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Recently, Kim’s work (in press) introduced g-Bernstein polynomials which are different Phillips’
g-Bernstein polynomials introduced in the work by (Phillips, 1996; 1997). The purpose of this
paper is to study some properties of several type Kim’s g-Bernstein polynomials to express the
p-adic g-integral of these polynomials on Z, associated with Carlitz’s g-Bernoulli numbers and
polynomials. Finally, we also derive some relations on the p-adic g-integral of the products of
several type Kim’s g-Bernstein polynomials and the powers of them on Z,.

1. Introduction

Let C[0, 1] denote the set of continuous functions on [0, 1]. For 0 < g < 1 and f € C[0,1], Kim
introduced the g-extension of Bernstein linear operator of order # for f as follows:

-3 E " X151 = x5k = S E x
510 =3 (5) (L) - 3 (5 )patma), 4

where [x] q= (1-g%)/(1-q) (see [1]). Here B, ;(f | x) is called Kim’s g-Bernstein operator

of order n for f. For k,n € Z.(= NU {0}), Bxn(x,q) = (Z)[x]’;[l - x]?;éc are called the Kim's
g-Bernstein polynomials of degree n (see [2-6]).
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In [7], Carlitz defined a set of numbers ¢ = ¢k (q) inductively by

1 ifk=1,

do=1, (q§+1)k—§k={ (12)
0 ifk>1,

with the usual convention of replacing ¢k by &. These numbers are g-analogues of ordinary
Bernoulli numbers By, but they do not remain finite for g = 1. So he modified the definition
as follows:

1 ifk=1,

-1, D 13
Poq q(ap+1)" = Prg {0 - (1.3)

with the usual convention of replacing * by Pr,q (see [7]). These numbers f, ; are called the
nth Carlitz g-Bernoulli numbers. And Carlitz’s g-Bernoulli polynomials are defined by

S
< .>ﬁ,-,qq’x [x]47. (1.4)

k
i=0 \ !

k
Brg(0) = (4B +[x],) =,
Asq — 1, we have f; — By and fi4(x) — Bi(x), where By and Bi(x) are the ordinary
Bernoulli numbers and polynomials, respectively.

Let p be a fixed prime number. Throughout this paper, Z, Q, Z,, Q,, and C,, will denote
the ring of rational integers, the field of rational numbers, the ring of p-adic integers, the field
of p-adic rational numbers and the completion of algebraic closure of Q,, respectively. Let v,
be the normalized exponential valuation of C,, such that [p|, = p™®) =1/p.

Let g be regarded as either a complex number g € C or a p-adic number g € C,. If
q € C, we assume |g| < 1, and if g € C,, we normally assume |1 - g|, < 1.

We say that f is a uniformly differentiable function at a point a € Z, and denote this
property by f € UD(Z,) if the difference quotient F¢(x,y) = (f(x) - f(y))/(x - y) has a limit
f'(a) as (x,y) — (a,a) (see [1,3,8-13]).

For f € UD(Zy), let us begin with the expression

1

S e f = Y feom(x+pNz,), (1.5)

[ N]q 0<x<pN 0<x<pN

representing a g-analogue of the Riemann sums for f (see [11]). The integral of f on Z, is
defined as the limit as n — oo of the sums (if exists). The p-adic g-integral on a function
f € UD(Zy,) is defined by

pN-1
Ii(f) = fz fx)dpg(x) = Nhi“mﬁ S fxq, (1.6)

q x=0

(see [11]).
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As was shown in [3], Carlitz’s g-Bernoulli numbers can be represented by p-adic
g-integral on Z, as follows:

J [x]7'dpg(x) = Pmyg, for m € Z,. (1.7)

Zy

Also, Carlitz’s g-Bernoulli polynomials fi 4(x) can be represented
Poa) = [ Tx+yljdu(y), formez., 19
P

(see [3]).

In this paper, we consider the p-adic analogue of Kim’s g-Bernstein polynomials on Z,
and give some properties of the several type Kim’s g-Bernstein polynomials to represent the
p-adic g-integral on Z,, of these polynomials. Finally, we derive some relations on the p-adic
g-integral of the products of several type Kim’s g-Bernstein polynomials and the powers of
them on Z,,.

2. g-Bernstein Polynomials Associated with p-Adic g-Integral on Z,

In this section, we assume that g € C, with |1 -¢|, < 1.
From (1.5), (1.7) and (1.8), we note that

Tl

1 I+1
I . (R
’[Zp 1/q q (q_ ) 1; qll_l

(2.1)
= [ 1 I+1
[x + x1]qdpq(x1) = < >( 1)'q lx e

JZ;? q ( _q) 1% 1 ql 1
By (2.1), we get

-1)"q" fz [x+ xl];’dyq(xl) = JZ [T-x+ x1]¥/qdy1/q(x1). (2.2)

P P

Therefore, we obtain the following theorem.
Theorem 2.1. For n € Z,, one has

j [T-x+ x1];l/qd‘u1/q(X1) =(-1)"q" [x + xl]gd#q(xl)- (2.3)

ZP ZP
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By the definition of Carlitz’s g-Bernoulli numbers and polynomials, we get

TPnq2) ~ (n+ D)@ +q=q(gh+1)" = Png ifn>1.

Thus, we have the following proposition.

Proposition 2.2. For n € Nwithn > 1, one has
1 1
ﬁn,q(Z) = ;ﬂ"llq +n+1- 5
It is easy to show that
n " n_n n
[1-x]1), = <1—[x]q> = (-1)"g"[x - 1]

Hence, we have

fz,, [1- x]'f/qd‘uq(x) =(-1)"q" J‘Zp [x - 1]Zdyq(x).

By (1.8), we get
[ 1= = 1707
P
By Theorem 2.1 and (2.8), we see that

p

From (2.9) and Proposition 2.2, we have

Zp

By (1.7) and (2.10), we obtain the following theorem.

Theorem 2.3. For n € N with n > 1, one has

’[Z [1- x]¥/qdyq(x) = q2 JZ [x]'f/qd‘ul/q(x) +n+1l-g.
P P

[ 1030430 = 17D = P2

[ 100y 6) = rasa(@ = o+ 1.

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)



Discrete Dynamics in Nature and Society 5

Taking the p-adic g-integral on Z, for one Kim’s g-Bernstein polynomials, we get

[ B = () [ 1k -2
” n\As k . q 1/q q

P

n-k —k
- <Z>z<"l )(—1)1 [ 115 o (212)
1=0 P

n\ "=k /n—-k :
—<k>§< l >(—1)ﬂk+l,q,

and, by the g-symmetric property of Bk ,(x, q), we see that

j Bin(x,q)dpg(x) = f Bukn <1 - x, %)d‘uq(x)

P Zy

e (2.13)
— n _1\k+l _ n-l
()5 )err oo
For n > k + 1, by Theorem 2.3 and (2.13), one has
n\ < ki K 2 n-1
I By n (x,q)dyq(x) = Z(—l) n-l+1-q+gq f [x]l/qd‘ul/q(x)

Zyp k 1=0 l Zp ( )
2.14

n k k
- <k>lz_o:(—1)k+l<l> [n —l+1-g+ qzﬂn_u/q].

Let m,n, k € Z, with m + n > 2k + 1. Then the p-adic g-integral for the multiplication
of two Kim’s g-Bernstein polynomials on Z, can be given by the following relation:

n m
IZ Bin (%, 4) Biom (%, q)dpq(x) = <k> <k> fZ [ T35 1L = %1702 dpag (x)

P P

2k 2k
Q)] -z

(2.15)
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By Theorem 2.3 and (2.15), we get

I Bkrn(X,b])Bk,m<x/q)d#‘7(x)
2k 2k
_ <:> <7:>2< l >(_1)l+2k [n +m-1+1- q+ qZ J‘Z [x];l'/";”_ld/,[l/q(x)] (216)
1=0 "
2k /2k
i <:> <1:> - < ! > (D" [ m =1+ 1=+ roms1/a].
=0

By the simple calculation, we easily get
n m 2k n+m-2k
i Bicn (%, ) Bim (x, q) dpq(x) = I\ ) ), [x]g [ = x11/ ™ dpg (%)
p p
n\ /m\"nmzk /n+m -2k
_ 1 lj 152 du (x
C)E () ptanes
n\ /m\"m2k /n+m-2k
CE ()
Continuing this process, we obtain
. i i sk Ny +-+ng—sk
f ( Bk,ni(x,tJ)>d#q(x) = ( < >>f [xlg [1=x]y, " dpg(x)
Zp \ i=1 i-1 \ k Zp
. 1 & [sk sk+1 ny+-+ng—l
= L 1 l (-1 J‘Z [1 —x]l/q dpg(x).
i=1 =0 P

(2.18)

(2.17)

Lets € Nand ny,...,ns, k € Z, with ny + np +--- + ng > sk + 1. By Theorem 2.3 and
(2.18), we get

[ < Bk,n,-(x,q)>dﬂq<x>
Zp \ i=1
T & [sk skl ] 2 |
= H Z (-1 Zni—l+1—q+qf [x]l}q Tdpyg(x)
<1 \k =0 \ [ i1 Z,
s i k k s
) L |
i=1 1=0 i=1

©

(2.19)
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From the definition of binomial coefficient, we note that

( < Bk,m(x,q)>dﬂq<x>
Zyp i=1

i=

Sy s et
=(T1(3) ) J, ey o
i=1 Zp
2.20
<li[<m>>”‘*"§sSk<n1+..,+ns—sk>( 1)1I [x]* dpa, (x) -
= — X //l X
i-1 \ k 1=0 l Zy ! !
<li[ <ni> >n1+-~+n5—sk <1’11 +i g — Sk> ( 1)lﬂ
= - sk+l,qs
i-1 \ k 1=0 l
wheres e Nand ny,...,ns, k € Z..
By (2.19) and (2.20), we obtain the following theorem.
Theorem 2.4. (I) Fors e Nand ny,...,ns, k € Nwithny + np + -+ - + ng > sk + 1, one has
f <HBk,n,- (x, q)> dpg(x)
o 221)
s n; sk /sk ol s ( '
i <H<k>>2< l >(_1)S + {Zni Sl qzﬁ"”"'+"‘”‘_””q}'
i=1 1=0 i=1
(Il) For s e Nand ny,...,ng, k € Z,, one has
s s_/n; vhdneosk Sy 4o+ — sk
[ (TTBuntea) )dngt) - > .
Zp \ i=1 i-1 \ k 1=0 l
(2.22)
By Theorem 2.4, we obtain the following corollary.
Corollary 2.5. For s e Nand ny, ..., ns, k € Nwithny + np + -+ - + ng > sk + 1, one has
sk /sk s
Z < l > (—1)Sk+l{2ni -l+1-g+ q2ﬂn1+...+ns_l,1/q}
1=0 i=1
(2.23)

ny+-+ns—sk ny+---+ng—sk ;
= Z (_1) ﬁsk+l,q.

10 !
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Lets e Nand my,...,mg, ny,..., 05, k € Z, withminy+---+mgng > (my+---+ms) k+1.

Then one has
S n; mi kZ?:l m; k m; R
(T1(}) ) 5" ("8 Jewrsm
i-1 \ k 1=0 I

S IREEE e

[, (T8t e Yo

i=1

ZP
2 AN =L kS i s
i1 \k 1=0 ;

x { <Zmin,~ — 1+ 1> -q+4 J; [x]lz/‘;1 nimi_ldﬂl/q(x)}
i=1 P

s ; miN\ kX, mi kS m; S
<H<111c> > 2 z; (—1)kZiami-l

i=1 1=0 1

x { <Zmini -1+ 1> -q+ q2ﬂn1m1+-»-+n5m5—l,1/q } .
i=1

(2.24)
From the definition of binomial coefficient, one has
( (HBZT;,(x,q))duq(x)
Zp \ i=1
s/ \ "\ 2 ek Eam N i - kS my 1
-(T1 5 = =H IG5
i-1 \ k 1=0 ]
(2.25)

x J‘ [x];m1+---+m5)k+ldﬂq(x)
Z

P

S S
<fI <,:>’”> bl mmiz—{: Siami ;nimi - k;mi

i=1 1=0 I

X (_1)lﬁ(m1+~--+m5)k+l,q-

By (2.24) and (2.25), we obtain the following theorem.
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Theorem 2.6. For s € Nand my, ..., mg, ny,...,ns, kK € Z, with myny +--- + mgng > (my + -+ +
ms)k + 1, one has

S
kX, mi k m; . s
; (-1)k 2 m"_l{ <Zmini -1+ 1> -q+ qzﬂn1m1+--~+n5ms—l,1/q}
1=0 I i=1
(2.26)
S S
i mimi=k 35 m; Znimi — kzmi l
= i=1 i=1 (-1 ﬁ(m1+~~~+ms)k+l,q-
1=0 I
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