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This paper investigates some of the risk and insurance issues related to the subprime mortgage
crisis. The discussion takes place in a discrete-time framework with a subprime investing bank
being considered to be regret and risk averse before and during the mortgage crisis, respectively.
In particular, we investigate the bank’s investment choices related to risky subprime structured
mortgage products and riskless treasuries. We conclude that if the bank takes regret into account,
it will be exposed to higher risk when the difference between the expected returns on subprime
structured mortgage products and treasuries is small. However, there is low-risk exposure
when this difference is high. Furthermore, we assess how regret can influence the bank’s view
of a rate of return guarantee from monoline insurers. We find that before the crisis, regret
decreased the investment bank’s preparedness to forfeit on returns when its structured product
portfolio was considered to be safe. Alternatively, risk- and regret-averse banks forfeit the same
returns when their structured mortgage product portfolio is considered to be risky. We illustrate
the aforementioned findings about structured mortgage products and monoline insurance via
appropriate examples.

1. Introduction

The 2007–2009 subprime mortgage crisis (SMC) was preceded by a period of favorable
macroeconomic conditions with strong growth and low inflation combining with low default
rates, high profitability, strong capital ratios, and strong innovation involving structured
financial products in the banking sector. These conditions contributed to the SMC in that
they led to overconfidence and increased regret aversion among investors such as subprime
investing banks. (Regret is defined as the disutility of failing to choose the expost optimal
alternative. Regret aversion reflects an aversion to expost comparisons of its realized outcome
with outcomes that could have been achieved had it chosen differently. Alternatively, regret
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aversion mirrors a disproportionate distaste for large regrets and for a given menu of
acts. Such regret aversion distorts the agent’s choice behavior relative to the behavior of
an expected utility maximizer.) In the search for yield, the growth in structured notes
would have been nigh impossible without these banks’ strong demand for high-margin,
higher-risk assets such as securities backed by subprime mortgages. Such securitization
involves the pooling of mortgages that are subsequently repackaged into interest-bearing
securities.

The first step in the securitization process involves subprime originators that extend
mortgages that are subsequently removed from their balance sheets and pooled into reference
mortgage portfolios. Originators then sell these portfolios to special purpose vehicles
(SPVs)—entities set up by financial institutions—specifically to purchase mortgages and
realize their off-balance-sheet treatment for legal and accounting purposes. Next, the SPV
finances the acquisition of subprime reference mortgage portfolios by issuing tradable,
interest-bearing securities that are sold to, for instance, subprime investing banks. They
receive fixed or floating rate coupons from the SPV account funded by cash flows generated
by reference mortgage portfolios. In addition, servicers service the mortgage portfolios,
collect payments from the original mortgagors, and pass them on—less a servicing fee—
directly to the SPV. The interest and principal payments from the reference mortgage
portfolio are passed through to credit market investors. The risks associated with mortgage
securitization are transferred from subprime originators to SPVs and securitized mortgage
bond holders such as subprime investing banks. The distribution of reference mortgage
portfolio losses are structured into tranches. As in Figure 1, we consider three such tranches,
namely, the senior (usually AAA rated; abbreviated as sen), mezzanine (usually AA, A, BBB
rated; abbreviated as mezz), and junior (equity) (usually BB, B rated or unrated; abbreviated
as jun) tranches, in order to contractually specify claim priority. In particular, losses from
this portfolio are applied first to the most junior tranches until the principal balance of that
tranche is completely exhausted.

In the sequel, structured mortgage products (SMPs) will be the collective term used to
refer to structured residential mortgage notes such as residential mortgage-backed securities
(RMBSs) and collateralized debt obligation (CDOs) as well as their respective tranches. A
diagrammatic overview of mortgage securitization is given as follows.

It is clear that, especially before and during the SMC, mortgage securitization
represented an alternative and diversified source of housing finance based on the transfer
of credit risk (and possibly also credit counterparty and tranching risk). (We consider
“before the SMC” to be the period prior to July 2007 and “during the SMC” to be the
period between July 2007 and December 2009. “After the SMC” is the period subsequent
to December 2009.). In this process, some agents assumed risks beyond their capabilities
and capital base and found themselves in an unsustainable position once investors became
risk averse. Because of the aforementioned discussions, we cast our subsequent analysis
of subprime mortgage securitization in a risk and regret framework. At this stage, the
location and extent of subprime risk cannot be clearly described. This is due to the chain
of interacting securities that cause the risk characteristics to be opaque. Other contributing
factors are the credit derivatives that resulted in negative basis trades moving CDO risk
and that created additional long exposure to subprime mortgages. Determining the extent
of the risk is also difficult because the effects on expected mortgage losses depend on
house prices as the first-order risk factor. Simulating the effects of this through the chain
of interlinking securities is very difficult. Despite this interlinking enabling the risk to be
spread among many subprime agents, it caused a loss of transparency with regard to the
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Figure 1: Diagrammatic overview of mortgage securitization.

destination of the aforementioned risks (compare with the IDIOM hypothesis postulated in
[1]).

With the unravelling of the SMC in 2007, subprime SMP bonds became distressed.
The impact on structured mortgage markets had devastating consequences for monoline
insurers. In this regard, Radian Group which insured structured mortgage products was
worst hit with shares in Radian Group falling by over 67% in a short space of time.
The tumbling share price reflected the almost ninefold increase in the cost of protecting
subprime investing banks from SMP default. At this time, monoline insurers were highly
leveraged having small capital bases compared to the volume of SMP bonds insured. In
this regard, credit rating agencies have come under increasing scrutiny by regulators for
their methods as monoline insurers lent their high credit ratings to SMPs issued by others
in return for a fee (see, e.g., [2]). When the housing market declined, defaults soared to
record levels on subprime mortgages and innovative adjustable rate mortgages such as
interest-only, option-adjustable rate, stated-income, and NINJA (No Income, No Job, or
Asset) mortgages which had been issued in anticipation of continued rises in house prices.
Monoline insurers suffered losses as insured SMPs backed by subprime mortgages defaulted
(see, e.g., [2]).

For the sake of readability, in the sequel, we replace the terms credit rating agency
(CRA), subprime interbank lender (SIL), subprime originator (SOR), subprime dealer bank
(SDB), and subprime investing bank (SIB) with rating agency, lender, originator, dealer, and
investor, respectively. However, the abbreviations displayed above are used in some figures
and tables to save on space. For instance, in this case, we make use of the abbreviations SIV
and MB to denote structured investment vehicle and mortgage broker, respectively. Also, unless
otherwise stated, the terms mortgage, mortgage loan, and residential mortgage loan (RML) will
have the same meaning.
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1.1. Literature Review

In this subsection, we briefly review pertinent contributions related to subprime mortgage
models (including mortgages and their securitization), risk and regret, as well as monoline
insurance.

1.1.1. Literature Review on Subprime Mortgage Models

Paper [3] examines the different factors that have contributed to the SMC. These include
the lack of market transparency (see, e.g., [4]), the limitation of extant valuation models
(see, e.g., Sections 2.1 and 2.2), agency problems (compare with Sections 3.1 and 3.2),
lax underwriting standards, rating agency incentive problems, poor risk management by
financial institutions (compare with the discussions in Section 4.1 and [5]), the complexity of
financial instruments (see, e.g., Section 4.2), the search for yield enhancement and investment
management (see Section 4.3 for a numerical example), and the failure of regulators to
understand the implications of the changing environment for the financial system (see, also,
[1, 6]). In the main, the aforementioned contributions discuss subprime issues and offer
recommendations to help avoid future crises (see, also, [7, 8]).

Our contribution has close connections with [9], where the key structural features of a
typical subprime mortgage securitization, how rating agencies assign credit ratings to asset-
backed securities (ABSs), and how these agencies monitor the performance of mortgage
pools are presented (see, the examples in Sections 4.2 and 4.3). Furthermore, this paper
discusses RMBS and CDO architecture and is related to [10] that illustrates how misapplied
bond ratings caused RMBSs and ABS CDO market disruptions. In [11], it is shown that the
subprime (securitized) mortgage market deteriorated considerably subsequent to 2007 (see,
also, [1]). We believe that mortgage screening standards became slack because securitization
gave rise to moral hazard, since each link in the mortgage securitization chain made a profit
while transferring associated credit risk to the next link (see, e.g., Sections 2.1 and 2.2 as well
as [12]). At the same time, some originators retained many mortgages which they originated,
thereby retaining credit risk and so were less guilty of moral hazard (see, e.g., [13]). The
increased distance between originators and the ultimate bearers of risk potentially reduced
the former’s incentives to screen and monitor mortgagors (see [1] for more details). The
increased complexity of RMBSs and credit markets also reduces investor’s ability to value
them correctly, where the value depends on the correlation structure of default events (see,
e.g., [6, 13]). Reference [14] considers parameter uncertainty and the credit risk of ABS CDOs
(see, also, [1, 7, 8]).

1.1.2. Literature Review on Subprime Risk and Regret

Editorial [15] mentions a number of contributions that are related to subprime risk. These
include financial regulation and risk management (see Figure 2), contagion, securitization,
and risk management (see, e.g., Sections 2.1 and 2.2), bank risk management and stability
(see, e.g., Sections 3.1 and 3.2), as well as liquidity risk and SMPs (compare with Figure 7).
Article [16] is concerned with the risk management of subprime mortgage portfolios and
their relation with default correlation in measuring that risk. (Default correlation is a measure
of the dependence among risks. Along with default rates and recovery rates, it is a necessary
input in the estimation of the value of the portfolio at risk due to credit. In general, the concept
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of default correlation incorporates the fact that systemic events cause the default event to
cluster. Coincident movements in default among borrowers may be triggered by common
underlying factors.) Using a large portfolio of subprime mortgages from an anonymous
originator, they show that default correlation can be substantial. In particular, the significance
of this correlation increases as the internal credit rating declines (see, e.g., Figure 2).

Journal article [17] discusses subprime risk with an emphasis on operational risk
issues underlying the SMC. The paper identifies the fact that the components, mortgage
origination, and securitization, investors and markets embed risk (see, e.g., Sections 2.1 and
2.2). In particular, mortgage origination as it pertains to the underwriting of new mortgages
embeds credit risk (mortgage quality) and operational risk (documentation, background
checks, and mortgage process integrity), while securitization embeds reputational and
operational risk (e.g., misselling, valuation, and investor issues) and liquidity risk (cash
shortages). Moreover, [17] claims that investors carry credit, market, and operational risks
(mark-to-market issues, structured mortgage products worth when sold in volatile markets,
uncertainty involved in investment payoffs, and the design and intricacy of structured
products). Also, themarket reactions described in [17] includemarket, operational (increased
volatility leading to behavior that can increase operational risk such as unauthorized trades,
dodgy valuations, and processing issues), and credit risk (possibility of bankruptcies if
originators, subprime dealer banks, and subprime investing banks cannot raise funds).

Paper [18] analyzes the systemic elements that transformed the SMC into a global
crisis. The author explains the role of mortgage securitization in the US as a mechanism
for allocating risks from real estate investments and discusses what has gone wrong and
why (see, e.g., Sections 2.1 and 2.2). Also, [18] discusses the incidence of credit, maturity
mismatch, interest rate, and systemic risk in this crisis (see Section 1.2.3 for more details).
According to [19], declines in asset-backed securities exchange (ABX) prices exposed the
shock to valuation from subprime risk. Although it did not reveal the location of these risks,
the uncertainty caused a loss of confidence in mortgage markets. During the SMC, this was
evidenced by the disruption in the arbitrage foundation of the ABX indices. (The ABX indices
played several important roles in the panic. Starting in January 2006, the indices were the
only place, where a subprime-related instrument traded in a transparent way, aggregating
and revealing information about the value of subprime RMBSs. Other subprime-related
instruments, RMBS bonds, CDO tranches, structured investment vehicle liabilities, and so on
do not trade in visible markets, and there are no secondary markets. Also, the ABX allowed
for hedging subprime risk. These two markets are linked by an arbitrage relationship, but
this breaks down during the crisis, an indication of the disappearance of the repo market
for subprime-related instruments.). The behavior of the basis—the difference in spreads
between the ABX index and the underlying cash bonds—showed that the concern about
the location of the risks led to fear of counterparty default, especially in the repo markets,
where defaults would curtail the sale of bonds. These repo problems are significant because
the US repurchase agreement market is estimated to be worth $12 trillion and is central to the
“shadow banking system” which is the nexus of SPVs that issue bonds into capital markets
(see [6] for more information). This short-term financing market became very illiquid during
the SMC, and an increase in repo haircuts (the initial margin) caused massive deleveraging.
The extreme stress in the repo market was seen in the US government securities market,
where the instances of “repo fails” where borrowed securities were not returned on time
reached record levels (see, also, [20]).

Our analysis is set in a regret-theoretic framework that was developed in [21] (see,
also, [22–25]). More recently, regret theory has been used in [26] to investigate risk mitigation
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and the pricing of assets in a complete market setting (see, e.g., Sections 2.1 and 2.2 and their
corresponding discussions in Sections 5.1.1 and 5.1.2, resp.). In the current paper, we consider
preferences about regret avoidance for which the investor maximizes its regret-theoretical
expected utility function (see, e.g., [27] for more details on expected utility functions). To
our knowledge, except for [1], very little (if any) research has focused on how behavior
compatible with such a utility structure arises in the banking industry.

1.1.3. Literature Review on Monoline Insurance

In the SMC, as the net worth of banks and other financial institutions deteriorated because of
losses related to subprime mortgages, the likelihood increased that those selling monoline
insurances would have to pay their counterparties (see Section 3.1 and [2] for further
discussion). This created system uncertainty as investors wondered which companies would
be required to pay to cover SMP defaults and what forfeits on returns they would face
(compare with Section 3.2 and [1]). (The term forfeit on returns refers to the fact that monoline
insurance with a guarantee results in the shrinking of the risk premium on SMP bonds with
an ultimate reduction in investor’s rate of return. In this case, the investor has to forfeit
a part of its SMP rate of return, rP , in order to ensure that the SPV pays the monoline
insurance premium.) This situation was exacerbated by the fact that monoline insurers are
largely not regulated. The volume of monoline insurance outstanding increased 100-fold
from 1998 to 2008, with estimates of the debt covered by such insurance, as of November
2008, ranging from $33 to $47 trillion (see [2]). As of 2008, there was no central clearinghouse
to honor monoline insurance in the event that an insurance counterparty was unable to
perform its obligations under the monoline insurance contract. Companies such as American
International Group (AIG), Municipal Bond Insurance Association (MBIA), and Ambac
faced ratings downgrades because widespread mortgage defaults increased their potential
exposure to losses (see, e.g., Sections 3.1 and 3.2 as well as [1]).

1.2. Preliminaries about Risk, Insurance, and Regret

The main agents in our model are insurers and rating agencies as well as subprime
mortgagors, originators, SPVs (monoline insurance protection buyer), and investors in SMPs.
Each participant except the investor—allowed to be risk averse—is risk neutral. All events
take place in period t that begins at time instant 0 and ends at time 1.

1.2.1. Preliminaries about Subprime Mortgage Securitization

We introduce a subprimemortgagemodel with default to explain the key aspects of mortgage
securitization.

Figure 2 presents a subprime mortgage model involving nine subprime agents, four
subprime banks, and three types of markets. As far as subprime agents are concerned, we
note that circles 2a, 2b, 2c, and 2d represent flawed independent assessments by house
appraisers, mortgage brokers, rating agencies rating SPVs, and monoline insurers being
rated by rating agencies, respectively. Regarding the former agent, the process of subprime
mortgage origination is flawed with house appraisers not performing their duties with
integrity and independence. According to [17], this type of fraud is the “linchpin of the house
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Figure 2: A subprime mortgage model with default.

buying transaction” and is an example of operational risk. Also, the symbol X indicates that
the cash flow stops as a consequence of defaults. Before the SMC, appraisers estimated house
values based on data that showed that the house market would continue to grow (compare
with 2A and 2B). In steps 2C and 2D, independent mortgage brokers arrange mortgage deals
and perform checks of their own, while originators originate mortgages in 2E. Subprime
mortgagors generally pay high mortgage interest rates to compensate for their increased risk
from poor credit histories (compare with 2F). Next, the servicer collects monthly payments
frommortgagors and remits payments to dealers and SPVs. In this regard, 2G is the mortgage
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interest rate paid bymortgagors to the servicer of the reference mortgage portfolios, while the
interest rate 2H (mortgage interest rate minus the servicing fee) is passed by the servicer to
the SPV for the payout to investors. Originator mortgage insurers compensate originators
for losses due to mortgage defaults. Several subprime agents interact with the SPV. For
instance, the trustee holds or manages and invests in mortgages and SMPs for the benefit
of another. Also, the underwriter is a subprime agent who assists the SPV in underwriting
new SMPs. Monoline insurers guarantee investors’ timely repayment of bond principal and
interest when an SPV defaults. In essence, such insurers provide guarantees to SPVs, often in
the form of credit wraps, that enhance the credit rating of the SPV. They are so named because
they provide services to only one industry. These insurance companies first began providing
wraps for municipal bond issues but now provide credit enhancement for other types of SMP
bonds, such as RMBSs and CDOs. In so doing, monoline insurers act as credit enhancement
providers that reduce the risk of mortgage securitization.

The originator has access to subprime mortgage investments that may be financed
by borrowing from the lender, represented by 2I. The lender, acting in the interest of risk-
neutral shareholders, invests its deposits either in treasuries or in the originator’s subprime
mortgage projects. In return, the originator pays interest on these investments to the lender,
represented by 2J. Next, the originator deals with the mortgage market represented by 2O
and 2P, respectively. Also, the originator pools its mortgages and sells them to dealers and/or
SPVs (see 2K). The dealer or SPV pays the originator an amount which is slightly greater than
the value of the reference mortgage portfolios as in 2L. An SPV is an organization formed
for a limited purpose that holds the legal rights over mortgages transferred by originators
during securitization. In addition, the SPV divides this pool into sen, mezz, and jun tranches
which are exposed to different levels of credit risk. Moreover, the SPV sells these tranches
as securities backed by subprime mortgages to investors (see 2N) that is paid out at an
interest rate determined by the mortgage default rate, prepayment, and foreclosure (see
2M). Also, SPVs deal with the SMP bond market for investment purposes (compare with 2Q
and 2R). Furthermore, originators have securitized mortgages on their balance sheets, which
have connections with this bond market. Investors invest in this bond market, represented
by 2S, and receive returns on SMPs in 2T. The money market and hedge fund market are
secondary markets, where previously issued marketable securities such as SMPs are bought
and sold (compare with 2W and 2X). Investors invest in these short-term securities (see 2U)
to receive profit, represented by 2V. During the SMC, the model represented in Figure 2 was
placed under major duress as house prices began to plummet. As a consequence, there was
a cessation in subprime agent activities, and the cash flows to the markets began to dry up,
thus, causing the whole subprime mortgage model to collapse.

We note that the traditional mortgage model is embedded in Figure 2 and consists of
mortgagors, lenders, and originators as well as themortgagemarket. In this model, the lender
lends funds to the originator to fund mortgage originations (see 2I and 2J). Home valuation
as well as income and credit checks were done by the originator before issuing the mortgage.
The originator then extends mortgages and receives repayments that are represented by 2E
and 2F, respectively. The originator also deals with the mortgage market in 2O and 2P. When
a mortgagor defaults on repayments, the originator repossesses the house.

1.2.2. Preliminaries about Structured Mortgage Products

The face value of SMPs will be denoted by P and rate of return by rP . In period t, investors
invests a proportion of its funds in a subprime SMP portfolio with stochastic returns, rPt .
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On the other hand, investors have the option of investing in treasuries at the deterministic
rate, rT(t) ≤ rPt . Investment in subprime SMPs enables the originator to expand its subprime
mortgage origination activities. In making its risk allocation choice, the investor takes into
account that it may regret its choice if the investment proves to be suboptimal after the expiry
of the SMP contract. The following is an important assumption throughout our discussion.

Assumption 1.1 (investor’s regret aversion). The investor avoids deleterious consequences of
a result that is worse than the best that could be achieved had knowledge of investment losses
been known exante.

This assumption implies that, if the investor invests heavily in subprime SMPs and
then incurs a large loss, it would experience some additional disutility of not having invested
less in such SMPs. The following assumption makes the cash flow dynamics related to SMP
investment easier to follow.

Assumption 1.2 (investor’s normalized fund supply). We assume that the aggregate supply
of funds by the investor to the SPV in exchange for SMP interest and principal payments is
fixed and normalized to unity.

For the face value of the investor’s subprime SMP portfolio the following assumption
is important.

Assumption 1.3 (distribution of SMP rate and success probability). We assume that a
subprime SMP rate, rP, is distributed according to the two-point distribution

rP =

⎧
⎨

⎩

P with probability q(P, m),

0 with probability 1 − q(P, m),
(1.1)

where m ∈ [0, 1] is a stochastic i.i.d. variable representing a random variable related to
the level of macroeconomic activity, distributed over the interval [0, 1] with a continuous
density function f(m), and a cumulative distribution function, F(m), F(1) = 1. For the sake of
simplicity, we assume that the functional form for the probability of success is given by

q(P, m) = mq(P). (1.2)

The assumption enables the expected returns to be written as

E
[
rP
]
= ξq(P)P, (1.3)

with q(P) ∈ C2 and

ξ ≡
∫1

0
mϕ̃(m)dm < 1, (1.4)
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where ϕ̃ is chosen such that the higher the realization of m, the higher the expected returns,
E[rP ], for any given choice P . Also, the higher the realization of m, the higher the probability
of success, q(P). We assume that a higher P is associated with a lower probability of success q.
This means that q′(P) < 0. In addition, to avoid corner solutions with infinite risk, we assume
that q′′(P) ≤ 0, so that (1.3) is strictly concave in the control variable P and that there exists a
P < ∞, such that q(P) = 0. Furthermore, we also assume that

P ≥ P =
rT

ξ
(1.5)

with q(P) = 1 and q′(P) > −1/P . In reality, the value of P depends on the level of
macroeconomic activity, m, where q′(P, m) < 0 with q(P, m) being the probability of success.
Before the SMC, q was high because of minimal default rates on reference mortgage
portfolios. In turn, this prompted rating agencies to assign high ratings to subprime SMPs
(and monoline insurers) which drove investors to hold large quantities of such SMPs.
During the SMC, mortgagors started to default, and this increased the probability of failure,
1 − q(P, m), which led many investors to charge higher interest rates. As this situation
worsened, they started to invest their funds in riskless assets such as treasuries. The behavior
of these investors exacerbated the financial crisis. In particular, due to the decisions taken
by investors, the global mortgage market froze. From the above, the following result is
immediate.

Proposition 1.4 (investor returns from treasuries and SMPs). The investor’s riskless treasuries
are dominated in expected returns by (at least) some risky SMP portfolio.

1.2.3. Preliminaries about Subprime Risks

The main risks that arise when dealing with SMPs are credit (including counterparty
and default), market (including interest rate, price, and liquidity), operational (including
house appraisal, valuation, and compensation), tranching (including maturity mismatch and
synthetic), and systemic (including maturity transformation) risks. For the sake of argument,
risks falling in the categories described above are cumulatively known as subprime risks. In
Figure 3, we provide a diagrammatic overview of the aforementioned subprime risks.

The most fundamental of the above risks is credit and market risk (refer to Sections
2.1, 3.1, and 5.1). The former involves originators’ risk of loss from a mortgagor who does
not make scheduled payments and its securitization equivalent. This risk category generally
includes counterparty risk that, in our case, is the risk that a banking agent does not pay out
on a bond, credit derivative, or credit insurance contract (see, e.g., Sections 3.1 and 5.1 for an
example of this from monoline insurance). It refers to the ability of banking agents—such as
originators, mortgagors, servicers, investors, SPVs, trustees, underwriters, and depositors—
to fulfill their obligations towards each other (see Section 2.1 for more details). During
the SMC, even banking agents who thought that they had hedged their bets by buying
insurance—via credit default swap contracts or monoline insurance—still faced the risk that
the insurer will be unable to pay (see, e.g., Sections 3.1 and 3.2 for monoline insurance).

In our case, market risk is the risk that the value of the mortgage portfolio will decrease
mainly due to changes in the value of securities prices and interest rates. Interest rate risk arises
from the possibility that subprime SMP interest rates will change. Subcategories of interest
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Figure 3: Diagrammatic overview of subprime risks.

rate risk are basis and prepayment risk. The former is the risk associated with yields on SMPs
and costs on deposits which are based on different bases with different rates and assumptions
(discussed in Section 2.2). Prepayment risk results from the ability of mortgagors to voluntarily
(refinancing) and involuntarily (default) prepay their mortgages under a given interest rate
regime. Liquidity risk arises from situations in which a banking agent interested in selling
(buying) SMPs cannot do it because nobody in the market wants to buy (sell) those SMPs
(see, e.g., Sections 4.1, 5.1, and 5.3). Such risk includes funding and credit crunch risk. Funding
risk refers to the lack of funds or deposits to finance mortgages, and credit crunch risk refers to
the risk of tightened mortgage supply and increased credit standards. We consider price risk
to be the risk that SMPswill depreciate in value, resulting in financial losses, markdowns, and
possibly margin calls that is discussed in Sections 4.1 and 5.1. Subcategories of price risk are
valuation risk (resulting from the valuation of long-term SMP investments) and reinvestment
risk (resulting from the valuation of short-term SMP investments).

Valuation issues are a key concern that must be dealt with if the capital markets are
to be kept stable, and they involve a great deal of operational risk (see, e.g., Section 5.3).
Operational risk is the risk of incurring losses resulting from insufficient or inadequate
procedures, processes, systems, or improper actions taken (see, also, Sections 2.1, 3.1, 4.1,
and 5.1). As we have commented before, for subprime mortgage origination, operational
risk involves documentation, background checks, and progress integrity. Also, mortgage
securitization embeds operational risk via misselling, valuation, and investor issues (see,
also, Sections 2.2, 4.2, and 5.3). Operational risk related to mortgage origination and
securitization results directly from the design and intricacy of mortgages and related
structured products. Moreover, investors carry operational risk associated with mark-
to-market issues, the worth of securitized mortgages when sold in volatile markets,
and uncertainty involved in investment payoffs (see Section 4.2). Also, market reactions
include increased volatility leading to behavior that can increase operational risk such as
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Figure 4: Structured mortgage products wrapped by monoline insurance.

unauthorized trades, dodgy valuations, and processing issues. Often additional operational
risk issues such as model validation, data accuracy, and stress testing lie beneath large market
risk events (see, e.g., [17]).

Tranching risk is the risk that arises from the intricacy associated with the slicing of
securitized mortgages into tranches in securitization deals (refer to Sections 4.2 and 5.3).
Prepayment, interest rate, price, and tranching risk are also discussed in Section 5.1, where
the intricacy of subprime SMPs is considered. Another tranching risk that is of issue for SMPs
is maturity mismatch risk that results from the discrepancy between the economic lifetimes
of SMPs and the investment horizons of investors. Synthetic risk can be traded via credit
derivatives (like CDSs) referencing individual subprime RMBS bonds, synthetic CDOs or
via an index linked to a basket of such bonds. Synthetic risk is discussed in Section 5.3.

In banking, systemic risk is the risk that problems at one bank will endanger the rest
of the banking system (compare with Sections 2.1, 3.1, and 2.2). In other words, it refers to
the risk imposed by interlinkages and interdependencies in the system, where the failure
of a single entity or cluster of entities can cause a cascading effect which could potentially
bankrupt the banking system or market (see, e.g., Sections 4.1, 5.1, and 5.3).

In Table 1, we identify the links in the chain of subprime risks with comments about
the information created and the agents involved.

1.2.4. Preliminaries about Monoline Insurance

In this subsection, a diagrammatic overview of SMPs being wrapped by monoline insurance
is provided.

The monoline insurance model in Figure 4 allows for (senior tranches of) SMPs to
be wrapped by monoline insurance. In this process, monoline insurers offer investors a
guarantee on returns from SMP bonds (refer to 4A). There are many reasons why such
guarantees are viable in the financial sector. Differences in access to information and in
demand for credit risk are but two of them. To make this possible, the SPV—the protection



Discrete Dynamics in Nature and Society 13

Table 1: Chain of subprime risk and securitization; compare with [6].

Step in chain Information generated Agents involved

Mortgage origination

Underwriting standards, mortgage risk
characteristics, credit risk (mortgage quality),
operational risk (documentation,
creditworthiness, origination process)

SORs and MBs

Mortgage securitization

Reference mortgage portfolio Selected, RMBS
structured credit (reference portfolio) risk,
market (valuation, liquidity) risk, operational
(misselling, SIB issues) risk, tranching
(maturity mismatch) risk, systemic (maturity
transformation) risk,

SDBs, SRs, CRAs, SIBs
buying deal

Securitization of ABSs,
RMBSs, CMBSs into
ABS CDOs

ABS portfolio selected, manager selected, cdo
structured credit (reference portfolio) risk,
market (valuation, liquidity) risk, operational
(misselling, SIB issues) risk, tranching
(maturity mismatch) risk, systemic (maturity
transformation) risk

SDBs, CDO managers,
CRAs, SIBs buying deal

CDO risk transfer via
MLIs in negative basis
trade

CDOs and tranche selected, credit risk in the
form of market (basis) risk credit
(counterparty) risk

SDBs, banks with balance
sheets, CDOs

CDO tranches sale to
SIVs and other vehicles

CDOs and Tranche selected for SIV portfolio
market (price and interest rate) risk

SIV manager, SIV investors
buy SIV liabilities

Investment in SIV
liabilities by money
market funds

Choice of SIV and seniority Only agents directly
involved: buyer and seller

CDO tranches sale to
money market funds via
liquidity puts

CDOs and tranche selected Dealer banks, money
market funds, put writers

Final destination of cash
RMBS tranches, cash
CDO tranches and
synthetic risk

Location of risk Only agents directly
involved: buyer and seller

buyer—makes a regular stream of premium payments to the monoline insurer (see 4B) in
order to guarantee principal and interest payments on the SMP bonds issued to the investor
(see 4C). Monoline insurance with a guarantee results in the shrinking of the risk premium
on the SMP bond with a reduction in the investor’s rate of return (refer to 4D). In fact, in the
sequel, we view the investor’s forfeit on returns as a part of its SMP rate of return, rP , that
ensures that the SPV pays the monoline insurance premium. Monoline insurers generally
carry enough capital to earn AAA ratings from rating agencies and as a result often do not
have to post collateral (refer to 4E). As a consequence, monoline insurance increases the
marketability of SMPs, as investor analysis is simplified since credit risk is essentially that
of highly rated monoline insurers.

1.3. Main Problems and Outline of Paper

In this subsection, we state the main problems and provide an outline of the paper.
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1.3.1. Main Problems

Our general objective is to investigate aspects of the securitization of subprime mortgages
and their associated risk as well as their connections with the SMC. In this regard, specific
research objectives are listed as follows.

Problem 1 (utility function of investor funds under regret). Can we choose a utility
function that incorporates investor’s risk allocation preferences in a regret framework (see
Section 2.1)?

Problem 2 (investor optimization problem with risk and regret). Can we solve an investor
optimization problem that determines the optimal allocation of funds between subprime
SMPs and treasuries under risk and regret (see Theorem 2.1 in Section 2.2)?

Problem 3 (monoline insurance). Howmuch risk- and regret-averse investors are prepared to
forfeit for a rate of return guarantee by monoline insurers (see Theorem 3.3 in Section 3.2)?

Problem 4 (risk, insurance, and the SMC). How does investors’ aforementioned risk and
insurance problems relate to the SMC (Section 5)?

1.3.2. Outline of the Paper

The current section is introductory in nature. In Section 2.1 of Section 2, we present pertinent
facts about subprime SMPs and treasuries with regret, risk allocation spreads, and regret
utility functions. More specifically, Section 2.1.1 analyzes the interplay between the subprime
SMPs rate of return, rP , and treasuries rate, rT. In particular, it gives the mathematical
formulation of the expost optimal final level of funds, that is, the fund level that investor
could have attained if it had made the optimal choice with respect to the realized state of the
economy. Section 2.1.2 illustrates situations, where the risk allocation spread is low and high.
In Section 2.1.3, we construct a regret utility function that incorporates both risk and regret.
In Section 2.2, Theorem 2.1 proves that a regret-averse investor will always allocate away
from πρ∗ = 0 and πρ∗ = 1, where πρ∗ denotes the optimal fraction of available investor funds
invested in subprime SMPs. The next important result shows the existence of a treasuries rate
at which regret has no impact on investor’s optimal proportion invested in subprime SMPs
(see Corollary 2.2). Also, Proposition 2.3 in Section 2.2 proposes that higher regret amplifies
the effect of the investor hedging its bets.

Monoline insurance is discussed in Section 3.1. In Section 3.2, we suggest a way of
mitigating risk and regret via monoline insurance. Theorem 3.3 in Section 3.2 shows that
when the fraction of available funds invested in the subprime SMPs is low, a regret-averse
investor values monoline insurance guarantees less than its risk-averse counterpart. On
the other hand, both risk- and regret-averse investors forfeit the same SMP return when
their SMP portfolio is considered to be risky. Sections 4.1, 4.2, and 4.3 in Section 4 provide
numerical and illustrative examples involving risk and insurance with regret.

In Section 5, we analyze the main risk, insurance, and regret issues and their
connections with the SMC. A discussion on mortgage securitization in a risk and regret
framework is presented in Section 5.1. In particular, Section 5.1.2 discusses liquidity risk and
its effects in relation to the SMC. In particular, we consider the impact of risk allocation
away from subprime SMPs towards treasuries to the economy within the context of the SMC.
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Monoline insurance guarantees and its function of mitigating risk and regret introduced in
Section 3 is discussed in Section 5.2. The analysis of the examples presented in Section 4 is
provided in Section 5.3.

Section 6 offers a few concluding remarks, while Appendices A–E provide further
details about regret theory and contains full proofs of Theorems 2.1 and 3.3, Proposition 2.3,
as well as Corollary 2.2.

2. Risk and Regret

In this section, we provide a few key results involving risk and regret in banking. In
the sequel, the subprime SMPs that we restrict our discussion to are (senior tranches of)
SMPs wrapped by monoline insurance. Except for issues related to this type of insurance,
the arguments presented below will work equally well for any risky subprime residential
mortgage product.

2.1. Risk, Regret, and Structured Mortgage Products

In this subsection, we discuss subprime SMPs and treasuries in a regret framework as well
as the associated risk allocation spread ξq(P)P − rT. Finally, we consider appropriate utility
functions.

2.1.1. Subprime Structured Mortgage Products and Treasuries with Regret

In the sequel, we make a distinction between the cases, where the interest rate earned by
investors on the subprime SMPs, rP , exceeds the treasuries rate, rP ≥ rT. For some SMP
portfolios, this possibility is guaranteed by Proposition 1.4. However, in reality, the opposite
situation may also arise; that is, rP < rT (compare with Proposition 1.4). In the first instance,
for optimal returns, the regret-averse investor would have wanted to invest all available
funds in the subprime SMPs. On the other hand, in the second case, it would have been
optimal to invest all funds in the treasuries. Symbolically, we can express this as

fmax =

⎧
⎨

⎩

f0
(
1 + rP

)
, if rP ≥ rT,

f0
(
1 + rT

)
, if rP < rT,

(2.1)

where fmax is the value of the expost optimal final level of funds, that is, the fund level that
the investor could have attained if it had made the optimal choice with respect to the realized
state of the economy. Also, we have that

f = f0
(
1 + πrP + (1 − π)rT

)
(2.2)

is the actual final fund level. In reality, the expost optimal final level of funds will always be
greater than the actual final fund level.
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2.1.2. Risk Allocation Spread

The investment decisions between the subprime SMPs and treasuries will partly be based on
their allocation spread

ξq(P)P − rT (2.3)

whose realized value is not known in advance (compare with (1.3)). Moreover, we will show
a particular interest in the situations, where

q(P) =
rT

ξP
, (2.4)

q(P) =
rTE
[
U′(f0

(
1 + rP

))]
+ cov

[−rP ,U′(f0
(
1 + rP

))]

ξIE
[
U′(f0

(
1 + rP

))] . (2.5)

In this paper, (2.4) represents the case where the risk allocation spread ξq(P)P − rT is zero,
whereas (2.5) corresponds to the case where the spread is high. A motivation for considering
a special form for the right-hand side of (2.5) is given as follows. If the risk allocation spread
is nonnegative; that is, ξq(P)P − rT > 0, so that q(P) > rT/ξP , then fmax = f0(1 + rP ). In this
regard, forU′ > 0, with q(P) given by (2.5), we are guaranteed that the risk allocation spread
will be high. Note that we will sometimes use the notation q(P) 	 rT/ξP when referring to
(2.5). Because the subprime SMPs are riskier than treasuries, the risk allocation spread should
generally be nonnegative which makes scenario (2.5)more realistic than (2.4).

2.1.3. Regret-Theoretical Expected Utility Function

Expected utility theory is amajor paradigm in investment theory (for more details see [21–23]
as well as Appendix A). In our contribution, we choose a regret-theoretical expected utility
of the form

∫
[
U
(
fm
) − ρ · g(U(fmax

m

) −U
(
fm
))]

dF(m), (2.6)

where F(m) is a cumulative distribution function that incorporates institutional views about
macroeconomic states, m, where fm is the result in state, m, of action f being taken. With
this in mind, we investigate the impact of regret on the investor’s exante risk allocation by
representing its preferences as a two-component Bernoulli utility function, Uρ : R+ → R,
given by

Uρ(f
)
= U
(
f
) − ρ · g(U(fmax) −U

(
f
))
, (2.7)

whereU : R+ → R is the traditional Bernoulli utility (value) function over funding positions.
(A Bernoulli utility function refers to a decision maker’s utility over wealth. Interestingly, it
was Bernoulli who originally proposed the idea that a system’s internal, subjective value for
an amount of money was not necessarily equal to the physical value of that money.)
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In the above, regret aversion corresponds to the convexity of g, and the investor’s
preference is assumed to be representable by maximization subject to U. The second term in
(2.7) is concerned with the prospect of investor regret. The function g(·)measures the amount
of regret that the investor experiences, which depends on the difference between the value it
assigns to the expost optimal fund level, fmax, that it could have achieved, and the value that
it assigns to its actual final level of funds, f . The parameter ρ ≥ 0 measures the weight of the
regret attribute with respect to the first attribute that is indicative of risk aversion. The expost
optimal funds level should be greater than the actual final level of funds; that is, fmax > f .
The first term in (2.7) relates to risk aversion and involves the investor’s utility functionU(·)
with U′(·) > 0 and U′′(·) < 0. Therefore, the utility function of expost optimal funds level is
greater than the utility function of actual final level of funds; that is,U(fmax) > U(f) because
U(·) is an increasing function. In the sequel, for ρ > 0, it is necessary that U(fmax) > U(f).
In this case, the investor’s utility function includes some compensation for regret, and we
call the investor regret averse. Throughout the paper, g(·) is increasing and strictly convex;
that is, g ′(·) > 0 and g ′′(·) > 0, which also implies regret aversion. For ρ = 0, investor’s
utility function does not include regret, and we call the investor risk averse. In particular, the
investor would be a maximizer of risk-averse expected utility, which means thatU0(·) = U(·).
The mathematical conditions which imply risk aversion are U′(·) > 0 and U′′(·) < 0.

2.2. Investor Optimization Problem with Risk and Regret

In this section, we consider how the investor’s optimal risk allocation is influenced by regret
theoretic issues in a stylized framework. Let πρ denote the fraction of available investor funds
invested in the subprime SMPs with regret parameter ρ ≥ 0. For the case, where πρ is optimal
(denoted by πρ∗), we have that π∗

0 denotes the optimal fraction invested in the subprime
SMPs by the risk-averse investor. For the two-attribute Bernoulli utility function (2.7), the
objective function is given by

J(π) = E
[
Uρ(f(π)

)]
. (2.8)

In order to determine the optimal risk allocation, πρ∗, we consider the set of admissible controls
given by

A = {πρ : 0 ≤ πρ ≤ 1, (2.8) has a finite value}. (2.9)

Also, if π is the proportion of available investor funds invested in subprime SMPs, the value
function is given by

V (π) = max
π∈A

E
[
Uρ(f(π)

)]
= max

π∈A
E
[
U
(
f(π)

) − ρ · g(U(fmax) −U
(
f(π)

))]
. (2.10)

The optimal risk allocation problem with regret may be formally stated as follows.
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Figure 5: Investor’s optimal risk and regret.

Problem 5 (optimal investment in subprime SMPs and treasuries). Suppose that the Bernoulli
utility function, Uρ, objective function, J, and admissible class of control laws, A /= ∅, are
described by (2.7), (2.8), and (2.9), respectively. In this case, characterize V (π) in (2.10) and
the optimal control law, π∗, if it exists.

The ensuing optimization result demonstrates that a regret-averse investor (before the
SMC) will always allocate away from πρ∗ = 0 and πρ∗ = 1. In other words, by comparison
with risk-averse investors (during the SMC), regret-averse investors will commit to a riskier
allocation if the difference ξq(P)P − rT is low and a less risky allocation if ξq(P)P − rT is
high. In the years leading up to the SMC, SMP investment by the majority of investors—
considered to be regret averse—was driven by high spreads. Spread size was an indication
that risk was perceived to be low. This encouraged many investors to invest more in SMP
portfolios. However, during the SMC, whenmortgagors failed tomake repayments, the value
of SMPs as well as the spread declined. In this period, risk was considered to have increased,
with many investors becoming risk averse and preferring investment in safer assets such as
treasuries.

Theorem 2.1 (optimal investment in subprime SMPs and treasuries). Suppose that
Assumption 1.2 holds and that Uρ is the two-attribute Bernoulli utility function defined by (2.7).
Regret-averse investors always invest funds in subprime SMPs even if the risk allocation spread is
zero as in (2.4). However, risk-averse investors would hold only treasuries in its portfolio in that
case. Moreover, for a sufficiently large risk allocation spread as in (2.5), regret-averse investors always
invest a positive amount in treasuries, whereas risk-averse investors hold only subprime SMPs in their
portfolio.

Proof. The proof is contained in Appendix B.

Theorem 2.1 suggests that holding only treasuries will expose investors to the
likelihood of severe regret if SMPs perform well as was the case before the SMC. Also, if
investors only hold SMPs, it will feel less regret if SMPs perform well but will feel some
regret if they perform badly as was the case during the SMC. Theorem 2.1 can be illustrated
as shown in Figure 5.
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Figure 6: The Certainty equivalent.

We use Theorem 2.1 to show that the next corollary holds.

Corollary 2.2 (risk allocation of risk- and regret-averse investors). Suppose that ξ is given as
in (1.4). Furthermore, assume that the value of the investor’s subprime SMP portfolio, the probability
of realizing P , and optimal proportion invested in subprime SMPs are denoted by P , q(P), and π∗,
respectively. In this case, there exists a treasuries rate, r̃T, and therefore a level ξq(P)P − r̃T, for which
regret does not affect π∗. At this specific ξq(P)P − r̃T, the SMP allocation for a regret-averse investor
will correspond to that of a risk-averse investor.

Proof. The proof is contained in Appendix C.

Corollary 2.2 suggests the existence of a treasuries rate, where the allocation of risk will
be the same for regret- and risk-averse investors. It may therefore be that, before and during
the SMC, a point was reached, where risky asset allocation was independent of whether the
investor was regret or risk averse. The results of Corollary 2.2 can be represented graphically
as shown in Figure 6.

In the following proposition, we show that higher regret exacerbates the effect of the
investor hedging its bets.

Proposition 2.3 (hedging against subprime risk). Suppose that the investor is more regret- than
risk averse (as measured by ρ). Then, under (2.4), it invests more in subprime SMPs, whereas under
(2.5) it invests less in SMPs. In particular, the more regret averse the investor, the more likely it will
be to hold subprime SMPs in its portfolio as long as the risk allocation spread is zero. Conversely, it
will hold less SMPs when the risk allocation spread is high.

Proof. The proof is contained in Appendix D.

Proposition 2.3 suggests that, before the SMC, in the case where the risk allocation
spread is zero, regret-averse investors are more likely to hold subprime SMPs in their
portfolios. Conversely, during the SMC, these banks will hold less subprime SMPs when the
risk allocation spread is high.
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3. Monoline Insurance

In this section, we discuss monoline insurance and its relationship with regret.

3.1. Monoline Insurance with Regret

In principle, monoline insurance guarantees may help to alleviate the regret experienced
by investors, by protecting their SMP returns when macroeconomic activity is depressed.
This is especially true in the case where investors have high levels of SMP investment with
the potential to cause regret. The effect of monoline insurance—having the character of a
guarantee—is that the risk premium on the SMP bond shrinks thus reducing the return
investors receive from SMPs. Also, the SPV has to pay a price for protecting SMP returns
by paying the monoline insurance premium. Before the SMC, given the low-perceived risk
of SMPs, monoline insurers generally had very high leverage, with outstanding guarantees
often amounting to 150 times capital. In this type of insurance, default risk is transferred
from the bondholders—in our case investors—to monoline insurers. Investors are only left
with the residual risk that the monoline insurer will default. As a result, the analysis of this
insurer is closely connected with the analysis of the default risk of all bonds they insured.

In the sequel, we consider a rate-of-return monoline insurance guarantee that involves
the guaranteed repayment of investors’ investment in SMPs. However, a monoline guarantee
also comes at an additional cost for investors. This cost depends on howmuch investment risk
is borne by investors. The guarantee becomes more costly for investors as the risk associated
with the RMPs increases. As explained before, the cost of guaranteeing SMP returns for
regret-averse investors involves a forfeit on returns. In particular, in the sequel, we compare
regret- and risk-averse investors’ preparedness to forfeit returns by examining how they
value a monoline insurance guarantee.

3.2. The Main Monoline Insurance Result

The following assumption about monoline insurers guaranteed rate of return is important.

Assumption 3.1 (investor guaranteed rate of return). We assume that rPg ≥ 0 is the investor’s
guaranteed rate of return from monoline insurance that is paid on the fixed face value of the insured
SMP portfolio, πf .

In Assumption 3.1, the investor’s portfolio allocation is assumed to be fixed in order to
sidestep the moral hazard problem resulting from portfolio reshuffling under guarantee. In
the situation where the SPV buys no protection against risk related to the returns on subprime
SMP portfolios, the investor’s forfeit should be zero; that is, rPg = 0. In the case where no
credit event takes place, the monoline insurer pays nothing. In this case, investors will receive
the normal rate of return on subprime SMPs, rP , throughout the SMP term. If a credit event
occurs, the monoline insurer will pay RPg given by

RPg = max
(
rP , rPg

)
. (3.1)

In the sequel, themonoline insurance contract does not alter the expost optimal level of funds,
fmax. Therefore, the expost optimal preference is for the investor to invest all its available
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funds in subprime SMPs, in the event that the realized return, rP , is above the treasuries rate,
rT, and all of it in the treasuries otherwise. Mathematically, this may be expressed as

fmax = f0
(
1 +max

(
rP , rT

))
. (3.2)

Furthermore, suppose that cρ(rPg, πf) is the maximum forfeit by an investor with regret
parameter ρ ≥ 0 for guarantees on πf . In this case, the size of the forfeit is dependent on
the guaranteed rate of return, rPg . For instance, in the case of a very risky investment, rPg is
likely to be very high, which will force the investor to make a large forfeit. In this case, the
investor’s forfeit is governed by the indifference equation

E
[
Uρ
(
f0
(
1 + πfrP +

(
1 − πf

)
rT
))]

= E
[
Uρ
((

f0 − cρ
(
rPg, πf

))(
1 + πfRPg +

(
1 − πf

)
rT
))]

.

(3.3)

The right-hand side of (3.3) describes the situationwhere no credit protection is bought, while
the left-hand side incorporates the cash flow on the monoline insurance contract purchased
by the investor. In the case where no credit protection is bought; that is, rPg = 0, the investor’s
forfeit for the monoline guarantee is zero. This means that

cρ
(
0, πf

)
= 0, ∀0 ≤ πf ≤ 1. (3.4)

If we rewrite (3.3), then the coming result follows immediately.

Lemma 3.2 (hedging against investor subprime risk via monoline insurance). For RPg given
by (3.1), if one puts

ℵ
(
RPg, πf

)
= 1 + πfRPg +

(
1 − πf

)
rT, (3.5)

then

E
[
Uρ
(
f0ℵ
(
rP , πf

))]
= E
[
Uρ
((

f0 − cρ
(
rPg, πf

))
ℵ
(
RPg, πf

))]
. (3.6)

Of course, if all the investor’s funds were allocated to treasuries, its monoline
insurance forfeit should be zero, so that

cρ
(
rPg, 0

)
= 0, ∀0 ≤ rPg ≤ rT. (3.7)

In the following theorem, we consider the ramifications of the proportion of available
funds invested in subprime SMPs being low. Also, we consider the case where the proportion
of investment of subprime SMPs in the portfolio is high.
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Theorem 3.3 (risk mitigation via monoline insurance). Suppose that rPg , πf , cρ(rPg, πf), and
c0(rPg, πf) denote the guaranteed rate of return, fixed face value of the protected SMPs, the maximum
forfeit by the investor with regret parameter ρ ≥ 0 for monoline insurance, and cρ = c0, with ρ = 0,
respectively. In this case, one has that

cρ
(
rPg, πf

)
< c0
(
rPg, πf

)
(3.8)

for low levels of πf and all rPg . On the other hand, it is true that

cρ
(
rPg, πf

)
= c0
(
rPg, πf

)
(3.9)

for high levels of πf and low levels of rPg .

Proof. The proof is contained in Appendix E.

Theorem 3.3 intimates in inequality (3.8) that, if the portfolio contains a low proportion
of SMPs, the regret-averse investor would forfeit less for the monoline insurance guaranteed
rate of return than is the case for a risk-averse investor. This is typical of the situation during
the SMC, where a relatively low proportion of SMPs was held in investor portfolios. In
particular, during this time, empirical evidence shows that risk-averse investors forfeit more
for monoline insurance guarantees than their regret-averse counterparts. Inequality (3.9) tells
a contrasting story for high levels of πf and low levels of rPg . Further analysis of Theorem 3.3
follows in Section 5.1.2.

4. Examples Involving Risk, Insurance, and Regret

In this section, we provide an illustrative and numerical example involving subprime
residential mortgage products.

4.1. Numerical Example Involving Risk, Insurance, and Regret

In Table 2, we provide parameter values for a numerical example to illustrate important
features of the discussions on subprime mortgage products and their risks in this section.

Equation (1.3) is solved as follows. The functional form for the probability of success
is given by

q(P, m) = mq(P) = 0.5 × 0.4 = 0.2, (4.1)

so that expected returns can be written as

E
[
rP
]
= ξq(P)P = 0.102 × 0.4 × 10 = 0.408, (4.2)
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Table 2: Numerical example involving subprime structured mortgage products.

Parameter Period t Parameter Period t

rP 0.08 P $10
m 0.5 q(P) 0.4
ϕ̃(m) 0.204 rR 0.5
π 0.5 f0 $1
U(f(π)) 0.08 U(fmax) 0.1
U(f(πρ)) 0.09 cρ(rPg , πf ) 0.1917
E[U′(f0(1 + rP ))] 0.5 U′(f0(1 + rP )) 0.5
rT 0.036 ρ · g(U(fmax) −U(f(π))) 0.035
πf 0.6 ρ · g(U(fmax) −U(f(πρ))) 0.04

with q(P) ∈ C2 and

ξ ≡
∫1

0
0.5 × 0.204dm = 0.102 < 1. (4.3)

fmax can be expressed as

fmax =

⎧
⎨

⎩

1 × (1 + 0.08) = 1.08, if rP ≥ rT,

1 × (1 + 0.036) = 1.036, if rP < rT.
(4.4)

Thus, in our case, fmax = 1.08. Also, we have that

f = 1 × (1 + 0.5 × 0.08 + (1 − 0.5) × 0.036) = 1.058. (4.5)

The investment decisions between SMPs and treasuries are partly based on their allocation
spread

ξq(P)P − rT = 0.102 × 0.4 × 10 − 0.036 = 0.372. (4.6)

Moreover, when the risk allocation spread is zero, we look at (2.4):

q(P) =
0.036

0.102 × 10
= 0.035, (4.7)

whereas we look at (2.5) when the risk allocation spread is high:

q(P) =
0.036 × E[U′(1.08)] + cov[−0.08, 0.5]

0.102 × 10 × E[U′(1.08)]
=

0.036 × 0.5 + 0
0.102 × 10 × 0.5

= 0.035. (4.8)
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The Bernoulli utility function is given by

Uρ(f
)
= 0.08 − 0.035 = 0.045. (4.9)

The payout on monoline insurance is given by

RPg = max(0.08, 0.5) = 0.5. (4.10)

The optimal level of funds to be invested in subprime SMPs is

fmax = 1 × (1 +max(0.08, 0.036)) = 1 × (1 + 0.08) = 1.08. (4.11)

The investor’s forfeit is governed by the indifference equation (3.3):

E[Uρ(1 × (1 + 0.6 × 0.08 + (1 − 0.6) × 0.036))]

= E[Uρ((1 − 0.1917)(1 + 0.6 × 0.5 + (1 − 0.6) × 0.036))] = E[Uρ(1.0624)].
(4.12)

According to (3.6), hedging against the investor’s subprime risk via monoline insurance
implies that if

ℵ
(
RPg, πf

)
= 1 + 0.6 × 0.5 + (1 − 0.6) × 0.036 = 1.3144, (4.13)

thus,

ℵ
(
rP , πf

)
= 1 + 0.6 × 0.08 + (1 − 0.6) × 0.036 = 1.0624, (4.14)

then

E[Uρ(1 × 1.0624)] = E[Uρ((1 − 0.1917))1.3144] = E[Uρ(1.0624)]. (4.15)

The objective function is given by (2.8):

J(π) = E
[
Uρ(f(π)

)]
= E[0.045] = 0.045. (4.16)

Also, the value function is given by (2.10):

V (π) = max
π∈A

E
[
Uρ(f(π)

)]
= E
[
U
(
f
(
πρ

)) − ρ · g(U(fmax) −U
(
f
(
πρ

)))]

= E[0.09 − 0.04] = E[0.05] = 0.05,
(4.17)

where

A = {πρ : 0 ≤ πρ ≤ 1, (2.8) has a finite value}. (4.18)
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4.2. Illustrative Example Involving Structured Mortgage Product Complexity

The following example illustrates the complexity and information loss problems associated
with subprimemortgage securitization (compare with [1, 6]). The simplified example ignores
the dynamic aspects of such securitization and discounting but only considers simple
tranching. We consider payouts from a single subprime mortgage, a sen/subtranche RMBS
securitization of this mortgage, and a sen/subtranche RMBS CDO, which has purchased the
sen tranche of the RMBS. In our example, the transactions takes place in a single period twith
all payouts taking place at the end of period t at time 1.

In our example, themortgage has a face value ofM. At the end of period t at time 1, the
mortgage experiences a stepup rate and will either be refinanced or not. If it is not refinanced,
then it defaults, in which case the originator will recover R1. Therefore, the originator will
suffer a loss of S1 which is given by S1 = M − R1, where S1 and R1 are the mortgage losses
and recovery at time 1, respectively. In the case where no default occurs, the new mortgage is
expected to be worthM at time 1. If we assume no dependence of R1 andM on house prices,
the payout to the originator is given by Π1 = max[M,R1], where M is the value of the new
mortgage after refinancing. If M < R1, then the originator does not refinance and mortgages
default.

The originator finances mortgages via securitization in which case the mortgage is
sold at par of M. The originator can still exercise the option of refinancing in the manner
previously described, with the securitization either receiving M or R1. The subprime RMBSs
transaction has two tranches, namely, the first tranche attaches at 0 and detaches at N1; the
second tranche attaches at N1 and detaches at the end value M. (The phrase “first tranche
attaches at 0 and detaches at N1” means that the loss N1 − 0 is borne (absorbed) by the first
tranche. Similarly, the phrase “second tranche attaches atN1 and detaches atM” means that
the lossM−N1 is borne (absorbed) by the second tranche.). The face value of the sen tranche
is the difference between the face value of mortgage and the first loss to be absorbed by the
jun tranche, that is, M − N1. It then follows that the losses that may occur on a RMBS sen
tranche at time 1 are given by

Ss
1 = max[S1 −N1, 0], (4.19)

where N1 is the value at which the first RMBS tranche detaches at time 1. Here, the payout
on the sen tranche at time 1 takes the form

Πs
1 = min

⎧
⎨

⎩

max[M −N1, 0],

M −N1 − Ss
1.

(4.20)

In this case, becauseM−N1 > 0, we have that max[M−N1, 0] = M−N1. Furthermore, since
it is always true that Πs

1 ≥ 0, it follows that

M −N1 − Ss
1 ≤ M −N1. (4.21)

This implies that

Πs
1 = M −N1 − Ss

1 (4.22)
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which, in turn, implies that

Πs
1 = min[M −N1,M − S1]. (4.23)

By way of illustration, for Πs
1 = $50 and N1 = $30, if the mortgage is not refinanced and

defaults, then the sen tranche will suffer a $20 loss because the first loss tranche only absorbs
the first $30 loss. In this case theΠs

1 of the sen tranche is $50.
Next, we consider a situation in which the sen tranche of the subprime RMBS is sold

to a CDO, which has two tranches, namely, the first tranche attaches at 0 and detaches atNc
1;

the second tranche attaches at Nc
1 and detaches at the end value M − N1. We note that the

size of the CDO is M − N1 since it only purchases the sen tranche of the subprime RMBS.
Moreover, Nc

1 < N1 since the CDO portfolio is smaller. However, the subtranche of the CDO
could be larger in percentage terms. In this case, we have that the loss on the sen tranche is

Sc
1 = max

[
min
[
Ss
1,M −N1

] −Nc
1 , 0
]
. (4.24)

Furthermore, in this case, the payoff on this RMBS CDO tranche is given by

Πc
1 = min

⎧
⎨

⎩

max
[
M −N1 −Nc

1 , 0
]
,

M −N1 −Nc
1 − Sc

1.
(4.25)

If we substitute (4.24) into (4.25), then Πc
1 takes the form

Πc
1 = min

⎧
⎨

⎩

max
[
M −N1 −Nc

1 , 0
]
,

N1 −Nc
1 −max

[
min
[
Ss
1,M −N1

] −Nc
1 , 0
]
.

(4.26)

Finally, substituting (4.19), we obtain

Πc
1 = min

⎧
⎨

⎩

max
[
M −N1 −Nc

1 , 0
]
,

N1 −Nc
1 −max

[
min
[
max

[
min
[
Ss
1,M −N1

] −Nc
1 , 0
]
,M −N1

] −Nc
1 , 0
]
.

(4.27)

Next, we illustrate the issues raised in the above discussion numerically (see [6]). Suppose
that M = $100, the size of RMBS subtranche is $20, and the size of the sen RMBS tranche is
$80. Furthermore, the subprime RMBS tranche is sold to a CDO, which only buys this tranche,
so that the size of the CDO is $80. Let $15 be the size of the CDO subtranche, so that the sen
tranche’s size is $65. If we keep these parameters constant and vary the recovery amount,
Table 3 shows the loss on the sen RMBS tranche, the payout from the sen RMBS tranche, the
loss on the sen CDO tranche, and the payout from the sen CDO tranche at the end of the
period.
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Table 3: Computational results, source [6].

Parameters
R1 ($) 90 70 60 50 40 30 20 10

Results
Ss
1 0 10 20 30 40 50 60 70

Πs
1 80 70 60 50 40 30 20 10

Πs
1 as % of 80 100% 87.5% 75% 62.5% 50% 37.5% 25% 12.5%

Sc
1 0 0 5 15 25 35 45 55

Πc
1 65 65 60 50 40 30 20 10

Πc
1 as % of 65 100% 100% 92.3% 76.9% 61.5% 46.2% 30.8% 15.4%

4.3. Numerical Example Involving Structured Mortgage Product Returns

The ensuing example illustrates issues involving mortgage securitization and its connections
with profit and capital. Here, we view the originator as an investor and consider some of its
incentives to securitize its subprime mortgages. We note that the type of forfeiture mentioned
in this example—although the principle is the same—is distinct from the monoline insurance
forfeits mentioned earlier. Also, we discuss how the securitization process can go wrong as
was evidenced by the events during the SMC. In the sequel, fΣ denotes the fraction of the
face value of the originator’s mortgages, M, that is securitized.

The sale of the original mortgage portfolio via securitization is intended to save
economic capital Ke, where Ke ≥ E.(Economic capital is the amount of risk capital (equity,
E) which the originator requires to mitigate against risks such as market, credit, operational,
tranching, and subprime risk. It is the amount of money which is needed to secure survival
in a worst case scenario.), Ke differs from regulatory capital, K, in the sense that the latter is
the mandatory capital that regulators require to be maintained while Ke is the best estimate
of required capital that originators use internally to manage their own risk and the cost
of maintaining K. In this example, we assume that the originator’s profit from mortgage
securitization,ΠΣ ∝ Π, whereΠ is expressed as return on equity (ROE; denoted by rE) (ratio
of profit after tax to equity capital employed.) and return on assets (ROA; denoted by rA)
(ratio which measures the return the originator generates from its total assets).

This subsection contains the following discussions. The purpose of the analysis in
Section 4.3.1 is to determine the costs and benefits of securitization and to assess the impact
on ROE. The three steps involved in this process are the description of the originator’s
unsecuritized mortgage portfolio, calculation of the originator’s weighted cost of funds
for on-balance sheet items, cMω, as well as the originator’s weighted cost of funds for
securitization, cMΣω. In Section 4.3.2, the influence on ROE results from both lower-level E
and reduced cMΣω. The value gained is either the present value or an improvement of annual
margins averaged over the life of the securitization. In our example, capital saving, Kes, is
calculated with a preset forfeit percentage of 4% used as an input. In this regard, the impact
on ROE follows in Section 4.3.3. Under a forfeit valuation of capital as a function of fΣM,
we are able to determine whether securitization enhances rE, by how much and what the
constraints are. Under full economic capital analysis, Ke results from a direct calculation
involving a mortgage portfolio model with and without securitization. The enhancement
issue involves finding out whether the securitization enhances the risk-return profile of the
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original mortgage portfolio and, more practically, whether postsecuritization rEΣ is higher or
lower than the presecuritization rE.

4.3.1. Cost of Funds

In the sequel, we show how Kes results from securitization, where Kes ∝ fΣM is valid for
K under Basel capital regulation. For the sake of illustration, we assume that the originator’s
balance sheet can be written as

Mt = Dt + ntEt−1 +Ot. (4.28)

For the original mortgage portfolio, M = 10000, suppose that the weight ωM = 0.5 and the
market cost of equity, cE = 0.25 before tax. In the case where ρ = 0.08 (see [1] for more
information), regulatory capital is given by

Kt = ntEt−1 +Ot = 1.25 × 200 + 150 = 400 = 0.08 × 0.5 × 10000, (4.29)

with nt = 1.25. Furthermore, we assume that cE is equivalent to a minimum accounting
rE = 0.25, and the originator considers mortgage securitization for M = 6500, while K
includes subordinate debt with rO = 0.101 and deposits (liabilities) cost cD = 0.101. We
suppose that the original mortgage portfolio, M, has an effective duration of 7 years despite
its 10-year theoretical duration due to early voluntary prepayments as before and during
the SMC. The return nett of statistical losses and direct monitoring and transaction costs
is rM = 0.102. Consider Kes = 260 = 0.04 × 6500, where the Kes calculation uses a 4%
forfeit applied to fΣM. Kes is constituted by 130 equity and 130 subordinate debt and is
the marginal risk contribution of fΣM as evaluated with a portfolio model. The resultingKes

would depend on the selection of fΣM and its correlation with M.
In Table 4, we provide an example of a subprime mortgage securitization with two

classes of tranches, namely, sen (AAA rating) and sub (including mezz and jun tranches;
BBB rating). Given such ratings, the required rate of return for subtranches is rBSub = 0.1061
and that of sen tranches is rBS = 0.098 ≤ cD = 0.101. However, in order to obtain a BBB rating,
the rating agency imposes that the subtranches Bsub ≥ 0.101 × fΣM. The direct costs include
the initial cost of organizing the structure, ci, plus the servicing fees, fs. The annual servicing
fees, fs = 0.002 × fΣM.

For fΣM = 6500, the sen tranches fund 5850 and subtranches fund 650 with M
decreasing from 10000 to 3500, where the weighted mortgages Mω = 1750 = 0.5 × 3500.
The capital required against this portfolio is K = 140 = 0.08 × 1750. With an initial Ke = 400,
the deal saves and frees Kes = 260 for further utilization. This is shown in Table 4.

The cost of funds structure consists of K at 4%—divided into 2% E at cE = 0.25 and
2% O at cSD = 0.102—as well as 96% deposits at cD = 0.101. We consider the face value of D
by using book values for weights, so that the weighted cost of funds is

cMω = 0.96 × 0.101 + 0.08 × 0.5 × (0.25 × 0.5 + 0.102 × 0.5) = 0.104, (4.30)

where cMω is consistent with rE = 0.25 before tax, where rE is the ROE. If the original
mortgage portfolio fails to generate this required return, then rE adjusts. Since the original
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Table 4: Original mortgage portfolio.

Current funding

Cost of equity (cE) 0.25

Cost of subordinate debt (cSD) 0.102

Cost of deposits (cD) 0.101

Structure

Cost of sen tranches (cBS) 0.098

Weight of sen tranches (ωBS) 0.9

Maturity of sen tranches (mBS) 10 years

Cost of subtranches (cBSub) 0.1061

Weight of subtranches (ωBSub) 0.1

Maturity of subtranches (mBSub) 10 years

Direct costs of the structure (cΣ) 0.002

Original assets

Reference mortgage portfolio rate of return (rM) 0.102

Reference mortgage portfolio duration (yM) 7 years

Outstanding balances

Outstanding mortgage value (M) 10 000

Securitized mortgage value (fΣM) 6500

Table 5: Required capital before and after securitization.

Outstanding balances Value Required capital

Original mortgage portfolio (M) 10 000 400
Reference mortgage portfolio (fΣM) 6500 260
Sen tranches (BS) 5850 Sold
Subtranches (BSub) 650 Sold
Final mortgage portfolio ((1 − fΣ)M) 3500 140
Total mortgages ((1 − fΣ)M) 3500 —
Total weighted mortgages (Mω) 1750 140

mortgage portfolio generates only rM = 0.102 < cMω = 0.104, the actual rE < 0.25. The
return actually obtained by shareholders is such that the average cost of funds is identical to
rA = 0.102. If rA = cMω, then effective rE may be computed as in

rA = 0.96 × 0.101 + 0.08 × 0.5 ×
(
rE × 0.5 + 0.102 × 0.5

)
. (4.31)

After calculation, rE = 0.15 < 0.25 before tax. In this case, it would be impossible to raise new
capital since the portfolio return does not compensate its risk. Therefore, the originator cannot
originate any additional mortgages without securitization. In addition, the securitization
needs to improve the return to shareholders from (1 − fΣ)M.

The potential benefit of securitization is a reduction in cMω. The cost of funds via
securitization, cMΣω, is the weighted cost of the sen and subtranches (denoted by cBSω and
cBSubω, resp.) plus any additional cost of the structure cΣ = 0.002. Without considering
differences in duration, the cost of sen notes is cBSω = 9.8% and that of sub notes is
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Table 6: Costs and benefits from mortgage securitization.

cMω 0.102

cBSub 0.1061

cMΣω 0.0988

cMΣωA 0.1008

Reference mortgage portfolio value at cMω 1

Reference mortgage portfolio value at cMΣωA 1.0084

Kes 0.0084

Table 7: Effect of securitization on return on capital.

Presecuritization of 6500 Balances Returns and costs (%) Returns and costs

Mortgages 10000 0.102 1020
Deposits 9600 −0.101 −969.6
Equity capital 200 30
Subordinate debt 200 −0.101 −20.2
Return on capital 0.15

Mortgages 3500 0.102001292 357.0
Deposits 3360 −0.101 −339.36
Equity capital 70
Subordinate debt 70 −0.101 −7.07
Return on capital 0.20263

Mortgages 3500 0.102001292 357.0
Deposits 3360 −0.101 −339.36
Equity capital 190 29.9991
Subordinate debt 190 −0.101 −19.19
Return on capital 0.15789

cBSubω = 10.61%. The weighted average is cMΣω before monitoring and transaction costs,
so that

cMΣω = 0.09881 = 0.9 × 0.098 + 0.1 × 0.1061. (4.32)

The overall cost of securitization, cMΣωA, is the sum of cMΣω and the annual cΣ = 0.002
averaged over the life of the deal. The overall costs, cMΣωA, become the aggregate weighted
cost of funds via securitization so that

cMΣωA = 0.10081 = cMΣω + 0.002 = 0.09881 + 0.002. (4.33)

From the above, we draw the following preliminary conclusions. Firstly, we note that
cMΣωA = 0.10081 < cMω = 0.104. This is sufficient to make mortgage securitization
an attractive option. Also, cMΣωA = 0.10081 < rM = 0.102. Therefore, selling the
reference mortgage portfolio to SPV generates a capital gain which improves the originator’s
profitability. However, the change in rE remains to be quantified.



Discrete Dynamics in Nature and Society 31

4.3.2. Return on Equity

The value of the reference mortgage portfolio, fΣM, is the discounted value of cash flows
calculated at a rate equal to the required return to originators, rB. The average required
return to originators who buy SPV’s securities is rB = 0.10081 = cMΣωA. For lenders and
shareholders, the average return on the unsecuritized mortgage portfolio is rls = 0.102.
Nevertheless, existing shareholders would like to have rE = 0.25 instead of rE = 0.15 resulting
from insufficient rA = 0.102. In order to obtain rE = 0.25, the originator’s ROA should be
higher and reach rA = 0.104. The present value of fΣM for the originators is the discounted
value of future flows at δ = 0.1008. The value of this mortgage portfolio for those who fund
it results from discounting the same cash flows at δ = 0.102, either with the current effective
rE = 0.15 or δ = 0.104, with a required rE = 0.25. In both cases, cMΣω > cMω. Therefore, the
price of the originator’s reference mortgage portfolio, at the δ = 0.1008 discount rate required
by originators, will be higher than the price calculated with either δ = 0.102 or δ = 0.104.
The difference is a capital gain for the originator’s existing shareholders. Since the details of
projected cash flows generated by fΣM are unknown, an accurate calculation of its present
value is not feasible. In practice, a securitization model generates the entire cash flows, with
all interest received from the reference mortgage portfolio, rM, voluntary and involuntary
prepayments, as well as recoveries.

For this example, we simplify the entire process by circumventing model intricacy
for capital structure. The duration formula offers an easier way to get a valuation for the
originator’s reference mortgage portfolio. We know that the discounted value of future flows
generated by the reference mortgage portfolio at rA = 0.102 is exactly 1000 because its
return is 0.102. With another discount rate, the present value differs from this face value.
An approximation of this new value can be obtained from the duration formula via

p1fΣM − 100
100

=
−Duration

(1 + i)
(
δ − rM

) , (4.34)

where the present value of the reference mortgage portfolio is denoted by p1fΣM. In this
case, the rate of return from fΣM is rM, and the discount rate is δ, while the ratio (p1fΣM −
100)/100 provides this value as a percentage of the face value, M. The duration formula
provides p1fΣM given all three other parameters so that

p1fΣM(% of Face Value) = 100% +Duration
(
rM% − δ%

)
. (4.35)

Since rM = 0.102, the value of fΣM at the discount rate δ = 10.08% is

p1fΣM = 1 + 7 × (0.102 − 0.1008) = 1.0084. (4.36)

This means that the sale of mortgages to the SPV generates Kes = 0.0084 over an amount of
6500 or 54.6 in value. The sale of the reference mortgage portfolio will generate a capital gain
only when cMΣωA < μM = 0.102, so that

cMΣωA < cMω. (4.37)
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In this case, the capital gain from the sale of fΣM will effectively increase revenues, thereby
increasing the average rA on the balance sheet. This is a sufficient condition to improve rE

under present assumptions. The reason is that the effective ROE remains a linear function
of the effective rM inclusive of capital gains from the sale of fΣM to SPV, as long as the
weights used to calculate it from rA as a percentage of the original mortgage portfolio remain
approximately constant. This relation remains

rA = 0.96 × 0.101 + 0.08 × 0.5 ×
(
rE × 0.5 + 0.102 × 0.5

)
. (4.38)

This is true as long as E ∝ fΣM, which is the case in this example. However, in general,
Ke�∝fΣM, and the linear relationship collapses. One has to take uncertainty into account if
one is required to determine the effective rE. Note that current cMω = 0.102, by definition,
since it equates rM with the weighted average cost of capital: effective percentage of rA of
effective percentage of cMω. The implied return to shareholders is rls = 0.15. Whenever,
cMΣωA < rM, it is by definition lower than the effective cMω. If the shareholders obtain
rE = 0.25, instead of the effective rE = 0.15 only, then cMω = 0.104. This securitization would
be profitable as long as cMΣωA < 0.104. Since, in this case, cMΣωA = 0.1008, the deal meets
both conditions. However, the first one only is sufficient to generate capital gain. Using the
current effective rE = 0.15, we find that the originator’s capital gain from selling mortgages
is 0.0084 as shown in Table 6.

It is possible to convert Kes from securitization into an additional annualized margin
obtained over the life of the deal. A simple proxy for this annual margin is equal to the
instantaneous capital gain averaged over the life of the deal (ignoring the time value of
money). The gain isKes = 54.6 = 0.0084×6500. This implies that subsequent to securitization,
the reference mortgage portfolio provides rM = 0.102 plus an annual return of Kes = 0.0084
applicable only to fΣM = 6500. Once the original mortgage portfolio has been securitized,
the size of the balance sheet drops to 3500 that still provides rM = 0.102. There is an additional
return due to the capital gain. Since this annualized capital gain is Kes = 0.0084 of 6500, it is
(0.0084/6500)×3500 in percentage of (1−fΣ)M or 0.000001292 applicable to 3500. Accordingly
rM = 0.102 increases to rM = 0.102001292 after mortgage securitization. This increased rM

also implies a higher rE (see Section 4.3.3).

4.3.3. Enhancing Return on Equity via Securitization

Under a forfeit valuation of capital as a function of fΣM, it is relatively easy to determine
whether the securitization enhances rE, by how much and what the limitations are. Under
full economic analysis, the capital results from a direct calculation of the reference and
unsecuritized mortgage portfolios. The enhancement issue consists of finding out whether
the securitization enhances the risk-return profile of the original mortgage portfolio and,
more practically, whether postsecuritization rE is higher or lower than presecuritization rE.
We address both these issues in the sequel.

Table 7 shows the income statement under the originator’s reference and unsecuritized
mortgage portfolios. The deposits, subordinate debt, and equity represent the same
percentages of the original mortgage portfolio, namely, 96%, 2%, and 2%, respectively. Their
costs are identical to the above.
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Table 8: Effect of regret on risk allocation and liquidity.

Cases Behavior with respect to Risk-averse SIB Regret-averse SIB

Case 1: Probability of investing = 0 > 0

q(P) =
rT

ξP
in subprime SMPs ∴ π∗

0 = 0 ∴ π∗
ρ > 0

Case 2: Probability of investing = 0 > 0

q(P) 	 rT

ξP
in treasuries ∴ π∗

0 = 1 ∴ π∗
ρ < 1

Case 1:

q(P) =
rT

ξP
Liquidity effect High Low

Case 2:

q(P) >
rT

ξP
Liquidity effect Low Low if ρ 	 0

q(P) 	 rT

ξP
Lower Higher if ρ 	 0

Before the original mortgage portfolio is securitized, rM = 0.102, while thereafter rM =
0.102001292. This gain influences the ROE directly with an increase from rE = 0.15 to rE =
0.20263. In general, an increase in rM causing an increase in rE is not guaranteed since Kes

is the marginal risk contribution of fΣM. Therefore, an increase in rM due to Kes from the
sale of the reference mortgage portfolio to SPV might not increase the rE if Kes is lower.
For instance, if K decreases to 190 and subordinate debt does also, the remaining deposits
being the complement to 9000 or 9620, then the same calculations would show that the new
ROE becomes rE = 0.15789 = 30/190. It is necessary to determine Ke before and after the
original mortgage portfolio is securitized in order to determine the size ofKes and to perform
return calculations on new capital subsequent to securitization. Once Ke is determined and
converted into a percentage of the original mortgage portfolio, we have the same type of
formula as in the above.

5. Risk, Insurance, Regret, and the SMC

In this section, we provide an analysis of risk, regret, and monoline insurance as well as an
investor optimization problem and their relationship with the SMC. As far as the former is
concerned, themain risks that are discussed in the sequel are credit, maturitymismatch, basis,
counterparty, liquidity, synthetic, prepayment, interest rate, price, tranching, and systemic
risks.

5.1. Risk, Regret, and the SMC

In this subsection, we discuss the relationship between risk, regret and monoline insurance,
and the SMC.

5.1.1. Risk, Regret, Structured Mortgage Products, and the SMC

Our interest in Section 2.1.2 is in the risk allocation spread given by (2.4) and (2.5). Here, we
have that the investor’s rate of return on subprime SMPs, rP , is a function of the subprime
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mortgage rate that is defined as the sum of the index rate and risk premium. The premium
is an indication of perceived subprime risk associated with SMPs. When the premium is low
(high), investors will receive a relatively low (high) return on their SMP investment. Before
the SMC, the average difference between prime and subprime mortgage interest rates (the
subprime markup) declined quite dramatically. In other words, the risk premium required to
originate subprimemortgages declined. This continued to occur during the SMC even though
the level of macroeconomic activity and the quality of mortgages, both, declined. A maturity
mismatch problem arises from the fact that the investor takes deposits which are very liquid
and invests it in illiquid subprime SMPs.

5.1.2. Investor Optimization Problem with Risk and Regret and the SMC

In this subsection, we briefly discuss the solutions emanating from the optimization problems
solved in Section 2.2 and their relationships with the SMC. For this optimization problem, we
recall that the objective function, set of admissible controls, and value function are given by
(2.8), (2.9), and (2.10), respectively.

The primary message conveyed by Theorem 2.1 is that regret aversion—as reflected
by the convexity of g in (2.7)—results in the suboptimality of extreme decisions. This result
shows that for (2.4), the regret-averse investor invests more in subprime SMPs, whereas the
risk-averse investor would allocate its available funds to treasuries. If (2.5) holds, the risk-
averse investor makes a decision of investing all of its funds in subprime SMPs. However,
the regret-averse investor would choose to invest less in subprime SMPs and the rest in
treasuries. In particular, when (2.5) holds, the investment strategies of both risk- and regret-
averse investors are likely to produce lower and higher liquidity in the secondary mortgage
market, respectively. (In our case, liquidity refers to the degree to which SMPs can be bought
or sold in the secondary market without affecting their prices. Liquidity is characterized by a
high level of trading in SMPs in this market. The complexity of SMPs conceal risk and reduce
liquidity. In circumstances where mortgage default rates increase, SMPs that have blended
varying types of credit risk in a complex transactions network become “contaminated.”
Contamination spreads across the banking sector, the wholesale markets, the retail markets,
insurance companies, the asset management industry, and into the household. The situation
further deteriorates when holders of SMPs have trouble finding other investors to buy
these as the secondary mortgage market runs short of liquidity. Those holding SMPs, and
who took out financing to do so, may have margin calls that force them to trade, at a
discount, what illiquid underlying investments are. Liquidity is further restricted because
financially distressed investors will hold on to cash as an insurance against further chargeoffs
of irrecoverablemortgages. In the sequel, we comment on the possible liquidity problems that
arise from the allocation of funds by the investor under risk and regret.) In the case where
(2.4) is true, the allocating strategies of risk- and regret-averse investors are likely to result
in higher and lower liquidity in the market, respectively. In the first case, if every investor
is risk averse, there will be a slowing of investment in mortgage markets. Similarly, in the
second instance, that is, (2.4), if every bank is regret averse, we expect a boom in the economy.
Proposition 2.3 shows that, when the investor is more regret averse, under (2.4) it will invest
more in subprime SMPs, whereas for (2.5) it chooses to invest less proportion of its funds in
subprime SMPs. Inline with this discussion, we recall that, before the SMC, institutions were
more willing to lend, which led to more investment in subprime SMPs. This is related to the
previous analysis on investment strategies for regret- and risk-averse investors under (2.4)
and (2.5). During the SMC, the same investors switched from investing in subprime SMPs to
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Figure 7: The liquidity effect.

treasuries. This can also be linked with (2.4) and (2.5) for risk- and regret-averse investors,
respectively. The investment away from subprime SMPs to treasuries was a root cause of
the lack of liquidity in secondary mortgage markets. Figure 7 illustrates the behavior of the
investor and its association with liquidity.

Corollary 2.2 claims that, for some intermediate level of ξq(P)P − rT, a regret-averse
investor can choose a risk allocation as if regret was not considered. As the level of regret
aversion rises, that is, the value of ρ increases, the amount of available funds invested in
subprime SMPs increases.With a relatively large ξq(P)P−rT, the risk-averse investor allocates
all of its available funds to the subprime SMPs, while the regret-averse investor invests some
money in treasuries, T. As the level of regret aversion increases, with a high ξq(P)P − rT, the
amount of available funds invested in the subprime SMPs decreases. Hence, the certainty
equivalent is the point q(P) = r̃T/ξP , where a regret-averse investor chooses an optimal
risk allocation as if regret was not considered. In Proposition 2.3, investors that weigh regret
aversion heavily, that is, have large values for ρ, are more likely to hold subprime SMPs in its
portfolio under the assumption that ξq(P)P − rT is low.

5.2. Monoline Insurance and the SMC

In this subsection, we discuss monoline insurance with regret and the main monoline
insurance result in relation to the SMC.

5.2.1. Monoline Insurance with Regret and the SMC

In Section 3.1, we discuss monoline insurance with regret. Prior to 2007, not a single
monoline insurer had ever filed for bankruptcy or been downgraded (see, e.g., [2]). On 7
November 2007, ACA, the only single-A-rated insurer, reported a $1 billion loss that wiped
out equity and resulted in negative nett worth [27]. On 19 November 2007, ACA noted that if
downgraded below A, collateral would have to be posted to comply with standard insurance
agreements and that, based on fair values, they would not have the ability to post such
collateral. On December 13, ACA’s stock was delisted from the NYSE due to low market
price and negative net worth, but ACA retained its A rating (see, e.g., [28]). Finally, on 19
December 2007, it was downgraded to CCC by S&P (see [29]).
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On 18 January 2008, Ambac Financial Group Inc’s rating was reduced from AAA to
AA by Fitch Ratings (see, e.g., [30]). Because the rating of the monoline insurer is endowed
upon the RMP, the downgrade of a major monoline triggered a simultaneous downgrade
of bonds from over 100 000 municipalities and institutions totalling more than $500 billion.
Rating agencies placed the other monoline insurers under review. CDS markets quoted rates
for monoline default protection more typical for less than investment grade credits (see, e.g.,
[31]). Structured credit issuance ceased, and many municipal bond issuers spurned bond
insurance, as the market was no longer willing to pay the traditional premium for monoline-
backed paper (see, e.g., [32]). New players such as Warren Buffett’s Berkshire Hathaway
Assurance entered the market (see [33]). The illiquidity of the over-the-counter market in
default insurance is illustrated by Berkshire taking four years (2003–2006) to unwind 26 000
undesirable swap positions in calm market conditions, losing $400 million in the process
(see, e.g., [2]). By January 2008, many municipal and institutional bonds were trading at
prices as if they were uninsured, effectively discounting monoline insurance completely.
The tardy reaction of ratings agencies in detecting this resulted in the slow downgrading
of subprime mortgage debt a year earlier. Besides this, rating agencies have been criticized
for giving monoline insurers inflated ratings that enables them to charge a substantial fee to
endow SMP bonds with these ratings, even when the bonds were issued by superior credits.
On Thursday, 19 June 2008, Moody’s also downgraded Ambac and MBIA from Aaa to Aa3
and A2, respectively (see, e.g., [34]). The stock prices for the publicly traded monolines, like
AMBAC and MBIA, fell dramatically. AMBAC had climbed from the teens in the early 1990s
to a price of 96 in 2007 but deteriorated to about 1 dollar by mid 2008. MBIA had a similar
fate: climbing to the 60s by 2007, but by 2009 trading at about 6 dollars (see, e.g., [2]).

In 2009, the New York State Insurance Department introduced several new regulations
regarding CDSs, CDOs, monolines, and other entities involved in the SMC. These regulations
were described in the document entitled “Circular Letter No. 19 (2008)” (see, e.g., [35]). In
2010, the Wisconsin insurance commissioner took over Ambac’s CDS contracts, with the plan
to pay about 25 cents on the dollar to the “counterparties” that are owed (see, e.g., [2]). In
2009, Berkshire Hathaway suspended operations involving municipal bond insurance. On 8
November 2010, Ambac filed for Chapter 11 bankruptcy (see, e.g., [2]).

5.2.2. The Main Monoline Insurance Result and the SMC

Under the indifference equations (3.3) and (3.6), Theorem 3.3 presented in Section 3.2
demonstrates that, if the proportion of available funds invested in the subprime SMPs is
low, the regret-averse investor would be willing to forfeit less for the monoline insurer’s rate
of return guarantee (compare with Section 3.1 for rate of return) than would a risk-averse
investor. In this case, the benefits frommonoline insurance in mitigating regret are small, and
the additional regret cost through the price weighs more as in (3.8).

On the other hand, for (3.9), when investment in the subprime SMPs is large and
the forfeit is small (see (3.1) for more information), the benefits of regret mitigation would
be large and would outweigh its cost. Under these conditions, both risk- and regret-averse
investors would forfeit the same. Here we note the importance of Lemma 3.2 in setting the
hypothesis of Theorem 3.3.

5.3. Examples Involving Structured Mortgage Products and the SMC

In this subsection, we discuss the relationship between the SMC and the examples involving
subprime residential mortgage products.
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5.3.1. Numerical Example Involving Risk, Insurance, and Regret and the SMC

The numerical example in Section 4.1 determines values for the functional form for the
probability of success, expected returns, as well as investment decisions between SMPs and
treasuries that are partly based on their allocation spread. Furthermore, the corresponding
payout frommonoline insurance and optimal level of funds to be invested in subprime SMPs
is computed.

Section 4.1 reinforces that the monoline insurer assumes the credit risk that SPV does
not wish to bear in exchange for periodic premiums. In this regard, SPV will be exposed
to counterparty risk rather than credit risk. Here, counterparty risk refers to the risk that
the monoline insurer will not be able to make a payment to the investor if SPVs default.
This could happen because monoline insurers are over-the-counter and unregulated, and
the contracts often get traded so much that it is hard to know who stands at each end of a
transaction. There is the possibility that the monoline insurer (and, indeed, the SPV)may not
have the financial strength to abide by the insurance contract’s provisions, making it difficult
to value the contracts. The leverage involved in many monoline insurance transactions and
the possibility that a widespread downturn in the market could cause massive SPV defaults
and challenge the ability of monoline insurers to pay their obligations, which adds to the
uncertainty. During the SMC, as the net worth of banks and other financial institutions
deteriorated because of losses related to subprime mortgages and SMPs, the likelihood
increased that monoline insurers would have to pay their counterparties.

5.3.2. Illustrative Example of Structured Mortgage Product Complexity and the SMC

The example in Section 4.2 resonates with the IDIOM hypothesis postulated in [1] that
the SMC was largely caused by the intricacy and design of subprime agents, mortgage
origination, and securitization that led to information problems (loss, asymmetry, and
contagion), valuation opaqueness, and ineffective risk mitigation. Some risks underlying this
complexity is prepayment, interest rate, and price risk. Prepayments of mortgage principal
include both voluntary and involuntary (default) prepayments. The dynamics of involuntary
prepayments over time has been described under assumptions about the level and timing of
mortgage losses. As a consequence, assumptions about the prepayment curve really relate to
the severity of loss from defaulted mortgages (in order to identify the number of involuntary
prepayments) and the number of voluntary prepayments. Interest rate risk can be associated
with mortgage refinancing problems related to the change in interest rates from, for instance,
the teaser to the stepup rate. In the context of subprime SMPs, it is a source of considerable
uncertainty in the analysis of cash flows which can lead to the proliferation of price risk.

From (4.25) and (4.26), it is clear that Πc
1 is dependent on the structure of the

securitization,N1, and on the losses, Ss
1, incurred by the sen tranche of an RMBS (see formulas

(4.19) and (4.24) for exact formulations). In addition, we note that Ss
1 is dependent on house

price, H, appreciation. M does not appear in Πc
1, because, if the mortgage is refinanced at

time 1, it is fully paid out, and there are no losses (compare with (4.24)). Therefore,M should
be under the expectation operator. Also, the relationship between H and Πc

1 only appears
through the recovery value of the house if default occurs. In reality, refinancing results in M
being paid into the securitization. This cash allocation should follow the priority rules and
triggers which govern the amortization. The example in Section 4.2 does not make provision
for this situation.

In essence, the valuation of Πc
1 requires integrating the above expression over a

distribution of house prices (compare with formula (4.27) for the CDO payoff). Two
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practical problems arise from this situation. First, the dependence on house prices creates
a practical valuation problem—even if the distribution of house prices is known. For
instance, as in the computational example in Section 4.2, the subprime securitization has
four portfolios, each consisting of many mortgages. The CDO has purchased 100 tranches
from different securitizations, including, say, twenty sen subprime tranches from different
deals. In principle, the issue is how to evaluate the sen CDO tranche (even ignoring all the
overcollateralization (OC) tests and other complications of the CDO structure). Besides the
fact that this is very difficult to accomplish, interlinking the three structures together in a
meaningful way is virtually impossible. In principle, an investor who actually purchased a
particular CDO tranche or subprime RMBS tranche would receive trustee reports and would,
therefore, have some knowledge about the reference mortgage portfolios. However, since
the computational complexity is very high, it remains difficult for an investor in subprime
RMBSs to look through the reference portfolios and determine the value of such tranches.
The second problem involves accounting for all the structure. Despite the fact that there are
vendor-provided packages that model the structure of structured products, the valuation is
based on (point estimate) assumptions that are input by the user, rather than simulation of
the performance of the reference mortgage portfolios.

From the above, we can conclude that mortgage securitization via tranching makes
subprime mortgage securitization deals very complex and risky. Besides the problems posed
by estimation of the reference mortgage portfolio’s loss distribution, tranching requires in-
depth, deal-specific documentation to ensure that the desired characteristics, such as the
seniority ordering the various tranches, will be delivered in all situations. In addition,
complexity may be amplified by the involvement of regret-averse asset managers and other
parties, whose own incentives to act in the interest of some investor classes at the expense
of others may need to be curtailed. With increased complexity, less-sophisticated investors
have more difficulty understanding SMP tranching and thus a diminished capacity to make
informed investment decisions about related structured financial products. For instance,
tranches from the same deal may have different risk, reward, and/or maturity characteristics.
Modeling the performance of tranched transactions based on historical performance may
have led to the overrating (by rating agencies) and underestimation of risks (by investors)
of asset-backed securities with high-yield debt as their underlying assets. These factors have
contributed towards the SMC.

5.3.3. Numerical Example Involving Structured Mortgage Product Returns and the SMC

The part of our example of mortgage securitization in Section 4.3.1 does not suggest that it
is generally true that all outcomes will be favorable, because it is possible that cMΣω < cMω,
but is still higher than the reference mortgage portfolio return, rM, thereby generating a loss
when selling mortgages to SPVs. Even if cMΣω > cMω, there would be room to improve
the originator’s portfolio rE because of Kes. As a consequence, the discussion presented in
Section 4.3.1 is not representative of all possible situations.

In Section 4.3.2, we note that the influence on rE is from both lower-level E and
reduced cMΣωA. The gain value is either present value or an improvement of annual margins
averaged over the life of the deal. In the example, Kes is a present forfeit percentage
of 4% used as an input. When considering the SMC, this same percentage of mortgages
could result from modeling Ke and could be an output of a mortgage portfolio model. In
both cases, an analysis of the securitization economics should strive to determine whether
securitization improves the risk-return profile of the original mortgage portfolio. Enhancing
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the risk-return profile means optimizing the efficient frontier or increasing rE for the reference
mortgage portfolio. We may ascertain whether this is true by calculating rE and rEΣ as well
as comparing them.

From Section 4.3.3, if securitization improves rE, the originator might be inclined to
increase fΣM. Potentially, the originator could benefit even more from the good relationship
between fΣM and rE—known as the leverage effect of securitization. Leverage is positive
as long as cMΣω = 0.1008 remains fixed with a higher fΣM leading to a higher final rE

subsequent to securitization. For instance, using the example in Section 4.3.3, securitizing
2000 instead of 1000, and keeping the same proportions of mortgages to D and K, would
automatically increase rE. This increase does not result from an additional capital gain in
fΣM, since this gain remains 0.00833 of mortgages. Instead it results from the fact that the
additional annualized rate of return, ra, is proportional to the ratio of mortgages before and
after securitization. In the example, with fΣM = 1000, ra as a percentage of fΣM is

ra = 0.000926 = 0.00833 × 1000
9000

(5.1)

of mortgages. Should the originator sell 2000, the same percentage of fΣM would increase to
0.001851 = 0.00833×2000/9000, the earnings before tax (EBT)would become re = 0.33346, and
the return on capital (now 160) would be rK = 0.0020841 = 0.33346/160. Another simulation
will demonstrate that fΣM = 5000 would provide an re = 0.23965 and rK = 0.23965. In
fact, fΣM = 5553 would allow hitting the 25% target return on (1 − fΣ)M. This is the
leverage effect of securitization, which is more than proportional to fΣM. We note that
there are limits to this leverage effect. Firstly, an originator securitizing all mortgages (i.e.,
fΣ = 1 as in true-sales securitization) changes its core operations by becoming a pure OR
reselling new business to SPVs. As in the OTH model, origination and lending, collecting
deposits, and providing financial services to customers are the core business of commercial
banking. Keeping mortgages on the balance sheet is part of the core business. This is a first
reason for OR not going to the extreme by securitizing its entire balance sheet. Secondly,
ORs need to replenish the portfolio of securitized receivables. In order to do so, they need
to keep assets on the balance sheet. This happens, for instance, when securitizing credit
cards that amortize much quicker than mortgages. In such cases, the pool of credit card
receivables rolls over with time and fluctuates depending on the customers’ behavior. The
originator needs a pool of such receivables to replenish its reference mortgage portfolio.
Thirdly, increasing securitization would result in significant changes in operations and might
change teh originators’ perception by, for instance, modifying its cost of funds. This may or
may not be true depending on how Kes is utilized.

6. Conclusions and Future Directions

This paper shows how regret can influence the risk allocation behavior of investors. Our
outcomes show that an investor with regret-averse attributes will select risk allocations that
are less extreme than those predicted by conventional expected utility. If very risky subprime
SMPs were selected by a purely risk-averse investor, its regret-averse counterpart will choose
less risky subprime SMPs. Conversely, when the purely risk-averse investor picks a riskless
portfolio, the regret-averse investor would prefer a riskier portfolio. In essence, regret-averse
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investors tend to hedge their bets, taking into account the possibility that their preferences
may turn out to be suboptimal after the maturity of the subprime SMP contract.

More specifically, from Proposition 2.3, we conclude that investors that weigh regret
aversion more strongly than risk aversion (as measured by ρ) are more likely to hold
subprime SMPs in their portfolio when ξq(P)P − rT is low. Conversely, investors will hold
less subprime SMPs if ξq(P)P − rT is high. Corollary 2.2 claims that for q(P) = r̃T/ξP , a
regret-averse investor chooses an asset portfolio allocation as if regret was not considered. We
also commented on how much a regret-averse investor is willing to pay for credit protection
via monoline insurance, given a fixed asset portfolio allocation. Theorem 2.1 shows that
regret allows investor decisions to move away from πρ∗ = 0 and πρ∗ = 1, if no credit
protection is bought. This means that investors who take regret into account will hold more
subprime SMPs when ξq(P)P − rT is low but less when ξq(P)P − rT is high. However, under
credit protection, Theorem 3.3 shows that regret-averse investors value monoline insurance
contracts less than purely risk-averse investors, when the investment in subprime SMPs is
small. On the other hand, both risk- and regret-averse investors will forfeit the same when
the proportion of available funds invested in subprime SMPs is high. Table 8 gives a summary
of the main results obtained here.

The other main thrust of the paper is the discussion of credit (including counterparty
and default), market (including interest rate, price, and liquidity), operational (including
house appraisal, valuation, and compensation), tranching (including maturity mismatch and
synthetic), and systemic (including maturity transformation) risks.

A shortcoming of this paper is that it does not provide a complete description of what
would happen if the economy were to deteriorate or improve from one period to the next.
This is especially interesting in the light of the fact that in the real economy one has yield
curves that are not flat and so describe changes in the dynamics of the SMP market. More
specifically, we would like to know how this added structure will affect the results obtained
in this paper. This is a question for future consideration.

Appendices

In this section, we provide more details about regret theory, prove Theorems 2.1 and 3.3,
Proposition 2.3, as well as Corollary 2.2.

A. More Details about Regret Theory

The utility function in (2.7) is derived from regret theory as pioneered in [21–25]. In the
main, these contributions discuss decisionmakers that optimize the expected value of a utility
function of the type

u
(
x, y
)
= v(x) + g

[
v(x) − v

(
y
)]
, (A.1)

where u(·), v(·), and g(·) are defined in an analogous manner to the variables subsequent to
(2.7). In essence, x is the chosen outcome—the outcome on which an individual has bet—and
y is the foregone outcome. Also, g(·) represents the regret or rejoicing that the decision maker
experiences as a result of receiving x as opposed to y. If x > y, then the decision maker made
a beneficial choice and gains some additional utility by having foregone the alternative. If
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x < y, then the decision maker experiences disutility from having foregone the possibility of
performing better with a choice of the foregone alternative. We conclude that regret theory
not only supposes that decision-makers experience regret, but also that the anticipation of
experiencing regret impacts the decision-making processes (see. e.g., [36]).

By contrast to the regret theoretic formulation in (A.1), where two outcomes of a
lottery are discussed, our work involves preferences among actions. It is straightforward to
convert the regret utility function in (A.1) into the expected utility function

E
[
U
(
x, y
)]

=
∫
[
v(xθ) − k · g(v(xθ) − v

(
yθ

))]
dF(θ), (A.2)

where F(θ) is a cumulative distribution function that reflects the subjective beliefs about
realizations of states of the world θ. In this regard, xθ (yθ) is the outcome in state of the
world θ that accrues when the chosen action x (y) is chosen. This expected regret utility
emanates from [27]—comparing preferences for actions, assuming subjective probabilities—
rather than the work of von Neumann-Morgenstern that proposes bets on lotteries given
known probabilities.

It has been noted that (A.3) does not satisfy the Axiom of Independence—the payoff
of the foregone action affects the value of the chosen one. As a consequence, the Axioms for
Subjective Expected Utility in [27] cannot be represented by (A.3). In recent literature (see,
e.g., [26]), this problem is solved by utilizing a regret-theoretical expected utility (RTEU)
function of the form

Er[U
(
x, y
)]

=
∫
[
v(wθ) − k · g(v(wmax

θ

) − v(wθ)
)]
dF(θ), (A.3)

that is, consistent with the Axioms of Regret Theory of [25] and the Axiom of Irrelevance of
Statewise Dominated Alternatives (ISDA) proposed by [24]. The latter requires the decision
maker to render irrelevant any actions in the feasible set that are statewise dominated by other
actions in this set. Of considerable consequence in Quiggin’s ISDA is that if a decisionmaker’s
preferences are consistent with ISDA and the Sugden axioms, then the regret associated with
a given action in a particular state of nature depends only on the actual outcome and the best
possible outcome that the individual could have attained in that same state of nature. Hence,
Er[U(x, y)] from (A.3) embeds preferences that are consistent with these axioms. Since the
Sugden axioms are a rejigging of those of [27], we have a normative basis for Er[U(x, y)] that
enables the use of themodel to analyzemonoline insurance choices. As a consequence, we are
able to focus exclusively on regret and its associated disutility. (This is in contrast to erstwhile
definitions of regret theory that also allow for rejoicing when the better outcome is chosen for
the eventual state of the world. Indeed, because g(0) = 0 and because one can never do better
than the best possible outcome, we have eliminated rejoicing from the regret/rejoice model
altogether. We can then restrict k ≥ 0 as measure of the influence of regret on the decision.).

B. Proof of Theorem 2.1

The statement of Theorem 2.1 is equivalent to

(1) if (2.4) holds, then πρ∗ > 0 for all ρ > 0, with π∗
0 = 0;
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(2) if (2.5) holds, then πρ∗ < 1 for all ρ > 0, with π∗
0 = 1.

In this regard, we use standard maximization arguments to prove the above results. In
particular, we must show that the first derivative of (2.10) with respect to π , at π∗

ρ = 0 and
π∗
ρ = 1, does not vanish. In this regard, we have that

f(π) = f0
(
1 + πrP + (1 − π)rT

)
, fmax = f0

(
1 +max

(
rP , rT

))
(B.1)

denote the investor’s final fund level and expost optimal fund level, respectively. The first-
and second-order conditions for (2.10) are

dE
[
Uρ
(
f(π)

)]

dπ
= 0, (B.2)

d2E
[
Uρ
(
f(π)

)]

dπ2
< 0, (B.3)

respectively. But

dE
[
Uρ
(
f(π)

)]

dπ
= E
[
f0
(
rP − rT

)
U′(f(π)

)(
1 + ρg ′(U

(
fmax) −U

(
f(π)

)))]
,

d2E
[
Uρ
(
f(π)

)]

dπ2
= E
[

f2
0

(
rP − rT

)2
U′′(f(π)

)(
1 + ρg ′(U

(
fmax) −U

(
f(π)

)))
]

− E
[

f2
0

(
rP − rT

)2
ρU

′2(f(π)
)
g ′′(U

(
fmax) −U

(
f(π)

))
]

.

(B.4)

It then follows that (B.2) and (B.3) take the forms

dE
[
Uρ
(
f(π)

)]

dπ
= E
[
f0
(
rP − rT

)
U′(f(π)

)(
1 + ρ · g ′(U

(
fmax) −U

(
f(π)

)))]
= 0, (B.5)

d2E
[
Uρ
(
f(π)

)]

dπ2
= E
[

f2
0

(
rP − rT

)2
U′′(f(π)

)(
1 + ρ · g ′(U

(
fmax) −U

(
f(π)

)))
]

− E
[

f2
0

(
rP − rT

)2
ρU

′2(f(π)
)
g ′′(U

(
fmax) −U

(
f(π)

))
]

< 0,

(B.6)
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respectively. This implies that E[Uρ(f(π))] is strictly concave in π , so that any solution of
the first-order condition (B.5) uniquely fixes the global maximum. Furthermore, in this case,
a decomposition of (B.5) may be given by

dE
[
Uρ
(
f(π)

)]

dπ

=
dE
[
U0(f(π)

)]

dπ
+
∫ rT

−1
ρf0
(
rP − rT

)
U′(f(π)

)
g ′(U

(
f(0)

) −U
(
f(π)

))
dF
(
rP
)

+
∫∞

rT
ρf0
(
rP − rT

)
U′(f(π)

)
g ′(U

(
f(1)

) −U
(
f(π)

))
dF
(
rP
)
.

(B.7)

If we evaluate this first derivative at π = 0 and π = 1, then we obtain

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=0

=
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=0

+ ρf0U
′(f(0)

)
g ′(0)

∫ rT

−1

(
rP − rT

)
dF
(
rP
)

+ ρf0U
′(f(0)

)
∫∞

rT

(
rP − rT

)
g ′(U

(
f(1)

) −U
(
f(0)

))
dF
(
rP
)

>
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=0

+ ρf0U
′(f(0)

)
g ′(0)

∫ rT

−1

(
rP − rT

)
dF
(
rP
)

= f0U
′(f(0)

)(
E
[
rP
]
− rT
)(

1 + ρg ′(0)
)

= f0U
′(f(0)

)(
ξq(P)P − rT

)(
1 + ρg ′(0)

)
,

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=1

=
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=1

(B.8)

+
∫ rT

−1
ρf0
(
rP − rT

)
U′(f(1)

)
g ′(U

(
f(0)

) −U
(
f(1)

))
dF
(
rP
)

+
∫∞

rT
ρf0
(
rP − rT

)
U′(f(1)

)
g ′(0)dF

(
rP
)

<
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=1

+ ρf0g
′(0)
∫∞

rT

(
rP − rT

)
U′(f(1)

)
dF
(
rP
)

= f0E
[(

rP − rT
)
U′
(
f0
(
1 + rP

))](
1 + ρg ′(0)

)

=
{
E
[
rPU′

(
f0
(
1 + rP

))]
− rTE

[
U′
(
f0
(
1 + rP

))]}
f0
(
1 + ρg ′(0)

)
,



44 Discrete Dynamics in Nature and Society

respectively. As a result of this, if (2.4) holds, then

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=0

> 0 (B.9)

for all ρ > 0. On the other hand, if (2.5) holds, that is,

q(P) =
rTE
[
U′(f0

(
1 + rP

))]
+ cov

[−rP ,U′(f0
(
1 + rP

))]

ξIE
[
U′(f0

(
1 + rP

))] , (B.10)

and taking into account that

rT =
E
[
rPU′(f0

(
1 + rP

))]

E
[
U′(f0

(
1 + rP

))] , (B.11)

then

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=1

< 0 (B.12)

for all ρ > 0. This implies, in the former instance, that πρ∗ > 0 for all ρ > 0 and πρ∗ < 1 for all
ρ > 0 in the second situation.

C. Proof of Corollary 2.2

In Corollary 2.2, we must show that there exists a treasuries rate, r̃T, such that

0 < ξq(P)P − r̃T <
cov
(−rP ,U′(f0

(
1 + rP

)))

E
(
U′(f0

(
1 + rP

))) , (C.1)

and, for all ρ > 0, we have that πρ∗ = π∗
0 .

We have proved in Theorem 2.1, for any fixed ρ > 0, that

πρ∗ > 0, π∗
0 = 0, if (2.4) holds,

πρ∗ < 1, π∗
0 = 1, if (2.5) holds.

(C.2)

Furthermore, the Intermediate Value Theorem suggests the existence of a treasuries rate, r̃T,
with the property that

ξq(P)P > r̃T >
E
[
rPU′(f0

(
1 + rP

))]

E
[
U′(f0

(
1 + rP

))] (C.3)
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and πρ∗ = π∗
0 . The first-order derivative conditions

dE
[
U
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=π∗

0

= E
[
f0
(
rP − r̃T

(
ρ
))

U′
(
f
(
π0∗
))]

= 0 (C.4)

and (B.5) at π = πρ∗; that is,

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗

= E
[
f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))(

1 + ρg ′(U
(
fmax) −U

(
f
(
π∗
0
))))]

= 0.

(C.5)

It then follows that

E
[
f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))]

= E
[
f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))(

1 + ρg ′(U
(
fmax) −U

(
f
(
π∗
0
))))]

.

(C.6)

Assuming a continuous-time environment, we write

∫∞

−1
f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))
dF
(
rP
)

=
∫∞

−1
f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))(

1 + ρg ′(U
(
fmax) −U

(
f
(
π∗
0
))))

dF
(
rP
)
.

(C.7)

The above expression holds if and only if

f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))

= f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))(

1 + ρg ′(U
(
fmax) −U

(
f
(
π∗
0
))))

,

(C.8)

which simply means that

f0
(
rP − r̃T

(
ρ
))

U′(f
(
π∗
0
))
ρg ′(U

(
fmax) −U

(
f
(
π∗
0
)))

= 0. (C.9)

Therefore, we have that

rP − r̃T
(
ρ
)
= 0, (C.10)

since f0 > 0, ρ > 0, U′(·) > 0, and g ′(·) > 0. Thus, we conclude that for all ρ > 0, we have
r̃T(ρ) = rP .
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D. Proof of Proposition 2.3

In Proposition 2.3, we required to show that

∂πρ∗

∂ρ

⎧
⎨

⎩

> 0, if (2.4) holds,

< 0, if (2.5) holds.
(D.1)

Taking the total differential of the first-order condition (B.5) with respect to π and ρ yields

d

[
dE
[
Uρ
(
f(π)

)]

dπ

]∣
∣
∣
∣
∣
π=πρ∗

=
∂2E
[
Uρ
(
f(π)

)]

∂π2

∣
∣
∣
∣
∣
π=πρ∗

· dπ +
∂2E
[
Uρ
(
f(π)

)]

∂π∂ρ

∣
∣
∣
∣
∣
π=πρ∗

· dρ = 0.

(D.2)

In this case, we therefore have that

∂πρ∗

∂ρ
= − (∂2E

[
Uρ
(
f(π)

)]
/∂π∂ρ)

∣
∣
π=πρ∗

(∂2E
[
Uρ
(
f(π)

)]
/∂π2)

∣
∣
π=πρ∗

. (D.3)

Since it is true that

∂2E
[
Uρ
(
f(π)

)]

∂π2

∣
∣
∣
∣
∣
π=πρ∗

< 0, (D.4)

we may conclude that

sign
(
∂πρ∗

∂ρ

)

= sign

(
∂2E
[
Uρ
(
f(π)

)]

∂π∂ρ

∣
∣
∣
∣
∣
π=πρ∗

)

. (D.5)

We observe that the mixed partial derivative yields

∂2E
[
Uρ
(
f(π)

)]

∂π∂ρ

∣
∣
∣
∣
∣
π=πρ∗

= E
[
f0
(
rP − rT

)
U′(f(πρ∗)

)
ρg ′(U

(
fmax) −U

(
f(πρ∗)

))]
. (D.6)

Furthermore, from the first-order condition (B.5), it follows that

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗

=
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗

+ ρ · ∂
2E
[
Uρ
(
f(π)

)]

∂π∂ρ

∣
∣
∣
∣
∣
π=πρ∗

. (D.7)

Since we have that

dE
[
Uρ
(
f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗

= 0, (D.8)
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we can deduce that

sign
(
∂πρ∗

∂ρ

)

= sign

(
∂2E
[
Uρ
(
f(π)

)]

∂π∂ρ

∣
∣
∣
∣
∣
π=πρ∗

)

= − sign

(
dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗

)

. (D.9)

Our conclusion is that if (2.4) holds then πρ∗ > 0 for all ρ > 0 and π∗
0 = 0 according to

Theorem 2.1. This implies that

dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗>0

< 0, (D.10)

and, as a consequence, we have

∂πρ∗

∂ρ
> 0 (D.11)

as suggested by (D.9).
If, on the other hand, (2.5) holds, then πρ∗ < 1 for all ρ > 0 and π∗

0 = 1 according to
Theorem 2.1. By the method used in the above, this implies that

dE
[
U0(f(π)

)]

dπ

∣
∣
∣
∣
∣
π=πρ∗<1

> 0, (D.12)

and thus

∂πρ∗

∂ρ
< 0 (D.13)

by (D.9).

E. Proof of Theorem 3.3

The investor’s forfeit is implicitly defined through the conditional indifference equation (3.6).
A regret-averse investor is willing to make a smaller forfeit for the monoline insurance
guarantee than a risk-averse investor; that is, (3.8) holds for all rPg , if and only if

E
[
U
((

f0 − cρ
(
rPg, πf

))
ℵ
(
RPg, πf

))]
> E
[
U
((

f0 − c0
(
rPg, πf

))
ℵ
(
RPg, πf

))]

= E
[
U
(
f0ℵ
(
rP , πf

))] (E.1)

for all rPg . Define the function h : [0, 1] → R as

h
(
πf
)
= E
[
U
((

f0 − cρ
(
rPg, πf

))
ℵ
(
RPg, πf

))]
− E
[
U
(
f0ℵ
(
rP , πf

))]
. (E.2)
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A first observation is that for πf = 0, we have h(0) = 0. In order to prove that (3.8) holds for
small πf and all rPg , we thus have to show that h′(0) > 0. Finding the derivative of h with
respect to πf yields

h′
(
πf
)
= −∂c

ρ
(
rPg, πf

)

∂πf
E
[
U′
((

f0 − cρ
(
rPg, πf

))
ℵ
(
RPg, πf

))
ℵ
(
RPg, πf

)]

+ E
[(

f0 − cρ
(
rPg, πf

))(
RPg − rT

)
U′
((

f0 − cρ
(
rPg, πf

))
ℵ
(
RPg, πf

))]

− E
[
f0
(
rP − rT

)
U′
(
f0ℵ
(
rP , πf

))]
,

(E.3)

and thus

h′(0) = U′
(
f0
(
1 + rT

))
[

− ∂cρ
(
rPg, πf

)

∂πf

∣
∣
∣
∣
∣
πf=0

(
1 + rT

)
+ f0E

[
RPg − rP

]
]

. (E.4)

If we differentiate (3.6) with respect to πf , we obtain

E
[
f0
(
rP − rT

)
U′
(
f0ℵ
(
rP , πf

))(
1 + ρg ′

(
U
(
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(
f0ℵ
(
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))))]
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ρ
(
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)

∂πf
E
[
ℵ
(
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)
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(
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×
(
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(
U
(
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((
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(
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ℵ
(
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+ E
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(
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)(
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(
rPg, πf
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×
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(
U
(
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(
rPg, πf

))
ℵ
(
RPg, πf

))))]
.

(E.5)

If we set πf = 0, it follows that

f0U
′
(
f0
(
1 + rT

))
E
[(

rP − rT
)(

1 + ρg ′
(
U
(
fmax) −U

(
f0
(
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= − ∂cρ
(
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)

∂πf

∣
∣
∣
∣
∣
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(
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)
U′
(
f0
(
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))
E
[(
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(
U
(
fmax) −U

(
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(
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))))]

+ f0U
′
(
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1 + rT

))
E
[(

RPg − rT
)(

1 + ρg ′
(
U
(
fmax) −U

(
f0
(
1 + rT

))))]

(E.6)
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which, in turn, implies that

∂cρ
(
rPg, πf

)

∂πf

∣
∣
∣
∣
∣
πf=0

=
f0E
[(
RPg − rP

)(
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(
fmax) −U
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))))]

(
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)
E
[
1 + ρg ′(U

(
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) −U
(
f0
(
1 + rT

)))] . (E.7)

If we substitute (E.7) into (E.4), we may conclude that

h′(0) = f0U
′
(
f0
(
1 + rT

))

×
(

−
(
1 + rT

)
E
[(
RPg − rP

)(
1 + ρg ′(U

(
fmax) −U

(
f0
(
1 + rT

))))]

(
1 + rT

)
E
[
1 + ρg ′(U

(
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) −U
(
f0
(
1 + rT

)))] + E
[
RPg − rP
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)

= − f0U
′(f0
(
1 + rT

))
ρ

E
[
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(
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(
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)))]
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(
RPg − rP , g ′
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U
(
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(
f0
(
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(E.8)

Also, we observe that

cov
(
RPg − rP , g ′

(
U
(
fmax) −U

(
f0
(
1 + rT

))))

= cov
(
RPg − rP , g ′

(
U
(
f0
(
1 +max

(
rP , rT

)))
−U
(
f0
(
1 + rT

))))
< 0.

(E.9)

In this case, we may conclude that h′(0) > 0, which implies that h(πf) > 0 for small πf since
h(0) = 0. From this, we can deduce that (3.8) holds for low levels of πf and all rPg .

Next, we would like to show that (3.9) holds for high levels of πf and small rPg . This
inequality holds if and only if h(πf) = 0 for πf and small rPg (see (E.2) for the definition of
h(·)). A first observation is that

h(1) = E
[
U
((

f0 − cρ
(
rPg, 1

))(
1 + RPg

))]
− E
[
U
(
f0
(
1 + rP

))]
. (E.10)

A further observation is that, at rPg = 0, we have that h(1)|rPg=0 = 0. If we differentiate
h(1) with respect to rPg , we obtain

∂h(1)
∂rPg

= − ∂cρ
(
rPg, πf

)

∂rPg

∣
∣
∣
∣
∣
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E
[(
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)
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(
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))(
1 + RPg

))]
. (E.11)

Determining the value at rPg = 0 yields

∂h(1)
∂rPg

= − ∂cρ
(
rPg, πf

)

∂rPg

∣
∣
∣
∣
∣
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E
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1 + rP
)
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(
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))]
. (E.12)
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Furthermore, if we differentiate (3.6)with respect to rPg , it follows that

− ∂cρ
(
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)

∂rPg
E
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(E.13)

For πf = 1, we obtain
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)
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(E.14)

If we evaluate at rPg = 0, then it follows that

∂cρ
(
rPg, πf

)

∂rPg

∣
∣
∣
∣
∣
πf=1,rPg=0

= 0, (E.15)

and as a consequence

∂h(1)
∂rPg

∣
∣
∣
∣
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= 0. (E.16)

If we differentiate again we obtain
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(
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(E.17)

Recall that when rPg = 0, we have

∂cρ
(
rPg, πf

)

∂rPg

∣
∣
∣
∣
∣
πf=1

= 0, (E.18)

and thus
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(
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[(
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)
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(
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(
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))]
. (E.19)
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If we differentiate (E.14) with respect to rPg and determine a value at rPg = 0, then it follows
that

− ∂2cρ
(
rPg, πf

)

∂
(
rPg
)2

∣
∣
∣
∣
∣
πf=1,rPg=0

= 0. (E.20)

From this, it follows that

∂2h(1)

∂
(
rPg
)2

∣
∣
∣
∣
∣
rPg=0

= 0. (E.21)

Since we have

∂2h(1)

∂
(
rPg
)2

∣
∣
∣
∣
∣
rPg=0

= 0,
∂h(1)
∂rPg

∣
∣
∣
∣
rPg=0

= 0, (E.22)

it follows that h(1) = 0 for small forfeits. This, in turn, confirms that (3.9) holds for large πf

and small rPg .
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