation is considered as
M'(Ty4sTo) = ) dl o, (ab). -
(u,b)eV(F1+skF2)
My(r1+5kr2) = Z [d?ﬁskrz (a,b) + dl{tl*skrz ( d)]
(@b)edeE(T v T;)
-y ¥ [d{‘fﬁs L@b+de, | (a d)] £y ¥ [d;f an @b rdl b c)]
aeV (1) bdeE (T,) ‘ ‘ bev (T,) aceE (5, (T1))
= Z Z I:d?ﬁs I, (a,b) + dl‘fl*s 15} (a, d)] + Z z [dl‘fl‘rskrz (a,b) + rl+§ I, (b,0)
aeV (1)) bdeE (T,) ‘ ‘ bev (T,) aceE (5, (T))aev (T, )eeV (S, (1,))-V (T))
- Y (5, r, @b +dE (b))
beV (T,) aceE (S (T,))aceV (S (T,))-V (T})
(8)
For every vertex a € V(I'|) and edge bd € E(I,), then
1st term of (8) will be
Z Z [d?ﬁs I, (a b) + dr1+8 I, (a’ d)]
aeV (T,) bdeE (T,)
=y ) [Z( >d{f “(a)dr, (b) + Z( i )d;fl "(a)dy, (d)]
aeV (T,) bdeE (T,) Li=0 i=0
- 5y ( ) (@) [d () + - <d>]]
aeV (T, )balsE(r2 i=0
] ©)

[ [dr, (b) +dy, (d)]}
bdeE (T,)

( (g )](MM)]

I
Ng
T 1
i
\/ \/ ,—

I
™
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Since [E (S, (T)))| = 2|E(T';)I. So, for every b € V (I';) and
ac € E(S,(I'))) witha € V(I'}),and c € V(S (I'))) -V (T});
then the 2nd term of (8) is

|5 @b+ (0.0)]

beV (T,) aceE (S, (T,))aeV (T,).ceV (S, (T,))-V (T,)

=2 )

beV (Fz) aceE (Sk (rl)) )

24
drl +s L2

[«

(@b)+di . . (bo)

-y Y Y ( ‘f )dg;grl) (@)}, (b) + 5, (r,) (c)]

beV (T,) aceE (S, (T,)) Li=0

[ & /o ‘ .
=y D d;‘k(rl)(a)+;<i)dgk’(rl)(a).d'rz (b)+d§‘k(r1)(c):|

beV (T,) aceE (S, (T)) L

-y oy |

beV (T,) aceE (S, (T,)) L

=2 )

beV (T,) aceE (S (T1))

- 5[] 3 e e

bev (T,) i=1

o

= [ M )|+ Z<a)[M“HM¥ll]’

and the 3rd term of equation (8) will be

I:dlofﬁskr2 (a’ b) + dlo“cl+5krz (C’ b)] = Z

beV (T,) aceE (Si (T1))aceV (S (T,))-V (Ty)

Since in this case |[E(S, (I'))| = (k- 1)|er1> we have
=2 (k- Dnpep,. (12)

a a o X\ i i
ds, (r,) (@) + ds, (1) () + Zl( ; ) s (ry) (@), <b>]

'dgk (1"1) (a) + dgk (rl) (C)]

(10)

2 2

*(a . .
; 3 )y @)
bev (T,) aceE (8, (1)) Li=1 \ ?

[2zx + 20(]. (11)
beV (T,) aceE (Si (T,))aceV (S (T1))-V (T))

By using (9), (10), & (12) in (8), we get

Wt te) = ()0 e o o 30 MM 2 i, i

i=0

Theorem 2. Let I'| and I', be two simple graphs and
y € N—-{0,1}. The FGZ index of the generalized R-sum
I'y+g T, graph is

2/« . . Ly . S
a—iy ra—iqg ri+l a—1i — i
MY(Ty+,T,) = Z( i )z MEME! + 22( i >2 MMy,
i=0 i=0
+ 2%y np, + 27 (k= Dnp e,

(14)

where N is the set of natural numbers and a =y — 1.

Proof. Then by definition, we have,

MV(r1+er2) = Z

dl,, 1, (@b)
(a,b)E(V(I‘l +er2>)

(15)

For a = y — 1, the above equation is consider as
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My(r1+erz) = [ Ty, T (a,b) +dy 1+ L2 (e d)}
(a,h)(c,d)e(E(Fl+Rkl"z))

[d;‘l+er2 (@b +df, o, (a,d)] - y [d;fl+ B(@b)+di (b,c)]
aeV (T,) bde (E(L,)) beV (T,) ace (E (R, (T,)))

Y |#.n@brd, L @d]s Y ¥ (5 @) + i (0,0)]
aeV (T,) bde (E(T,)) beV (T,) ace (E (R (T,)))aceV (T,)

D) > (5. @b+t 6.0)]
beV (T,) ace (E (R (T)))acV (T))ceV (R, (T,))-V (T))

y oy [F+Rr(ab)+dr+kr(a,d)]+ ¥ Y [F+Rr(ab)+d§‘+kr(bc)]

aeV (T,) bde (E(T,)) beV (T,) ace (E (R, (T,)))aceV (T,)

+ z Z [d?ﬁ}zkrz (a,b) + dlvf1+er2 ®, C)] Z
beV (T,) ace (E (R (T,)))acV (T;)ceV (R, (T,))-V (T,) beV (T,)

(5,0, (@) 4, 1 ()]

aceE (Ry (T,))aceV (R, (T,))-V (T))
(16)

For every vertexa € V(I'|) & edgebd € E(T,), then the
1st term of (16) is

o (04 X . o
[d?ﬁerz (a,b) + dlafl*erz (a, d)} - Z Z |:|:Z< . > z;l(rl) (a)'d;z (b):| + |:Z< > Ry (1“ (a) dl (d):|:|
(L= \ i

aeV (I,) bde (E(T,)) aeV (T,) bde i=0
ad @ i i - o o—i
=ZO(I> 2 )@ ) dn“’“Z(.) PRAGIC
i= aev (T, bde (E(L,)) =0\ 1 / aqev(T))
> A
bde (E(T,))
- « a—1i i - a a—1i
S(0) 2wy’ s goE(T) 3 )
i=0\ 1 / aev (1)) bde (E(T,)) i=0\ 1 / aev (1))
Y dr(d)
bde (E(T,))
‘ol . . . .
= Z( ‘ )(z)“"M;fj > [dr, ) +dy ()]
i=0 \ bde (E(T))

-

Il
=}

(04
—ip r0—i p rit]
<i>(2)“ ’M?I’M’Fz.

(17)
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For every vertex beV(I,)& edge ac € E(R,

(T;))a,c € V(I,), then the 2nd term of (16) will be

|5 @b+ (0.0)]
beV (T,) ace (E (R, (T,)))

= > D HZ( * )dﬁ;i(rl) (a).dy, (b)] + [Z( : )dﬁ;"(rl) ().dr, (b)H
bev (T,) ace (E (R, (1,))) LLi=0\ i\ 1
Z( l )d ®)|di (1, (@) + (r)(c)]]

beV (T,) ace (E (R, (T}))) |:i—0

) HZ l 4 O oy @+ 45 (C’]H
ace (E(Ry (r Macev () L[N 7/ |pev (1)
H zdr @) +(2dy, (c))“i]]]

ace (E (R, (r M)acev (1) LLi=0\ 7
- S (% P @ (a5 @) + @ (a5 0) as)
ace (E (Ry (r )))acev (1,) =0\
Sy @)@ o)
=0\ ! ace (E(Re (1) ))acev (T)
Sy @) o (@ ©)
=0\ ! ace (E (R (1) ))acev (T)
=Y Of)M;Z(z)“ Y [di (a) +df (c)]
i ace (E (R (T))))acev (T,)

Yot 0 [t

)M"rz Q@) 'M).

For every vertex beV([,)& edge ace E di k ap(@) =2dr (a)VaeV(I)) also dgr)(c)=2Vc
(R (TN a eV ()),cev(R () —-V(T,). Since we have V(R (T'})) =V (I',). So the 3rd term of (16) will be

-y y (@5 @b i, .0

beV (T,) ace (E (R, (T,)))aeV (T))ceV (R, (T,))-V (T}) o)

o

[Z(l) dy (1, (@-dr, (b) +dy, (F)(C):|
beV (T,) ace (E (R, (T,)))aeV (T,)ceV (R, (T,))-V (T,) Li=0
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Here d§ ) = 2% and d {1, (a) = (2dy, (@)*":

M=
A

1l
o

[ 0‘)(261r (@)"d. (b) +2“}
heV(Fz) ace (E (R (T,)))aeV (T, )ceV (R, (T,))-V (T,) L

™M=

[0 .
( )(z)“ (dy, (@) 'dL, (b) +2“]

beV(Fz) ace (E (R (T,)))aeV (T;)ceV (R (T,))-V (T, )[l

2

]
o

< ¢ ) [ @ (2 (@), (b)]
beV (T,) ace (E (R (T;)))aeV (T,)ceV (R, (T,))-V (T,)

(20)
+ 2%
beV (T,) ace (E (R (T,)))acV (T,)ceV (R, (T,))-V (T,)
o o X X ;
- Z( . )(2)“”.M’FZ.M¥I + 2%y ny
i=0 \ 1
S a o >
- Z( ) )(2)“_’.M’FZ.M¥1I + Z“erlnrz,
=0\ !
and the 4th term of (5) is
[ r+RI‘ (a)b)+d1‘ +R[‘ (C7b)] - Z Z [2“+2a]. (21)
beV (T,) aceE (Ry (T,))asceV (R (T,))-V (T,) beV (T,) aceE (Ry (T,))aceV (R, (T,))-V (T,)
Since in this case |E (S, (I'))| = (k- 1)|er1> we have Using (17), (18), (20), and (22) in (16), then we have
=2 (k- Dnper,. (22)
M(T 4 T5) =) ( ‘: )2“ ‘MM + 2{2( )2“ ‘MM } + 2%y, + 2" (k= Dnpep. (23)
i=0 i=0
O

Theorem 3. Let I} and I, be two simple graphs and
y € N—-{0,1}. The FGZ index of the generalized Q-sum
I'y+q T, graph is

M(TyrqT;) = z(“)( )(M'“)+g( )(MV N rz)+znr2§(‘;‘)(dgj<u>.d;1(v>)

i=0 i=0

+np, D HZ( >d? H(u).dy. (V)] [Z( )dl"f H(v).d (w)H (24)
uveE(F )vweE(F ) i=0 =0

+2(k=Dn, Y [df W) +df ()],

uveE (Fl)

where N is the set of natural numbers and o =y — 1. Proof. Then by definition, we have
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M(Lgl)= Y dl, (@b = Y [d;fmkrz @b +df, 1 d)]
(a,b)EV(F1+QkF2) (a,b) (c,d)eE (F +le“2

- Y Y |Hn@hed, @] Y Y [d L n@bd, ko)
a€V (T,) bdeE (T,) beV (T,) aceE (Q (T1))

(25)

For every vertexa € V(I',) & edgebd € E(T,), then the
1st term of (25) will be

Y oY |d @b d,  @d)]

aeV (T,) bdeE (T,)

P [Z( )“2rﬂ”d<w+§(?>i¥mﬂmﬂxﬂ]

aeV (T,) bdeE (T,) Li=0

Y{ . )at @) [dr, (b) +d; (d)]]
i=0
(26)

aev (T,) |:t=0( bdeE (T,)

[ ( d? 1( )} z+1
aeV (T,) Li=0

aev(r ) bd<E (T, )[
)%'mﬁ [dr, () +dy ()]

For every vertex beV(I,)& edge
ac € E(Q,(Ty))a,c € V(I)), then the 2nd term of equation
(25) will be

|5, @b+ 5 (b)]
beV (T,) aceE (Q (I}))

_ ¥ > (5, @B+, (010)] 27)
beV (T,) aceE (Q (T,))aeV (T,)ceV (Q (T,))-V (T))

" Z Z [ r+Qr2(a b)+[ F+QFz(b’C)H'
bGV(FZ) aceE (Qk (rl))\\a,cev (Qk (rl))fv (r )
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Now Vb eV (l,), ace E(Q,(T;)) if aeV(I'}) and
c € V(Qu(Ty) - V(T,); the 1st term of (27) will be

beV (T,) aceE (Q (T;))aeV (I )eeV (Q (I1))-V () [ [d?ﬁriz (@ b)] " [d?l*czkrz , C)] ]

= 2 > [do, (1 (@ + e, )] + [, ()]
beV (T,) aceE (Q; (T,))aeV (T))ceV (Q ()))-V (T,)

[« o ) )
= Z Z z< > ‘czl(rl)(a).al}2 (b)+dgk(rl)(6)]

beV (T,) aceE (Q; (T,))aeV (T )ceV (Q (Ty))-V (T,) Li=0 j

[« o . .
~y ) 5" ey s o)
i 1

beV (T,) aceE (Q; (T;))aeV (T, )ceV (Q (T,))-V (T,) Li=0

+ ) > |45,y )]
beV (T,) aceE (Q (T;))aeV (T, )ceV (i (T,))-V (T,)

o . ‘ (28)

i/ bev(T,) aceE (Q; (T,))aeV (T,)ceV (Q (T,))-V (T))

-2

o
i=0

p) 2 [0 )]
beV (T,) aceE (Q; (T;))aeV (T;)ceV (Qi (T,))-V (T,)

(x . .
< | )M;Z ML o, ¥ [dgk(rl) (c)]

1 aceE (Q; (rl))aevl,lcev (Q (1))-v (1)

-

1]
(=}

™=

]
(=}

(x .
< >M§2M¥:’+nr2{2 Y (dr, (u)+drl(v))a]
i quE(Fl)

(44 . . a [24 ) .
< )M}2M¥:'+2nr2lz< > > (dr (w.dy, (v)].
i i=0 \ i / uveEp

Now Vb e V(I,) & edge ac € E(Q,(T,)) if the vertex (27) splits into two parts for the vertices a and ¢, then the
a,c € V(Q,(T,)) —V(I,). Then the 2nd term of equation equation will be

I
.[\452

Il
(=}



Discrete Dynamics in Nature and Society 11

- z Z [dl“l+Qk1“2 (a,b)" + drl+ri2 (b, C)a]
beV (T,) aceE (Q (T)))aceV (Q (T,))-V (T,)

) z Z [dF1+riz (a)a + dr1+ri2 (C)a]
beV (T,) aceE (Q; (Ty))aceV (Q (Ty))-V (Iy)
= > [dr, W) +dp, (W] +[dr, (v) +dp, ()]

beV (T,) uveE (T, ),vweE (T,)

=cp, Y HZ( ‘: )d;’f;" (w) - d, (v)] + {Z( ‘: )d?l‘i (v).df, (w):|:|,
uveE (Fl),vweE (I‘l) i=0 i=0

[dgk(rl)(a)+dgk(rl)(c)]:2(k—1) SOy [ d )]

beV (T,) aceE (Q; (T,))aceV (Q (T,))-V (T,) beV (T,) uveE (T,)

=2(k=Dny, Y [df (w)+df ()],

ust(l"l)

(29)

(30)

Using (26), (28), (29), and (30) in (25), we get the re-
quired result:

(Yoo 3§ Yo

i=0

+2nr22(i) Y (dE (w).dy, ()]
i=0

uveE' (Fl)

iy, Y [Z [( ‘: )dl"fl‘i (w.di, (v)” N {Z( ‘: )d‘;‘l‘i (v).d. (w)] w20k=1n, Y [de @ +dt ()]

uveE' (F ) yweE' (Fl) i=0 i=0 uveE (1"1)

(e (1) T @ wd ol T ([3(5 )arwd o]
i=0

o
i=0 =0\ ! uveE (1"1) uveE (1"1 ),vweE (1"1)

n [Z dtlitl i v). dl (w):” +2 (k - l)nr Z [dlofl (u) + dlofl (V)]

i=0 i ust(Fl)
(31)
Theorem 4. Let I} and I', be two simple graphs. The FGZ
index of the generalized T-sum graph I'y+r I'; is
i Y/ . . N o ;
M (F +r Fz) Z( l )(2)"‘ lMa 1M1+1 z( 1. )er2 (2)(a—z)M¥;z + Z( i )(2)“_1M11“2M¥11
i=0 i=0 i=0
[ @ —i i
v, z( ‘ ) Y (5w )]+,
=0\ ? uveE (T,)
(32)

: D Z(“)(dff’(u) dr. ()] + z<0f)d;"(v)+d;1 (w)
uveE (T, )wweE (1,) LLi=0 \ 7 =0\ 1

+2(k=Dn, Y [df (w)+df )],

uveE (Fl)
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where y € N* -

Proof. Since we have dy T, (a,b) =
vertex aeV ()

drl+1‘kr2 (a) b) dr1+ri2 (a, b)

a e V(T (T,)) -

{0,1} and a =y — 1.

Discrete Dynamics in Nature and Society

Theorem 5. Assume that I} and I, are two simple graphs
and a =y — 1, where y € R — {0, N*} and R is a set of real
number. Then, the FGZ index of generalized F-sum graphs

dp T (a,b) for every
(I'y+s Iy Ty+p 1o Tytq o and I'y+1. I5) are

b eV (T,), also
for every vertex

“and

V(T'}) and b € V (I,), the result follows by

the proof of Theorems 2 and 3.

(i) M(T,

(if) M" (T4 I,) =

(iv) MY (T, +7,T,)

4T3 = f( ’ )(M;l)(M“ Yk M ) + z(

[04
) 1x 1M1+1 2]}+1 (k _ l)nr er

i=0

i i

[ee] « o0 o
o e )
Y 2ME ME 42l Y IMEIMET ||+ 2Vep g, + 27 (k= D ey,
=0\ i=0
1

:2(%)(%)(%_“1)é(f)w;l)( )[i( )(d;‘(”)'d?‘_i(”}

+ np, Z( )dlrl () - d?‘]" )|+ Z ( )dlrl ) - d?‘:l (w)
i

uveE (T, ),vweE (T, )|i =0 =0

+2(k=np Y [dF (w)+d} (v)] (33)

uveE (1"1)

o8 a . . . 1 (28] a . . 1 .

iafi a—i+ i it a—i

=Y My My 4D MM
i=0 i i=0 i

[e) o (8] o
P JOEDE) o 3 2 (dr ) dr )
=0\ ; =0\ ; ) uveE(T))

O ' o [ &
uveE (T,),vweE (T,) [ | =0\ =0\ 4

+ np, D

+2(k=Dng, Y [dh (W) +d} (v)].

uveE (T,)
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Proof. The above proof is similar as of Theorems 1-4.
Let T, be a negative integer, so from Theorem 5, Cor-
ollary 1 is obtained.

'Mg

T
o

()M (T, +5T,) =

oc+z—1>

1

'M8

i
o

)M (T, +5,T,) = 1)’( oti=
i=0

(iiz’)M’r’1+riz =Y - ( a+i-

i=0
+2nrzi (-1) <"‘ ,l 1)

uveE (F )

txz+1 +”rz Sk(l")+z 1)(

2'M; MY ‘“+2[Z( 1)

|
Yogirog o+

! >d;l (n.di” (w):|:| +2(k - )y,

13

Corollary 1. Assume that I'; & I', are two simple graphs and
a =y — 1, where y is a negative real number. The FGZ index
of the generalized F-sums graphs (I'y+g I';, I'1+p I'5, Iy +q, s
and I'\+r I,) are

< ) +zl' )ZiM"rﬁlM?Z l] + ey, +2 (k= Drnper,
-1 i+l a—i
ooz
HZ 1) ( e >d}l (W (v)]
uveE (r ) vweE (r])

Z [d¥l () +d}, (v)]

uveE (Fl)

D (d’l (u).d;fj (v) +np, >

e e e e G S Rt
1

+ 1y, >

+2(k-Dny, Y [dl () +dl ()]

uveE (F )

4. Applications

Now, we present some examples as applications of the
obtained results Theorems 1-4. Also the numerical com-
parisons are represented in Tables 1-4, and the graphical
representations are depicted in Figures 4-7.

>(Mz+1)(M(x1)+2an( 1)<tx+z 1)
(= e o] S
uveE (F ) vweE (F ) i= ! i=0 !

2, (dr, w)-dr(v)

uveE (T,)
e 0w

(34)

Example 1. Let P,, and P, be two simple graphs with m >2
and n>2. Then, we have

1L.M"(P,.sP,) = ZCY 2 em- 2)+2][2”1(n—2)+2]+ic¥1[2y*(m—2)+2] [2'(n-2)+2]

t=0

=0 (35)

+n(2Y2m=-3)+2)+4(k-Dn(m-1).

From Figure 4, it is clear that the behavior of FGZ index
of the generalized S-sum graph I'j+gI, at t =2 is more
better than t =0 and t = 1:

2.M"(P,.p P,) = ZCV 2 (m - 2) + 2] [2 (n - 2)+2]+2ZCV 2 (m-2) + 2] [2' (n-2) + 2]

t=0

+2(m-1n+4(k-1n(m-1).

(36)
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TaBLE 1: Numerical comparison for M? (P,, +SkPn).
[m, n, k] T=0 T=1 T=2
(1,1,1] -4 -4 -13
[2,2,2] 28 28 28
(3,3,3] 124 124 133
[4,4,4] 308 308 326
(5,5, 5] 604 604 631
[6,6,6] 1036 1036 1072
[7,7,7] 1628 1628 1673
(8,8,8] 2404 2404 2458
[9,9,9] 3388 3388 3451
[10,10,10] 4604 4604 4676

[m, n, k] T=0 T=1 T=2
[1,1,1] -8 -2 ~6.5000
2,2,2] 36 24 18
[3,3,3] 164 110 90.5000
4, 4,4] 400 280 235
[5,5,5] 768 558 475.000
[6,6,6] 1292 968 836
[7,7,7] 1996 1534 1340.5
(8,8, 8] 2904 2280 2013
[9,9,9] 4040 3230 2877.5
[10,10,10] 5428 4408 3958

TaBLE 3: Numerical comparison for MY (P,,,,q P,).

[m, n, k] T=0 T=1 T=2
[1,1,1] 3 3 ~1.5000
[2,2,2] 38 38 47
[3,3,3] 157 157 179.5000
[4,4, 4] 408 408 444
[5,5,5] 839 839 888.5000
[6,6,6] 1498 1498 1561
[7,7,7] 2433 2433 2509.5
(8,8, 8] 3692 3692 3782
[9,9,9] 5323 5323 5426.5
[10,10,10] 7374 7374 7491

[m, n, k] T=0 T=1 T=2
[1,1,1] -3 3 3

(2,2,2] 54 42 45

[3,3,3] 227 173 167
[4,4,4] 564 444 417
[5,5,5] 1113 903 843
[6,6,6] 1922 1598 1493
[7,7,7] 3039 2577 2415
8,8, 8] 4512 3888 3657
[9,9,9] 6389 5579 5267
[10,10,10] 8718 7698 7293

From Figure 5, it is clear that the behavior of FGZ index
of the generalized R-sum graph I'i+p I, at £ =0 is more
better than t =1 and ¢t = 2:

Discrete Dynamics in Nature and Society
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FIGURE 4: Numerical behavior of M” (P,,,s P,) using Table 1.
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FIGURE 5: Numerical behavior of M? (P, P,) using Table 2.

3. M"(P,,.qP,) = ic;’l [ (m-2) +2][2" (n-2) + 2]
t=0

+ ic%‘l [2 " (m-2)+2][2' (n-2)+2]
t=0
+ 2nicy" [+ (m-2)2" " + 2]
t=0

+ nicy‘l [2'+2(m-1)2" "+ 271
t=0

22(k = Dn[2*" (m - 2) + 2].
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FIGURE 6: Numerical behavior of M? (P,,,q, P,) using Table 3.

From Figure 6, it is clear that the behavior of FGZ index
of the generalized Q-sum graph I'+ I, at t =2 is more
better than t =0 and ¢t = 1:

15
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F1GURE 7: Numerical behavior of MY (P, 1, P,).

4. M"(P,,rP,) = ic?‘zy‘ T2 m -2 + 2] [2 (n-2) + 2] +2 i crigr it [27" (m-2) +2][2' (n-2) + 2]

t=0

t=0

+ 2niC¥_l [ZY*H +(m-2)2"""1+ 2‘] + nicﬁ [2‘ +2(m-1)2""'+ 2Y*1*‘]2(k - 1)n[2"*‘ (m=2)+ 2].

t=0

From Figure 7, it is clear that the behavior of FGZ index
of the generalized T-sum graph I';+7,I, at t =0 is more
better than t = 1 and ¢ = 2.

5. Conclusions

Now, we close our discussion with the following remarks:

(i) For positive integer k and two graphs I'; &I',, we
have computed FGZ index of the generalized
F-sums graphs Ty .I,, where generalized
F-sums graphs are obtained by the different
operations of subdivision and Cartesian product
onI'y &T,.

(ii) The obtained results are also verified and illustrated
for the particular classes of graphs.

(iii) The behavior of FGZ index is also analyzed with the
help of numerical and graphical presentations.

(iv) However, the problem is still open to compute
the different topological indices (degree and
distance based) for the generalized F-sum
graphs.

(38)
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