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We will consider oscillation criteria for the second order difference equation with forced term
Δ(anΔ(xn + λxn−τ )) + qnxn−σ = rn (n ≥ 0). We establish sufficient conditions which guarantee
that every solution is oscillatory or eventually positive solutions converge to zero.

In the last thirty years, there has been an increasing interest in the study of oscillation and
asymptotic behavior of solutions of second order difference equations (see [1–11]). In [1],
Arul and Thandapani considered the equation

Δ
(
pnφ(Δxn)

)
+ f(n, xn+1) = 0, n = 0, 1, 2, . . . , (1)

and gave some sufficient conditions for the existence of positive solutions. In [3], Saker
considered the equation

Δ
(
pnΔxn

)
+ qnf(xn−σ) = 0, n = 0, 1, 2, . . . , (2)

and gave some sufficient conditions which guarantee that every solution is oscillatory.
Following this trend, we are concerned with oscillation criteria of solutions for a second order
difference equation with forced term

Δ(anΔ(xn + λxn−τ)) + qnxn−σ = rn, n = 1, 2, . . . , (3)
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where {an} is a positive sequence, {qn} is a nonnegative sequence and not identically zero
for all large n, {rn} is a real sequence, λ is a real number, and σ, τ are nonnegative integers,
μ = max{σ, τ}.

A solution {xn} of (3) is said to be eventually positive if xn > 0 for all large n and
eventually negative if xn < 0 for all large n. Equation (3) is said to be oscillatory if it is neither
eventually positive nor eventually negative.

In order to obtain our conclusions, we first give two lemmas.

Lemma 0.1. If difference inequality

Δ(anΔzn) + qnzn−σ ≤ rn, n > 0, (4)

is oscillation, then difference equation

Δ(anΔzn) + qnzn−σ = rn, n > 0, (5)

is oscillation.

Otherwise, if (5) has eventually positive solution, then (4) has eventually positive
solution; this is contradictory.

Lemma 0.2. Suppose that {xn} is an eventually positive solution of (3), λ ≥ 0, and

(i)
∑∞

n=1(1/an) = +∞,

(ii)
∑∞

n=1 qn = +∞,

(iii)
∑∞

n=1 rn < ∞.

Set zn = xn + λxn−τ . Then zn > 0 and limn→∞anΔzn = 0

Proof. Suppose that {xn} is an eventually positive solution of (3), then there exists n1 > μ,
such that xn > 0, xn−τ > 0, and xn−σ > 0 for n > n1, then zn > 0 for n > n1. By summing up (3)
from n1 to n, we obtain

an+1Δzn+1 − an1Δzn1 +
n∑

s=n1

qsxs−σ =
n∑

s=n1

rs. (6)

From (6), we know that limn→∞
∑n

n=n1
qsxs−σ = α, where α is a positive limited number or

α = +∞. Thus limn→∞anΔzn = β, β is a limited number or β = −∞.
If β < c < 0 (c is a constant), then there exist n2 ≥ n1, anΔzn ≤ c for n ≥ n2, so that

zn+1 ≤ zn2 + c
n∑

s=n2

1
as

, (7)

which is contrary to zn > 0.
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If β > 0, then there exist n3 ≥ n1, anΔzn > β/2 for n ≥ n3; hence,

zn+1 ≥ zn3 +
β

2

n∑

s=n3

1
as

−→ +∞ (n −→ ∞), (8)

therefore, limn→∞xn = ∞, limn→∞xn−σ = ∞; thus, there exist n4 ≥ n3, xn ≥ M, and xn−σ ≥ M
(M > 0) for n ≥ n4. By summing up (3) from n4 to, we obtain

an+1Δzn+1 − an4Δzn4 +M
n∑

s=n4

qs ≤
n∑

s=n4

rs. (9)

As n → ∞, the right-hand side of (9) is bounded, but the left-hand side of (9) tends to ∞;
this is contradictory.

Then β = 0; thus limn→∞anΔzn = 0. This completes the proof.

By means of Lemma 0.2, we obtain the following.

Theorem 0.3. If conditions (i), (ii), and (iii) hold and {xn} is an eventually positive solution of (3),
then limn→∞xn = 0.

Proof. Making use of (6) and the conclusion of Lemma 0.2, we know

lim
n→∞

n∑

s=n1

qsxs−σ = α (0 < α < +∞), (10)

so limn→∞xn = 0. If not, suppose that limn→∞xn = l > 0, then there exist n5 > n1, xn ≥ l/2 > 0
for n > n5. Now substitute xn ≥ l/2 > 0 for xn in (6), we obtain a contrary. This completes the
proof.

Theorem 0.4. If conditions (i), (ii), and (iii) hold, let

wn =
∞∑

s=n

1
as

∞∑

t=s
rt, n > 0, (11)

and if {wn} is oscillation, then (3) is oscillation.

Proof. Suppose that {xn} is an eventually positive solution of (3), then there exist n1 > μ,
xn > 0, xn−τ > 0, and xn−σ > 0 for n ≥ n1. From (6), we have

an+1Δzn+1 − an1Δzn1 <
n∑

s=n1

rs. (12)

Letting n → ∞ and making use of Lemma 0.2, we get

−an1Δzn1 <
∞∑

s=n1

rs (13)
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or

−anΔzn <
∞∑

s=n
rs (n > n1). (14)

By summing up (14) from n1 to n, we obtain

zn1 − zn+1 <
n∑

s=n1

1
as

∞∑

t=s
rt. (15)

In view of Theorem 0.3, we know that limn→∞xn = 0, then there exists a sequence {nk}, such
that limk→∞nk = ∞, limk→∞xnk−σ = 0, and limk→∞xnk = 0; by means of (15), we have

zn1 − znk+1 <
nk∑

s=n1

1
as

∞∑

t=s
rt, (16)

so

0 < zn <
∞∑

s=n

1
as

∞∑

t=s
rt. (17)

This shows that {wn} is nonoscillatory, which is a contradiction. This completes the proof.

The oscillation of {wn} is only the sufficient condition for the oscillation of (3). The
following examples will illustrate this point.

Example 0.5. Consider the difference equation

Δ
(
1
n
Δ(xn + xn−1)

)
+

3
n + 1

xn =
3

(n + 2)(n + 1)
, n ≥ 1. (18)

Here, wn =
∑∞

s=n s(1/(s − 1) + 1/s + 1/(s + 1)) > 0 is nonoscillatory, and the other conditions
(i), (ii), and (iii) are satisfied. Equation (18) has the nonoscillatory solution xn = (1/n) →
0 (n → ∞).

Example 0.6. Consider the difference equation

Δ
(
1
n
Δ(xn + xn−1)

)
+
(n − 4)(2n + 1)
(n + 2)(n − 1)

xn−4 = (−1)n 2n + 1
n(n + 1)

, n ≥ 1. (19)

Here,wn =
∑∞

s=n(−1)s is oscillatory, and the conditions (i), (ii), and (iii) are satisfied. Equation
(19) is oscillation.

Example 0.7. Consider the difference equation

Δ
(
1
n
Δ(xn + 2xn−1)

)
+
(

(−1)n
n(n + 1)

+
2

n + 1
+
2
n

)
xn−4 =

1
n(n + 1)

, n ≥ 1. (20)
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Here, wn =
∑∞

s=n 1 > 0 is nonoscillatory, and the other conditions (i), (ii), (iii) are satisfied.
But (20) has the oscillatory solution xn = (−1)n.

Remarks:

(1) When λ = 0, Theorems 0.3 and 0.4 still hold.

(2) As an = 1, Lemma 0.2, Theorems 0.3, and 0.4 still hold. In Theorem 0.4,

wn =
∞∑

s=n

∞∑

t=s
rt, n > 0. (21)

It has been discussed that λ ≥ 0. We have the following conclusion as λ < 0. Set

zn = xn + λxn−τ . (22)

If {xn} is an eventually positive solution of (3), then there exist T > μ, zn < xn for n > T . Thus,

Δ(anΔzn) + qnzn−σ ≤ rn. (23)

Therefore, we obtain the following

Theorem 0.8. As λ < 0, if difference inequality (4) is oscillation, then difference equation (3) is
oscillation.
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