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A new robust training law, which is called an input/output-to-state stable training law (IOSSTL),
is proposed for dynamic neural networks with external disturbance. Based on linear matrix
inequality (LMI) formulation, the IOSSTL is presented to not only guarantee exponential stability
but also reduce the effect of an external disturbance. It is shown that the IOSSTL can be obtained
by solving the LMI, which can be easily facilitated by using some standard numerical packages.
Numerical examples are presented to demonstrate the validity of the proposed IOSSTL.

1. Introduction

The past few years have witnessed a remarkable progress in the research of neural networks
due to their advantages of parallel computation, learning ability, function approximation,
and fault tolerance. Many exciting applications have been developed in signal processing,
control, combinatorial optimization, pattern recognition, and other areas. It has been shown
that these applications greatly depend on the stability and performance of the underlying
neural networks [1].

Stability of neural networks is a prerequisite for their successful applications as either
associative memories or optimization solvers. Stability problems in neural networks can
be classified into two main categories: stability of neural networks [2–9] and stability of
learning algorithms [10–16]. In this paper, we focus on deriving a new learning algorithm
for neural networks. Stable learning algorithms can be developed by analyzing identification
or tracking errors in neural networks. In [11], the stability conditions of learning laws in a
situation where neural networks were used to identify and control a nonlinear system were
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studied. In [17], the dynamic backpropagation was modified with NLq stability constraints.
In [13, 15], passivity-based learning laws were proposed for neural networks. Since neural
networks cannot match the unknown nonlinear systems exactly, extensive modifications
should be made either to the normal gradient algorithm or to the backpropagation algorithm
[10, 11, 14, 16]. Despite these advances in neural network learning, most research results
were restricted to learning algorithms for neural networks without external disturbance,
but, in real physical systems, one is faced with model uncertainties and a lack of statistical
information on the signals. Thus, knowledge of the learning algorithm for neural networks
with external disturbance is of considerable practical importance. Unfortunately, with the
existing works, it is impossible to design a learning algorithm for neural networks with
external disturbance. In this paper, we propose a new robust learning algorithm for neural
networks with external disturbance.

The input/output-to-state stability (IOSS) approach [18, 19] is an effective tool to
analyze the stability of physical nonlinear systems affected by disturbances. It can deal with
nonlinear systems using only the general characteristics of the input-output dynamics, and it
offers elegant solutions for the proof of stability. The IOSS framework is a promising approach
to the stability analysis of neural networks because it can lead to general conclusions on
stability using only input-output characteristics. It has been widely accepted as an important
concept in control engineering, and several research results have been reported in recent years
[18–23]. A natural question arises: can we obtain an IOSS based robust training algorithm
for dynamic neural networks with external disturbance? This paper gives an answer for
this question. To the best of our knowledge, however, for the IOSS training law of dynamic
neural networks with external disturbance, there is no result in the literature so far, which
still remains open and challenging.

In this paper, for the first time, the IOSS approach is used to create a new robust
training law for dynamic neural networks with external disturbance. This training law is
called an IOSS training law (IOSSTL). The IOSSTL is a new contribution to the topic of
neural network learning. A sufficient condition for the existence of the IOSSTL is presented
such that neural networks are exponentially stable and input/output-to-state stable for any
bounded disturbance. Based on linear matrix inequality (LMI) formulation, the design of the
proposed training law can be realized by solving the LMI, which can be facilitated readily via
standard numerical algorithms [24, 25]. The presented result of this paper opens a new path
for application of the IOSS technique to weight learning of dynamic neural networks. It is
expected that the proposed scheme can be extended to study learning algorithms for neural
networks with timedelay.

This paper is organized as follows. In Section 2, we formulate the problem. In
Section 3, an LMI problem for the IOSSTL of dynamic neural networks is proposed. In
Section 4, numerical examples are given, and finally, conclusions are presented in Section 5.

2. Problem Formulation

Consider the following differential equation:

Ẋ(t) = F(X(t), U(t)),

Y(t) = H(X(t), U(t)),
(2.1)
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where X(t) ∈ Rn is the state variable, U(t) ∈ Rm is the external input, and Y(t) ∈ Rk is the
output variable. F : Rn × Rm → Rn and H : Rn × Rm → Rk are continuously differentiable
and satisfy F(0, 0) = 0. We first recall the following definitions.

Definition 2.1. A function γ : R≥0 → R≥0 is a K function if it is continuous and strictly in-
creasing and if γ(0) = 0. It is a K∞ function if it is a K function and γ(s) → ∞ as s → ∞. A
function β : R≥0×R≥0 → R≥0 is aKL function if, for each fixed t ≥ 0, the function β(·, t) is aK
function and for each fixed s ≥ 0, the function β(s, ·) is decreasing and β(s, t) → 0 as t → ∞.

Definition 2.2. The system (2.1) is said to be input/output-to-state stable if there exist K
functions γ1(s), γ2(s) and a KL function β(s, t), such that, for each input U(t), each output
Y(t), and each initial state X(0), it holds that

‖X(t)‖ ≤ max

{
β(‖X(0)‖, t), γ1

(
sup
0≤τ≤t

‖U(τ)‖
)
, γ2

(
sup
0≤τ≤t

‖Y(τ)‖
)}

(2.2)

for each t ≥ 0.

Now we introduce a useful result that is employed for obtaining the IOSSTL.

Lemma 2.3 (see [18, 19]). A continuous function V (·) : Rn → R≥0 is called an IOSS-Lyapunov
function for the system (2.1) if there exist K∞ functions α1, α2, α3, α4, and α5 such that

α1(‖X(t)‖) ≤ V (X(t)) ≤ α2(‖X(t)‖) (2.3)

for any X(t) ∈ Rn and

V̇ (X(t)) ≤ −α3(‖X(t)‖) + α4(‖U(t)‖) + α5(‖Y(t)‖) (2.4)

for anyX(t) ∈ Rn, anyU(t) ∈ Rm, and any Y(t) ∈ Rk. Then the system (2.1) is input/output-to-state
stable if and only if it admits an IOSS-Lyapunov function.

Consider the following dynamic neural network:

ẋ(t) = Ax(t) +W(t)θ(x(t)) +W(t)φ(x(t))u(t) +Gd(t), (2.5)

y(t) = Cx(t) +Dd(t), (2.6)

where x(t) = [x1(t) · · · xn(t)]T ∈ Rn is the state vector, u(t) = [u1(t) · · · um(t)]T ∈ Rm is
the bounded control input, y(t) = [y1(t) · · · yp(t)]T ∈ Rp is the output vector, d(t) =
[d1(t) · · · dk(t)]T ∈ Rk is the disturbance vector, A = diag{−a1, . . . ,−an} ∈ Rn×n (ai > 0,
i = 1, . . . , n) is the self-feedbackmatrix,W(t) ∈ Rn×p andW(t) ∈ Rn×p are the weight matrices,
θ(x) = [θ1(x), . . . , θp(x)]T : Rn → Rp is the nonlinear vector field, and φ(x) = [φij(x)] : Rn →
Rp×m is the nonlinear matrix function, and C ∈ Rp×n, D ∈ Rp×k , and G ∈ Rn×k are known
constant matrices. The element functions θi(x) and φij(x) (i = 1, . . . , p, j = 1, . . . , m) are
usually selected as sigmoid functions.
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Remark 2.4. It can be seen that the Hopfield model [26] is the special case of the neural
network (2.5)withA = diag{ai}, ai = −1/RiCi, Ri > 0, and Ci > 0. Ri and Ci are the resistance
and capacitance at the ith node of the network, respectively.

The purpose of this study is to derive a new training law such that the neural network
(2.5)-(2.6) with d(t)/= 0 is input/output-to-state stable and exponentially stable for d(t) = 0.

3. Main Results

In this section, we design a new input/output-to-state stable training law for dynamic neural
networks with external disturbance. The following theorem gives an LMI condition for the
existence of the desired training law.

Theorem 3.1. Assume that there exist P = PT > 0, S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0, and Y

such that

[
ATP + YT + PA + Y −CTS2C + S1 PG − CTS2D

GTP −DTS2C −DTS2D − S3

]
< 0. (3.1)

If the weight matricesW(t) andW(t) are updated as

W(t) =

⎧⎪⎪⎨
⎪⎪⎩

P−1Yx(t)

‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 θT (x(t)), ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 /= 0,

0, ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 = 0,

W(t) =

⎧⎪⎪⎨
⎪⎪⎩

P−1Yx(t)

‖θ(x(t))‖2∥∥φ(x(t))u(t)∥∥2uT (t)φT (x(t)), ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 /= 0,

0, ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 = 0,

(3.2)

then the neural network (2.5)-(2.6) is input/output-to-state stable.

Proof. The neural network (2.5) can be represented by

ẋ(t) = Ax(t) +
[
W(t) W(t)

][ θ(x(t))

φ(x(t))u(t)

]
+Gd(t). (3.3)

In order to guarantee the IOSS, the following relation must be satisfied:

Kx(t) =
[
W(t) W(t)

][ θ(x(t))

φ(x(t))u(t)

]
, (3.4)

where K ∈ Rn×n is the gain matrix of the IOSSTL. Then we obtain

ẋ(t) = (A +K)x(t) +Gd(t). (3.5)
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One of the possible weight selections [W(t) W(t) ] to fulfil (3.4) (perhaps excepting a subspace
of a smaller dimension) is given by

[
W(t) W(t)

]
= Kx(t)

[
θ(x(t))

φ(x(t))u(t)

]+
, (3.6)

where [·]+ stands for the pseudoinverse matrix in the Moore-Penrose sense [27]. This training
law is just an algebraic relation depending on x(t) and u(t), which can be evaluated directly.
Taking into account that

x+ =

⎧⎪⎪⎨
⎪⎪⎩

xT

‖x‖2
, x /= 0,

0, x = 0,

(3.7)

the training law (3.6), see [27], can be rewritten as follows:

W(t) =

⎧⎪⎪⎨
⎪⎪⎩

Kx(t)

‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 θT (x(t)), ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 /= 0,

0, ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 = 0,

W(t) =

⎧⎪⎪⎨
⎪⎪⎩

Kx(t)

‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2uT (t)φT (x(t)), ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 /= 0,

0, ‖θ(x(t))‖2 + ∥∥φ(x(t))u(t)∥∥2 = 0.
(3.8)

To obtain the gain matrix K of the IOSSTL, consider a Lyapunov function V (t) = xT (t)Px(t).
Note that V (t) satisfies the following Rayleigh inequality [28]:

λmin(P)‖x(t)‖2 ≤ V (t) ≤ λmax(P)‖x(t)‖2, (3.9)

where λmin(·) and λmax(·) are the maximum and minimum eigenvalues of the matrix. The
time derivative of V (t) along with the trajectory of (3.5) is

V̇ (t) = xT (t)
[
ATP +KTP + PA + PK

]
x(t) + xT (t)PGd(t) + dT (t)GTPx(t). (3.10)
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Adding and subtracting [Cx(t) +Dd(t)]TS2[Cx(t) +Dd(t)], we obtain

V̇ (t) = xT (t)
[
ATP +KTP + PA + PK − CTS2C

]
x(t) − dT (t)DTS2Dd(t)

+ xT (t)
[
PG − CTS2D

]
d(t) + dT (t)

[
GTP −DTS2C

]
x(t) + yT (t)S2y(t)

=

[
x(t)

d(t)

]T[
(1, 1) PG − CTS2D

GTP −DTS2C −DTS2D − S3

][
x(t)

d(t)

]
− xT (t)S1x(t)

+ yT (t)S2y(t) + dT (t)S3d(t),

(3.11)

where

(1, 1) = ATP +KTP + PA + PK − CTS2C + S1. (3.12)

If the following matrix inequality is satisfied

[
(1, 1) PG − CTS2D

GTP −DTS2C −DTS2D − S3

]
< 0, (3.13)

we have

V̇ (t) < −xT (t)S1x(t) + yT (t)S2y(t) + dT (t)S3d(t) (3.14)

≤ −λmin(S1)‖x(t)‖2 + λmax(S2)
∥∥y(t)∥∥2 + λmax(S3)‖d(t)‖2. (3.15)

Define functions α1(r), α2(r), α3(r), α4(r), and α5(r) as

α1(r) � λmin(P)r2,

α2(r) � λmax(P)r2,

α3(r) � λmin(S1)r2,

α4(r) � λmax(S2)r2,

α5(r) � λmax(S3)r2.

(3.16)

Note that α1(r), α2(r), α3(r), α4(r), and α5(r) areK∞ functions. From (3.9) and (3.15), we can
obtain

α1(‖x(t)‖) ≤ V (t) ≤ α2(‖x(t)‖),

V̇ (t) ≤ −α3(‖x(t)‖) + α4
(∥∥y(t)∥∥) + α5(‖d(t)‖).

(3.17)
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Figure 1: State trajectories.
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Figure 2: Elements of the weight matrixW(t).

According to Lemma 2.3, we can conclude that V (t) is an IOSS-Lyapunov function. Introduc-
ing a change of variable PK = Y , (3.13) is equivalently changed into the LMI (3.1). Then the
gain matrix of the IOSSTL is given byK = P−1Y . The training laws (3.8) are changed to (3.2).
This completes the proof.

Corollary 3.2. Assume that there exist P = PT > 0, S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0, and Y

such that

[
ATP + YT + PA + Y − CTS2C + S1 PG − CTS2D

GTP −DTS2C −DTS2D − S3

]
< 0, (3.18)

S1 − CTS2C > 0. (3.19)
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If the weight matrices W(t) and W(t) are updated as (3.2), the neural network (2.5)-(2.6) with
d(t)/= 0 is input/output-to-state stable and exponentially stable for d(t) = 0.

Proof. From Theorem 3.1, the LMI (3.18) guarantees that the neural network (2.5)-(2.6) with
d(t)/= 0 is input/output-to-state stable. Next, we show that under the additional LMI
condition (3.19), the neural network (2.5)-(2.6) with d(t) = 0 is exponentially stable. When
d(t) = 0, from (3.14) and (2.6), we obtain

V̇ (t) < −xT (t)
[
S1 − CTS2C

]
x(t)

≤ −λmin

(
S1 − CTS2C

)
‖x(t)‖2

≤ −λmin
(
S1 −CTS2C

)
λmax(P)

V (t).

(3.20)

From (3.20), we have

V (t) < V (0)e−κt, (3.21)

where

κ =
λmin

(
S1 − CTS2C

)
λmax(P)

> 0. (3.22)
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Using (3.9), we have

‖x(t)‖ <

√
V (0)

λmin(P)
e−κt

=

√
xT (0)Px(0)
λmin(P)

e−(κ/2)t.

(3.23)

Since

√
xT (0)Px(0)
λmin(P)

> 0,
κ

2
> 0, (3.24)

the relation (3.23) guarantees the exponential stability. This completes the proof.

Remark 3.3. The LMI problems given in Theorem 3.1 and Corollary 3.2 are to determine
whether solutions exist or not. They are called the feasibility problems. The LMI problems
can be solved efficiently by using recently developed convex optimization algorithms [24].
In this paper, in order to solve the LMI problems, we utilize MATLAB LMI Control Toolbox
[25], which implements state-of-the-art interior-point algorithms.
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4. Numerical Examples

4.1. Example 1

Consider the neural network (2.5)-(2.6) with the following parameters:

x(t) =

[
x1(t)

x2(t)

]
, d(t) =

[
d1(t)

d2(t)

]
, A =

[−4 0

0 −3

]
, G =

[
1 0.24

0 1

]
,

θ(x(t)) =

⎡
⎢⎢⎣

1
1 + e−x1(t)

1
1 + e−x2(t)

⎤
⎥⎥⎦, φ(x(t)) =

⎡
⎢⎢⎣

2
1 + e−2x1(t)

− 0.5
2

1 + e−2x1(t)
− 0.5

2
1 + e−2x2(t)

− 0.5
2

1 + e−2x2(t)
− 0.5

⎤
⎥⎥⎦,

u(t) = 0.1

[
sin(t)

cos(t)

]
, C =

[−0.5 1
]
, D =

[
1 0
]
.

(4.1)

Applying Corollary 3.2 yields

P =

[
7.6834 0.0796

0.0796 9.4285

]
, Y =

[
2.6817 0.5495

−1.0798 1.0493

]
,

S1 =

[
28.8674 −1.0876
−1.0876 30.4987

]
, S2 = 4.3502, S3 =

[
26.1485 0

0 28.3236

]
.

(4.2)

Figure 1 shows state trajectories when the initial conditions are given by

x(0) =

[
1

−1.5

]
, W(0) =

[
0.08 −0.15
0.15 −0.08

]
, W(0) =

[−0.21 0.15

−0.15 −0.13

]
, (4.3)

and the external disturbance di(t) (i = 1, 2) is given by w(t), where w(t) means a Gaussian
noise with mean 0 and variance 1. Figure 1 shows that the IOSSTL reduces the effect of the
external disturbance d(t) on the state vector x(t). The evolutions of the weights W(t) and
W(t) are shown in Figures 2 and 3, respectively. Although the weights are not convergent,
they are bounded. This result is very important for robust identification and control using
neural networks [29].
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4.2. Example 2

In this subsection, we apply the proposed scheme to the identification problem of Lorenz
model presented in [30]. The Lorenz model is used for the fluid conviction description,
especially for some feature of the atmospheric dynamic. The uncontrolled model is given by

ż1(t) = σ(z2(t) − z1(t)) + u1(t),

ż2(t) = ρz1(t) − z2(t) − z1(t)z3(t) + u2(t),

ż3(t) = −βz3(t) + z1(t)z2(t) + u3(t),

(4.4)

where z1(t), z2(t), and z3(t) represent measures of fluid velocity and horizontal and vertical
temperature variations, respectively. σ, ρ, and β are positive parameters representing the
Prandtl number, Rayleigh number, and geometric factor, respectively. As in the commonly
studied case, we select σ = 10, β = 8/3, and ρ = 28. Consider the neural network (2.5)-(2.6)
with the following parameters:

A =

⎡
⎢⎢⎣
−8 0 0

0 −8 0

0 0 −8

⎤
⎥⎥⎦, θ(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1 + e−2x1(t)

− 0.5

2
1 + e−2x2(t)

− 0.5

2
1 + e−2x3(t)

− 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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φ(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.2
1 + e−0.2x1(t)

− 0.05
0.2

1 + e−0.2x1(t)
− 0.05

0.2
1 + e−0.2x1(t)

− 0.05

0.2
1 + e−0.2x2(t)

− 0.05
0.2

1 + e−0.2x2(t)
− 0.05

0.2
1 + e−0.2x2(t)

− 0.05

0.2
1 + e−0.2x3(t)

− 0.05
0.2

1 + e−0.2x3(t)
− 0.05

0.2
1 + e−0.2x3(t)

− 0.05

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.5)

For the numerical simulation, we use the following parameters:

C = G =

⎡
⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦, D =

⎡
⎢⎢⎣
0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎦, u(t) =

⎡
⎢⎢⎣
u1(t)

u2(t)

u3(t)

⎤
⎥⎥⎦ = 0.01

⎡
⎢⎢⎣
sin(t)

cos(t)

0

⎤
⎥⎥⎦. (4.6)

Solving the LMIs (3.18)-(3.19) by the convex optimization technique software [24, 25] gives

P =

⎡
⎢⎢⎣
7.8455 0 0

0 7.8455 0

0 0 7.8455

⎤
⎥⎥⎦, Y =

⎡
⎢⎢⎣
43.1503 0 0

0 43.1503 0

0 0 43.1503

⎤
⎥⎥⎦,

S1 =

⎡
⎢⎢⎣
31.3821 0 0

0 31.3821 0

0 0 31.3821

⎤
⎥⎥⎦, S2 =

⎡
⎢⎢⎣
15.691 0 0

0 15.691 0

0 0 15.691

⎤
⎥⎥⎦,

S3 =

⎡
⎢⎢⎣
23.5366 0 0

0 23.5366 0

0 0 23.5366

⎤
⎥⎥⎦.

(4.7)

Figure 4 shows state trajectories when the initial conditions are given by

⎡
⎢⎢⎣
x1(0)

x2(0)

x3(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1.1

−0.3
1.7

⎤
⎥⎥⎦,

⎡
⎢⎢⎣
z1(0)

z2(0)

z3(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2
1.5

−0.4

⎤
⎥⎥⎦,

W(0) =

⎡
⎢⎢⎣
0.1 −0.25 0.5

0.25 −0.1 0.2

0.1 −0.1 0.2

⎤
⎥⎥⎦, W(0) =

⎡
⎢⎢⎣
−0.1 −0.8 1

1.2 0.1 −0.4
−0.5 0.15 −0.42

⎤
⎥⎥⎦,

(4.8)

and the external disturbance di(t) (i = 1, 2, 3) is given by a Gaussian noise with mean 0 and
variance 1. Figure 5 shows, by the proposed scheme, that the identification errors (e1(t) =
z1(t) − x1(t), e2(t) = z2(t) − x2(t), and e3(t) = z3(t) − x3(t)) are bounded around the origin.
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These results appear to be of little use for the storage of patterns, but they are very important
for identification and control using neural networks [29].

5. Conclusion

This paper has proposed the IOSSTL, which is a new robust training law, for weight
adjustment of dynamic neural networks with external disturbance. Based on LMI approach,
the IOSSTL was developed to guarantee exponential stability and reduce the effect of the
external disturbance on the state vector. It was also shown that the IOSSTL can be obtained
by solving the LMI. A numerical simulation was performed to demonstrate the effectiveness
of the proposed IOSSTL. It is expected that the results obtained in this study can be extended
to discrete-time dynamic neural networks.

The scheme proposed in this paper can be used in several control applications. For
example, with the proposed learning law, a dynamic neural network is applied to model
an unknown nonlinear system, and the neuron states estimated by some filters can be
then utilized to achieve certain design objectives by the control law. This application of the
proposed scheme remains as a future work.
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