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We consider the asymptotic behaviour of nonautonomous 2D g-Navier-Stokes equations in
bounded domain Ω. Assuming that f ∈ L2

loc, which is translation bounded, the existence of the
pullback attractor is proved in L2(Ω) and H1(Ω). It is proved that the fractal dimension of the
pullback attractor is finite.

1. Introduction

In this paper, we study the behavior of solutions of the nonautonomous g-Navier-Stokes
equations in spatial dimension 2. These equations are a variation of the standard Navier-
Stokes equations, and they assume the form

∂u

∂t
− νΔu + (u · ∇)u +∇p = f in Ω,

1
g

(∇ · gu) =
∇g

g
· u +∇ · u = 0 in Ω,

(1.1)

where g = g(x1, x2) is a suitable smooth real-valued function defined on (x1, x2) ∈ Ω and
Ω is a suitable bounded domain in �2 . Notice that if g(x1, x2) = 1, then (1.1) reduce to the
standard Navier-Stokes equations.
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In addition, we assume that the function f(·, t) =: f(t) ∈ L2
loc(�;E) is translation

bounded, where E = L2(Ω) or H−1(Ω). This property implies that

‖f‖2
L2
b

= ‖f‖2
L2
b(�;E)

= sup
t∈�

∫ t+1

t

‖f(s)‖2Eds < ∞. (1.2)

We consider this equation in an appropriate Hilbert space and show that there is a
pullback attractor �. This is the basic idea of our construction, which is motivated by the
works of [1].

Let Ω = (0, 1) × (0, 1). We assume that the function g(x) = g(x1, x2) satisfies the
following properties:

(1) g(x) ∈ C∞
per(Ω),

(2) there exist constantsm0 = m0(g) andM0 = M0(g) such that, for all x ∈ Ω, 0 < m0 ≤
g(x) ≤ M0. Note that the constant function g ≡ 1 satisfies these conditions.

We denote by L2(Ω, g) the space with the scalar product and the norm given by

(u, v)g =
∫

Ω
(u · v)gdx, |u|2g = (u, u)g , (1.3)

as well asH1(Ω, g)with the norm

‖u‖H1(Ω,g) =

[

(u, u)g +
2∑

i=1

(Diu,Diu)g

]1/2

, (1.4)

where ∂u/∂xi = Diu.
Then for the functional setting of the problems (1.1), we use the following functional

spaces:

Hg = ClL2
per(Ω,g)

{
u ∈ C∞

per(Ω) : ∇ · gu = 0,
∫

Ω
udx = 0

}
,

Vg =
{
u ∈ H1

per
(
Ω, g

)
: ∇ · gu = 0,

∫

Ω
udx = 0

}
,

(1.5)

where Hg is endowed with the scalar product and the norm in L2(Ω, g) and Vg is the spaces
with the scalar product and the norm given by

((u, v))g =
∫

Ω
(∇u · ∇v)gdx, ‖u‖g = ((u, u))g . (1.6)

Also, we define the orthogonal projection Pg as

Pg : L2
per

(
Ω, g

) −→ Hg, (1.7)
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and we have that Q ⊆ H⊥
g , where

Q = ClL2
per(Ω,g)

{
∇φ : φ ∈ C1

(
Ω,�

)}
. (1.8)

Then, we define the g-Laplacian operator

−Δgu ≡ 1
g

(∇ · g∇)
u = −Δu − 1

g

(∇g · ∇)
u (1.9)

to have the linear operator

Agu = Pg

[
− 1
g

(∇ · (g∇u
))]

. (1.10)

For the linear operatorAg , the following hold (see [1]).
(1) Ag is a positive, self-adjoint operator with compact inverse, where the domain of

Ag is D(Ag) = Vg ∩H2(Ω, g).
(2) There exist countable eigenvalues of Ag satisfying

0 < λg ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · , (1.11)

where λg = 4π2m0/M0 and λ1 is the smallest eigenvalue of Ag . In addition, there exists the
corresponding collection of eigenfunctions {e1, e2, e3, . . .} which forms an orthonormal basis
for Hg .

Next, we denote the bilinear operator Bg(u, v) = Pg(u · ∇)v and the trilinear form

bg(u, v,w) =
2∑

i,j=1

∫

Ω
ui

(
Divj

)
wjgdx =

(
Pg(u · ∇)v,w

)
g
, (1.12)

where u, v, andw lie in appropriate subspaces of L2(Ω, g). Then, the form bg satisfies

bg(u, v,w) = −bg(u,w, v) for u, v,w ∈ Hg. (1.13)

We denote a linear operator R on Vg by

Ru = Pg

[
1
g

(∇g · ∇)
u

]
for u ∈ Vg (1.14)

and have R as a continuous linear operator from Vg intoHg such that

|(Ru, u)| ≤
∣∣∇g

∣∣
∞

m0
‖u‖g |u|g ≤

∣∣∇g
∣∣
∞

m0λ
1/2
g

‖u‖g for u ∈ Vg. (1.15)
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We now rewrite (1.1) as abstract evolution equations:

du

dt
+ νAgu + Bgu + νRu = Pgf,

u(τ) = uτ .

(1.16)

In [1] the author established the global regularity of solutions of the g-Navier-Stokes
equations. The Navier-Stokes equations were investigated by many authors, and the
existence of the attractors for 2D Navier-Stokes equations was first proved in [2] and
independently in [3]. The finite-dimensional property of the global attractor for general
dissipative equations was first proved in [4]. For the analysis of the Navier-Stokes equations,
one can refer to [5], specially [6] for the periodic boundary conditions.

The theory of pullback (or cocycle) attractors has been developed for both the
nonautonomous and random dynamical systems (see [7–13]) and has shown to be very
useful in the understanding of the dynamics of nonautonomous dynamical systems.

The understanding of the asymptotic behaviour of dynamical systems is one of the
most important problems of modern mathematical physics. One way to treat this problem
for a system having some dissipativity properties is to analyse the existence and structure of
its global attractor, which, in the autonomous case, is an invariant compact set which attracts
all the trajectories of the system, uniformly on bounded sets. This set has, in general, a very
complicated geometry which reflects the complexity of the long-time behaviour of the system
(see [14–17] and the references therein). However, nonautonomous systems are also of great
importance and interest as they appear in many applications to natural sciences. In this
situation, there are various options to deal with the problem of attractors for nonautonomous
systems (kernel sections [18], skew-product formalism [16, 19], etc.); for our particular
situation we have preferred to choose that of pullback attractor (see [9, 10, 13, 20]) which
has also proved extremely fruitful, particularly in the case of random dynamical systems (see
[11, 13]).

In this paper, we study the existence of compact pullback attractor for the
nonautonomous g-Navier-Stokes equations in bounded domain Ω with periodic boundary
condition. It is proved that the fractal dimension of the pullback attractor is finite.

Hereafter c will denote a generic scale invariant positive constant, which is
independent of the physical parameters in the equation and may be different from line to
line and even in the same line.

2. Abstract Results

We now recall the preliminary results of pullback attractors, as developed in [8–10, 13].
The semigroup S(t) property is replaced by the processU(t, τ) composition property

U(t, τ)U(τ, s) = U(t, s) ∀t ≥ τ ≥ s, (2.1)

and, obviously, the initial condition implies that U(τ, τ) = Id. As with the semigroup
composition S(t)S(τ) = S(t + τ), this just expresses the uniqueness of solutions.

It is also possible to present the theory within the more general framework of cocycle
dynamical systems. In this case the second component of U is viewed as an element of some



Discrete Dynamics in Nature and Society 5

parameter space J , so that the solution can be written as U(t, p)�, and a shift map θt : J → J
is defined so that the process composition becomes the cocycle property

U
(
t + τ, p

)
= U

(
t, θτp

)
U
(
τ, p

)
. (2.2)

However, when one tries to develop a theory under a unified abstract formulation, the
context of cocycle (or skew-product flows) may not be the most appropriate to deal with the
problem. In this paper, we apply a process U(t, τ) to (1.16) by using the concept of measure
of noncompactness to obtain pullback attractors.

By B(E) we denote the collection of the bounded sets of E.

Definition 2.1. Let U be a process on a complete metric space E. A family of compact sets
{A(t)}t∈� is said to be a pullback attractor forU if, for all τ ∈ �, it satisfies

(i) U(t, τ)A(τ) = A(t) for all t ≥ τ ,

(ii) lims→∞ dist(U(t, t − s)D,A(t)) = 0, forD ∈ B(E).

The pullback attractor is said to be uniform if the attraction property is uniform in time, that
is,

lim
s→∞

sup
t∈�

dist(U(t, t − s)D,A(t)) = 0, for D ∈ B(E). (2.3)

Definition 2.2. A family of compact sets {A(t)}t∈� is said to be a forward attractor forU if, for
all τ ∈ �, it satisfies

(i) U(t, τ)A(τ) = A(t) for all t ≥ τ ,

(ii) limt→∞ dist(U(t, τ)D,A(t)) = 0, forD ∈ B(E).

The forward attractor is said to be uniform if the attraction property is uniform in time, that
is,

lim
t→∞

sup
τ∈�

dist(U(t + τ, τ)D,A(t + τ)) = 0, for D ∈ B(E). (2.4)

In the definition, dist(A,B) is the Hausdorff semidistance betweenA and B, defined as

dist(A,B) = sup
a∈A

inf
b∈B

d(a, b), for A,B ⊆ E. (2.5)

Property (i) is a generalization of the invariance property for autonomous dynamical
systems. The pullback attracting property (ii) considers the state of the system at time twhen
the initial time t − s goes to −∞.

The notion of an attractor is closely related to that of an absorbing set.
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Definition 2.3. The family {B(t)}t∈� is said to be (pullback) absorbing with respect to the
processU if, for all t ∈ � andD ∈ B(E), there exists S(D, t) > 0 such that for all s ≥ S(D, t)

U(t, t − s)D ⊂ B(t). (2.6)

The absorption is said to be uniform if S(D, t) does not depend on the time variable t.

Now we recall the abstract results in [21].

Definition 2.4. The family of processes {U(t, t − s)} is said to be satisfying pullback Condition
(C) if, for any fixed B ∈ B(E) and ε > 0, there exist s0 = s(B, t, ε) ≥ 0 and a finite dimensional
subspace E1 of E such that

(i) {‖P(⋃s≥s0 U(t, t − s)B)‖E} is bounded,
(ii) ‖(I − P)(

⋃
s≥s0 U(t, t − s)B)‖E ≤ ε,

where P : E → E1 is a bounded projector.

Theorem 2.5. Let the family of processes {U(t, τ)} acting in E be continuous and possess compact
pullback attractorA(t) satisfying

A(t) =
⋃

B∈B
ω(B, t), for t ∈ �, (2.7)

if it

(i) has a bounded (pullback) absorbing set B,

(ii) satisfies pullback Condition (C).

Moreover if E is a uniformly convex Banach space, then the converse is true.

3. Pullback Attractor of Nonautonomous g-Navier-Stokes Equations

This section deals with the existence of the attractor for the two-dimensional nonautonomous
g-Navier-Stokes equations in a bounded domain Ωwith periodic boundary condition.

In [1], the author has shown that the semigroup S(t) : Hg → Hg (t ≥ 0) associated
with the autonomous systems (1.16) possesses a global attractor in Hg and Vg . The main
objective of this section is to prove that the nonautonomous system (1.16) has uniform
attractors in Hg and Vg .

To this end, we first state the following results of existence and uniqueness of solutions
of (1.16).

Proposition 3.1. Let f ∈ V ′ be given. Then for every uτ ∈ Hg there exists a unique solution u = u(t)
on [0,∞) of (1.16), satisfying u(τ) = uτ . Moreover, one has

u(t) ∈ C
[
τ, T ;Hg

) ∩ L2(τ, T ;Vg

)
, ∀T > τ. (3.1)
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Finally, if uτ ∈ Vg , then

u(t) ∈ C
[
τ, T ;Vg

) ∩ L2(τ, T ;D
(
Ag

))
, ∀T > τ. (3.2)

Proof. The Proof of Proposition 3.1 is similar to autonomous case in [1, 17].

Proposition 3.2. The process {U(t, t − s)} : Vg → Vg associated with the system (1.16) possesses
(pullback) absorbing sets, that is, there exists a family {B(t)}t∈R of bounded (pullback) absorbing sets
in Hg and Vg for the processU, which is given by

B0 = B(t) =
{
u ∈ Hg | |u|g ≤ ρ0

}
,

B1 = B(t) =
{
u ∈ Vg‖u‖g ≤ ρ1

}
,

(3.3)

which absorb all bounded sets ofHg . Moreover B0 and B1 absorb all bounded sets ofHg and Vg in the
norms of Hg and Vg , respectively.

Proof. The proof of Proposition 3.2 is similar to autonomous g-Navier-Stokes equation. We
can obtain absorbing sets in Hg and Vg from [1].

The main results in this section are as follows.

Theorem 3.3. If f(x, t) ∈ L2
b
(R;V ′) and uτ ∈ Hg , then the processes {U(t, t − s)} corresponding

to problem (1.16) possess compact pullback attractor A0(t) in Hg which coincides with the pullback
attractor:

A0(t) =
⋃

B0∈B
ω(B0, t), (3.4)

where B0 is the (pullback) absorbing set inHg .

Proof. As in the previous section, for fixedN, let H1 be the subspace spanned by w1, . . . , wN ,
and H2 the orthogonal complement of H1 inHg . We write

u = u1 + u2, u1 ∈ H1, u2 ∈ H2 for any u ∈ Hg. (3.5)

Now, we only have to verify Condition (C). Namely, we need to estimate |u2(t)|g , where
u(t) = u1(t) + u2(t) is a solution of (1.16) given in Proposition 3.1.

Multiplying (1.16) by u2, we have

(
du

dt
, u2

)

g

+
(
νAgu, u2

)
g
+
(
Bg(u, u), u2

)
g
=
(
f, u2

)
g − (νRu, u2)g . (3.6)

It follows that

1
2
d

dt
|u2|2g + ν

∥∥ug

∥∥2
g
≤
∣∣∣(B(u, u), u2)g

∣∣∣ +
∣∣∣
(
f, u2

)
g

∣∣∣ + (Ru, u2)g. (3.7)
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Since bg satisfies the following inequality (see [6]):

∣
∣bg(u, v,w)

∣
∣ ≤ c|u|1/2g ‖u‖1/2g ‖v‖g |w|1/2g ‖w‖1/2g , ∀u, v,w ∈ Vg, (3.8)

thus,

∣∣∣(B(u, u), u2)g
∣∣∣ ≤ c|u|1/2g ‖u‖3/2g |u2|1/2g ‖u2‖1/2g

≤ c

λm+1
|u|1/2g ‖u‖3/2g ‖u2‖g

≤ ν

6
‖u2‖2g + cρ0ρ

3
1.

(3.9)

Next, using the Cauchy inequality,

∣∣
∣(νRu, u2)g

∣∣
∣ =

∣∣∣
∣∣

(
ν

g

(∇g · ∇)
u, u2

)

g

∣∣∣
∣∣

≤ ν

m0

∣
∣∇g

∣
∣
∞‖u‖g |u2|g

≤ ν

6
‖u2‖2g +

3νρ21
∣∣∇g

∣∣2
∞

2m2
0λgλm+1

.

(3.10)

Finally, we have

∣∣∣
(
f, u2

)
g

∣∣∣ ≤
∣
∣f

∣
∣
V ′
g
‖u2‖ ≤ ν

6
‖u2‖2g +

3
2ν

∣
∣f

∣
∣2
V ′
g
. (3.11)

Putting (3.9)–(3.11) together, there exists constant M1 = M1(m0, |∇g|∞, ρ0, ρ1) such that

1
2
d

dt
|u2|2g +

1
2
ν‖u2‖2g ≤

3
∣∣f

∣∣
V ′
g

2ν
+M1. (3.12)

Therefore, we deduce that

d

dt
|u2|2g + νλm+1|u2|2g ≤ 2M1 +

3
ν

∣
∣f

∣
∣2
V ′
g
. (3.13)

Here,M1 depends on λm+1, is not increasing as λm+1 increasing.
By the Gronwall inequality, the above inequality implies that

|u2(t)|2g ≤ |u2(τ)|2ge−νλm+1(t−τ) +
2M1

νλm+1

+
3
ν

∫ t

τ

e−νλm+1(t−s)∣∣f
∣∣2
V ′ds.

(3.14)
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If we consider the time t − s instead of τ (so that we can use more easily the definition of
pullback attractors), we have

3
ν

∫ t

τ

e−νλm+1(t−σ)∣∣f(σ)
∣∣2
V ′dσ =

3
ν

∫ t

t−s
e−νλm+1(t−σ)∣∣f(σ)

∣∣2
V ′dσ. (3.15)

Applying continuous integral and Lemma II 1.3 in [18] for any ε, there exists η = η(ε) > 0
such that

∫ t

t−η

∣
∣f(σ)

∣
∣2
V ′dσ <

νε

18
; (3.16)

thus, we have

3
ν

∫ t

t−η
e−νλm+1(t−σ)∣∣f(σ)

∣∣2
V ′dσ ≤ ε

6
, (3.17)

3
ν

∫ t−η

t−s
e−νλm+1(t−σ)∣∣f(σ)

∣∣2
V ′dσ

≤ 3
ν

∫ t−η

t−η−1
e−νλm+1(t−σ)∣∣f(σ)

∣∣2
V ′dσ

+
3
ν

∫ t−η−1

t−η−2
e−νλm+1(t−σ)∣∣f(σ)

∣∣2
V ′dσ + · · ·

≤ 3
ν
e−νλm+1η

(∫ t−η

t−η−1

∣∣f(σ)
∣∣2
V ′dσ + e−νλm+1

∫ t−η−1

t−η−2

∣∣f(σ)
∣∣2
V ′dσ + · · ·

)

≤ 3
ν
e−νλm+1η

(
1 + e−νλm+1 + · · ·

)
sup
s∈R

∫ s

s−1

∣∣f(σ)
∣∣2
V ′dσ

≤ (3/ν)e−νλm+1η

1 − e−νλm+1

∥
∥f

∥
∥2
L2
b
.

(3.18)

Using (1.11) and letting s1 = (1/νλm+1) ln(3ρ20/ε), then s ≥ s1 implies that

3
ν

∫ t−η

t−s
e−νλm+1(t−σ)∣∣f(σ)

∣
∣2
V ′dσ ≤ (3/ν)e−νλm+1η

1 − e−νλm+1

∥
∥f

∥
∥2
L2
b(R;V

′) ≤
ε

6
, (3.19)

2M1

νλm+1
≤ ε

3
,

|u2(τ)|2ge−νλm+1(t−τ) ≤ ρ20e
−νλm+1s1 ≤ ε

3
.

(3.20)
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Therefore, we deduce from (3.14) that

|u2|2g ≤ ε, ∀s ≥ s1, (3.21)

which indicates {U(t, τ)} satisfying pullback Condition (C) in Hg . Applying Theorem 2.5,
the proof is complete.

According to Propositions 3.1-3.2, we can now regard that the families of processes
{U(t, τ)} are defined in Vg and B1 is a pullback absorbing set in Vg .

Theorem 3.4. If f(x, t) ∈ L2
b(R;Hg), then the processes {U(t, τ)} corresponding to problem (1.16)

possess compact pullback attractorA1(t) in Vg :

A1(t) =
⋃

B1∈B
ω(B1, t), (3.22)

where B1 is the absorbing set in Vg .

Proof. Using Proposition 3.2, we have that the family of processes {U(t, τ)} corresponding to
(1.16) possess the pullback absorbing set in Vg .

Now we testify that the family of processes {U(t, τ)} corresponding to (1.16) satisfies
pullback Condition (C).

Multiplying (1.16) byAgu2(t), we have

(
dv

dt
,Agu2

)
+
(
νAgu,Agu2

)
+
(
Bg(u, u), Agu2

)
g
=
(
f,Agu2

) − (
νRu,Agu2

)
g
. (3.23)

It follows that

1
2
d

dt
‖u2‖2g + ν

∣∣Agu2
∣∣2
g
≤
∣
∣∣
(
Bg(u, u), Agu2

)
g

∣
∣∣ +

∣
∣∣
(
f,Agu2

)
g

∣
∣∣ +

∣
∣∣
(
νRu,Agu2

)
g

∣
∣∣. (3.24)

To estimate (Bg(u, u), Au2)g , we recall some inequalities (see [22]), for every u, v ∈ D(Ag),

∣∣Bg(u, v)
∣∣ ≤ c

⎧
⎨

⎩

|u|1/2g ‖u‖1/2g ‖v‖1/2g

∣
∣Agv

∣
∣1/2
g

,

|u|1/2g

∣∣Agu
∣∣1/2
g

‖v‖g ,
(3.25)

|w|L∞(Ω)2 ≤ c‖w‖g
(

1 + log

∣∣Agw
∣∣

λg‖w‖2g

)1/2

, (3.26)

from which we deduce that

∣∣Bg(u, v)
∣∣ ≤ c|u|L∞(Ω)|∇v|g |u|g |∇v|L∞(Ω) , (3.27)
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and using (3.26),

∣∣Bg(u, v)
∣∣ ≤ c

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖u‖g‖v‖g
(

1 + log
|Agu|2
λg‖u‖2g

)1/2

,

∣∣u|g
∣∣Agv|g

(

1 + log
|A3/2

g v|2
λg‖Agv‖2g

)1/2

.

(3.28)

Expanding and using Young’s inequality, together with the first one of (3.28) and the second
one of (3.25), we have

∣
∣(Bg(u, u), Agu2

)∣∣ ≤ ∣
∣(Bg(u1, u1 + u2), Agu2

)∣∣ +
∣
∣(Bg(u2, u1 + u2), Agu2

)∣∣

≤ cL1/2‖u1‖g
∣∣Agu2

∣∣
g

(‖u1‖g + ‖u2‖g
)
+ c|u2|1/2g

∣∣Agu2
∣∣3/2
g

≤ ν

6
∣∣Agu2

∣∣2
g
+
c

ν
ρ41L +

c

ν3
ρ20ρ

4
1, t ≥ t0 + 1,

(3.29)

where we use

∣
∣Agu1

∣
∣2
g
≤ λm‖u1‖2g (3.30)

and set

L = 1 + log
λm+1

λg
. (3.31)

Next, using the Cauchy inequality,

∣∣∣
(
Ru,Agu2

)
g

∣∣∣ =

∣
∣∣∣
∣

(
ν

g

(∇g · ∇)
u,Agu2

)

g

∣
∣∣∣
∣

≤ ν

m0

∣∣∇g
∣∣
∞‖u‖g

∣∣Agu2
∣∣
g

≤ ν

6
∣∣Agu2

∣∣2
g
+
3ν
2
∣∣∇g

∣∣2
∞ρ

2
1.

(3.32)

Finally, we estimate |(f,Agu2)| by

∣
∣(f,Agu2

)∣∣ ≤ ∣
∣f

∣
∣
g

∣
∣Agu2

∣
∣
2

≤ ν

6
∣∣Agu2

∣∣2
g
+

3
2ν

∣∣f
∣∣2
g .

(3.33)
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Putting (3.29)–(3.33) together, there exists a constantM2 such that

d

dt
‖u2‖2g + νλm+1‖u2‖2g ≤ 3

ν

∣
∣f

∣
∣
g
+M2. (3.34)

Here, M2 = M2(ρ0, ρ1, L, ν, |∇g|) depends on λm+1, is not increasing as λm+1 increasing.
Therefore, by the Gronwall inequality, the above inequality implies that

‖u2‖2g ≤ ‖u2(τ)‖2ge−νλm+1(t−τ) +
2M2

νλm+1
+
3
ν

∫ t

τ

e−νλm+1(t−s)∣∣f
∣
∣2
gds. (3.35)

We consider the time t− s instead of τ . The following result is similar to (3.17)–(3.19), for any
ε:

2c
ν

∫ t

τ

e−νλm+1(t−σ)/2∣∣f
∣∣2
gdσ ≤ ε

3
. (3.36)

Using (1.11) and letting s2 = (2/νλm+1) ln(3ρ21/ε), then s ≥ s2 implies that

2M2

νλm+1
≤ ε

3
,

‖u2(τ)‖2ge−νλm+1(t−τ) ≤ ρ21e
−νλm+1s <

ε

3
.

(3.37)

Therefore, we deduce from (3.35) that

‖u2‖2g ≤ ε, ∀s ≥ s1, (3.38)

which indicates {U(t, τ)} satisfying pullback Condition (C) in Vg .

4. The Dimension of the Pullback Attractor

To estimate the dimension of the pullback attractor A0(t), we will apply the abstract
machinery in [18, 23]. Let F : Vg × � → V ′

g be a given family of nonlinear operators such
that, for all τ ∈ � and any uτ ∈ Hg , there exists a unique function u(t) = u(t; τ, u0) satisfying

u ∈ L2(τ, T ;Vg

) ∩ C
[
τ, T ;Hg

)
, F(u(t), t) ∈ L1

(
τ, T ;V ′

g

)
, ∀T > τ,

du

dt
= F(u(t), t), t > τ,

u(τ) = uτ ,

(4.1)

where F(u) = −νAgu − Bgu − νRu + Pgf .
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Using the standard methods (see [17, 18]), we can show that {U(t, τ)} is uniformly
quasidifferentiable on {B(t)}t∈�. Then, for all τ ≤ T and any uτ , vτ ∈ Hg , there exists a unique
v(t) = v(t; τ, uτ , vτ), which is a solution of

v ∈ L2(τ, T ;Vg

) ∩ C
[
τ, T ;Hg

)
,

dv

dt
= F ′(U(t, τ)uτ , t)v,

v(τ) = vτ .

(4.2)

For all τ < T , we define the linear operator L(t, uτ) : Hg → Hg by

v(t; τ, uτ , vτ) = L(t, τ, uτ)vτ . (4.3)

Theorem 4.1. Suppose that f(t) satisfies the assumptions of Theorem 3.3. Then, if γ = 1 −
(2|∇g|∞/m0λ

1/2
g ) > 0, the Pullback attractor (uniformly in the past)A0 defined by (3.4) satisfies

dF(A0) ≤
√

β

α
, (4.4)

where

α =
c2νm0λ

′
1γ

2M0
,

β =
c1d1

2ν3m0γ
sup

ϕj∈Hg, |ϕj |≤1
j=1,2,...,m

1
T

∫ τ

τ−T
‖f(s)‖2V ′

g
ds,

(4.5)

with the constant c1, c2 of (3.29) and (3.32) of Chapter VI in [17], λ′
1 is the first eigenvalue of the

Stokes operator and d1 = |∇g|2∞/4m0 + |∇g|∞ +M0.

Proof. With Theorem 3.3 at our disposal we may apply the abstract framework in [17, 18, 23,
24].

For ξ1, ξ2, . . . , ξm ∈ Hg , let vj(t) = L(t, uτ) · ξj , where uτ ∈ Hg . Let {ϕj(s); j = 1, 2, . . . , m}
be an orthonormal basis for span {vj ; j = 1, 2, . . . , m}. Since v(s; τ, uτ , v

j
τ) ∈ Vg almost

everywhere s ≥ τ , we can also assume that ϕj(s) ∈ Vg almost everywhere s ≥ τ . Then,
similar to the proof process of Theorems 3.3 and 3.4, we may obtain

m∑

i=1

〈
F ′(U(s, τ)uτ , s)ϕi, ϕi

〉

= −ν
m∑

i=1

‖ϕj‖2g −
m∑

i=1

bg
(
ϕj,U(s, τ)uτ , ϕj

) −
m∑

i=1

(
ν

g

(∇g · ∇)
ϕj, ϕj

)

g

,

(4.6)
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almost everywhere s ≥ τ . From this equality, and in particular using the Schwarz and Lieb-
Thirring inequality (see [17, 18, 23, 24]), one obtains

m∑

i=1

‖ϕ‖2g ≥ λ1 + · · · + λm ≥ m0

M0

(
λ′
1 + · · · + λ′

m

) ≥ m0

M0
c2λ

′
1m

2,

Trj(F ′(U(s, τ)uτ , s) ≤ −ν
(

1 −
∣∣∇g

∣∣
∞

m0λ
1/2
1

)
m∑

i=1

‖ϕj‖2g + ‖U(s, τ)uτ‖
(

c1d1

m0

m∑

i=1

‖ϕj‖2g
)1/2

≤ −ν
2

(

1 − 2
∣∣∇g

∣∣
∞

m0λ
1/2
1

)
m∑

i=1

‖ϕj‖2g +
c1d1

2νm0
‖U(s, τ)uτ‖2g

≤ − νm0

2M0

(

1 − 2
∣
∣∇g

∣
∣
∞

m0λ
1/2
1

)

c2λ
′
1m

2 +
c1d1

2νm0
‖U(s, τ)uτ‖2g .

(4.7)

On the other hand, we can deduce that

d

dt
|U(s, τ)uτ |2g + ν‖U(s, τ)uτ‖2g ≤

‖f‖2
V ′
g

ν
+

2ν

m0λ
1/2
g

|∇g|∞‖U(s, τ)uτ‖2g (4.8)

for λg = 4π2m0/M0, and then

∫ t

τ

‖U(s, τ)uτ‖2gds ≤
(

1
ν2

∫ t

τ

‖f(s)‖2V ′
g
ds +

|uτ |2
ν

)(

1 − 2
∣∣∇g

∣∣
∞

m0λ
1/2
g

)−1
, t ≥ τ. (4.9)

Now we define

qm = sup
ϕj∈Hg, |ϕj |≤1
j=1,2,...,m

(
1
T

∫ τ

τ−T
Trj

(
F ′(U(s, τ)uτ, s)ds

)
)
,

q̃m ≤ − νm0

2M0

(

1 − 2
∣∣∇g

∣∣
∞

m0λ
1/2
1

)

c2λ
′
1m

2 +
c1d1

2νm0

⎛

⎜⎜
⎝ sup

ϕj∈Hg, |ϕj |≤1
j=1,2,...,m

(
1
T

∫ τ

τ−T
‖U(s, τ)uτ‖2gds

)
⎞

⎟⎟
⎠

≤ − νm0

2M0

(

1 − 2
∣∣∇g

∣∣
∞

m0λ
1/2
1

)

c2λ
′
1m

2

+
c1d1

2νm0

⎛

⎜⎜
⎝

1
ν2

sup
ϕj∈Hg, |ϕj |≤1
j=1,2,...,m

1
T

∫ τ

τ−T
‖f(s)‖2V ′

g
ds +

|uτ |2
νT

⎞

⎟⎟
⎠

(

1 − 2
∣∣∇g

∣∣
∞

m0λ
1/2
g

)−1
),

qm = lim sup
T →∞

q̃m ≤ −αm2 + β.

(4.10)
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Hence,

dimFA0(τ) ≤
√

β

α
. (4.11)
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[3] C. Foiaş and R. Temam, “Finite parameter approximative structure of actual flows,” in Nonlinear
Problems: Present and Future, A. R. Bishop, D. K. Campbell, and B. Nicolaenko, Eds., vol. 61, pp. 317–
327, North-Holland, Amsterdam, The Netherlands, 1982.

[4] J. Mallet-Paret, “Negatively invariant sets of compact maps and an extension of a theorem of
Cartwright,” Journal of Differential Equations, vol. 22, no. 2, pp. 331–348, 1976.

[5] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of
Chicago Press, Chicago, Ill, USA, 1988.

[6] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and
Its Applications, North-Holland, Amsterdam, The Netherlands, 3rd edition, 1984.

[7] T. Caraballo and J. Real, “Navier-Stokes equations with delays,” Proceedings of the Royal Society of
London A, vol. 457, no. 2014, pp. 2441–2453, 2001.

[8] T. Caraballo and J. Real, “Asymptotic behaviour of two-dimensional Navier-Stokes equations with
delays,” Proceedings of the Royal Society of London A, vol. 459, no. 2040, pp. 3181–3194, 2003.

[9] T. Caraballo and J. Real, “Attractors for 2D-Navier-Stokes models with delays,” Journal of Differential
Equations, vol. 205, no. 2, pp. 271–297, 2004.

[10] D. N. Cheban, P. E. Kloeden, and B. Schmalfuß, “The relationship between pullback, forward and
global attractors of nonautonomous dynamical systems,”Nonlinear Dynamics and Systems Theory, vol.
2, no. 2, pp. 125–144, 2002.

[11] H. Crauel, A. Debussche, and F. Flandoli, “Random attractors,” Journal of Dynamics and Differential
Equations, vol. 9, no. 2, pp. 307–341, 1997.
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