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Background and Aims. Chest X-ray (CXR) is indispensable to the assessment of severity, diagnosis, and management of
pneumonia. Deep learning is an artificial intelligence (AI) technology that has been applied to the interpretation of medical
images. This study investigated the feasibility of classifying fatal pneumonia based on CXR images using deep learning models on
publicly available platforms. Methods. CXR images of patients with pneumonia at diagnosis were labeled as fatal or nonfatal based
on medical records. We applied CXR images from 1031 patients with nonfatal pneumonia and 243 patients with fatal pneumonia
for training and self-evaluation of the deep learning models. All labeled CXR images were randomly allocated to the training,
validation, and test datasets of deep learning models. Data augmentation techniques were not used in this study. We created two
deep learning models using two publicly available platforms. Results. The first model showed an area under the precision-recall
curve of 0.929 with a sensitivity of 50.0% and a specificity of 92.4% for classifying fatal pneumonia. We evaluated the performance
of our deep learning models using sensitivity, specificity, PPV, negative predictive value (NPV), accuracy, and F1 score. Using the
external validation test dataset of 100 CXR images, the sensitivity, specificity, accuracy, and F1 score were 68.0%, 86.0%, 77.0%,
and 74.7%, respectively. In the original dataset, the performance of the second model showed a sensitivity, specificity, and accuracy
0f 39.6%, 92.8%, and 82.7%, respectively, while external validation showed values of 38.0%, 92.0%, and 65.0%, respectively. The F1
score was 52.1%. These results were comparable to those obtained by respiratory physicians and residents. Conclusions. The deep
learning models yielded good accuracy in classifying fatal pneumonia. By further improving the performance, Al could assist
physicians in the severity assessment of patients with pneumonia.

1. Introduction

Pneumonia is a leading cause of morbidity and mortality
globally. In 2019, it caused 1.23 million deaths in adults older
than 70 years and 2.49 million deaths in persons of all ages
globally [1]. In Japan, pneumonia is classified mainly into
community-acquired pneumonia (CAP), nursing and
healthcare-associated pneumonia (NHCAP), and hospital-
acquired pneumonia (HAP). We have previously reported
the relationship between spleen volume and severity and
mortality in patients with pneumococcal pneumonia [2].
Chest X-ray (CXR) is indispensable to the assessment of the
severity and diagnosis of pneumonia [3]. The radiographic
features of bilateral shadows, involvement of more than one
lobe, bilateral pleural effusions, or the presence of a cavity

predict a worse prognosis in pneumonia [4, 5]. Therefore,
the diagnosis and assessment of pneumonia severity from
CXR images is important, but it is not performed accurately
by nonrespiratory specialist physicians [6]. Deep learning is
a technique of machine learning in artificial intelligence (AI)
technology, [7] using artificial neural networks as compu-
tational models to discover intricate structures and patterns
in large, high-dimensional datasets [7]. ImageNet, a large
dataset of more than 14 million human-annotated images,
has been instrumental in the development of deep learning
in image recognition. Classification errors in the annual
ImageNet’s large-scale visual recognition challenge have
decreased more than eightfold over the past 6 years, to less
than 3% in 2017, surpassing human performance [8]. Ad-
vances in deep learning and the availability of digitized
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healthcare data have contributed to a growing number of
studies describing deep learning applications in the field of
medical imaging, such as chest radiographs [9]. Specifically,
deep learning algorithms can differentiate normal CXR
images from those showing pneumonia and diagnose
pneumonia accurately with a sensitivity of 81-100% and a
specificity of 56.6-100% [10-15]. In addition, since the global
pandemic of coronavirus disease 2019 (COVID-19), some
deep learning models have been developed to diagnose
COVID-19 pneumonia using CXR images, with a sensitivity
of 71-98.8% and specificity of 90-92.9% [16-20]. Further-
more, studies of a deep learning model using CXR images to
assess the prognosis and severity of COVID-19 pneumonia
have been reported. Cohen et al. developed a deep learning
algorithm to predict the severity of COVID-19 pneumonia
using CXR images [21]. Zhu et al. developed a deep learning
model to assess the severity of COVID-19 infection [22].
Recently, Li et al. have developed a deep learning Siamese
network to predict the radiographic assessment of lung
edema (RALE) scores used to assess the severity of acute
respiratory distress syndrome in patients with COVID-19
[23]. However, to the best of our knowledge, the prognosis
prediction of non-COVID-19 pneumonia by deep learning
using CXR images has not been sufficiently studied. In the
era of the COVID-19 pandemic, the number of deaths due to
pneumonia remains high. Hence, the development of
prognostic tools for pneumonia patients is vital, and com-
puter-aided diagnosis techniques based on deep learning can
be used as a supplement in the clinical decision-making
process. We performed a study to establish an AI diagnostic
tool for assessing the fatality of pneumonia using CXR
images with deep learning models.

2. Methods

2.1. Patients and Dataset. We retrospectively investigated
patients with pneumonia who underwent CXR examination
at diagnosis in the Department of Respiratory Medicine at
Harasanshin Hospital, between January 2007 and October
2019. We then created a CXR image original dataset of
patients with pneumonia at diagnosis for deep learning
modeling (Figure 1(a)). No patient with COVID-19 pneu-
monia was included in this cohort. The diagnostic criteria for
pneumonia are listed in Table S1. Microbiological diagnosis
was performed using cultures (sputum, blood, bronchial
wash, and pleural effusion). Fatal cases were defined as cases
of patients who died from pneumonia at Harasanshin
Hospital, while nonfatal cases were defined as cases of pa-
tients who recovered from pneumonia following outpatient
treatment or inpatient treatment and were discharged from
Harasanshin Hospital. Complications of congestive heart
failure (CHF) have been reported to affect the diagnosis and
prognosis of pneumonia [24]. Therefore, we evaluated the
complications associated with CHF. Patients with pneu-
monia and CHF complications were defined as those di-
agnosed with chronic CHF or new heart failure at the time of
pneumonia diagnosis. The diagnostic criteria for new heart
failure are listed in Table S2. Furthermore, we prepared an
external validation test dataset of 100 CXR images (50 CXR
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images of patients with fatal pneumonia and 50 CXR images
of patients with nonfatal pneumonia who were mainly
treated in the Department of General Internal Medicine at
Harasanshin Hospital and not used in the training of the
deep learning models) (Figure 1(b) and Table S3) to ex-
ternally validate the performance of deep learning models.
The requirement for written informed consent was waived
because of the retrospective observational approach, and the
study was carried out using the opt-out method based on our
hospital website. The study was performed in accordance
with the Declaration of Helsinki and approved by the In-
stitutional Review Board of Harasanshin Hospital (No.
2020-09, May 5, 2020). The datasets were not publicly
available for legal and ethical reasons. We retrospectively
collected the following data from the medical records of the
patients: background characteristics, laboratory test findings
at the onset of pneumonia, physical examination findings,
CXR findings, and clinical courses.

2.2. Image Preparation and Model Training. CXR images of
pneumonia patients at diagnosis were evaluated for the
cardiothoracic ratio (CTR), [25] the number of lobes in-
volved with infiltrate (1 or >2), the location of infiltrate
(unilateral or bilateral), the location of pleural effusions
(none, unilateral or bilateral), and the presence of cavities by
a single reader (respiratory physician 1). Cardiomegaly was
defined as a CTR of >50% in a posteroanterior (PA) view and
>55% in an anteroposterior view [25]. To evaluate the in-
terobserver reliability of the CXR image findings, the ex-
ternal validation test dataset of 100 CXR images was
independently read by respiratory physicians 1 and 2, both
of whom are board-certified with more than 10 years of
experience. Interobserver reliability for the interpretation of
radiographic findings was assessed by calculating agreement
rates and the kappa statistic (x) [26]. The CXR images were
de-identified and saved as Joint Photographic Experts Group
files with a resolution of 720 x 960 pixels. Data augmentation
techniques were not used in this study.

2.3. Google Cloud AutoML Vision. Google Cloud AutoML
Vision is a publicly available platform that provides auto-
mated deep learning models through training, evaluation,
and prediction based on images [10].

Models using Google Cloud AutoML Vision showed
discriminative performance and diagnostic properties
comparable to those of state-of-the-art deep learning al-
gorithms [10]. Google Cloud AutoML Vision is used in
diagnostic research using pathological and ultrasound im-
ages of breast cancer, diagnostic research using otoscopic
images, research on retinal diseases, and evaluation of
spermatogenesis using histological images of tests (Table S4).
In this study, the original CXR image dataset was uploaded
to Google Cloud storage and allocated to the training,
validation, and test datasets (80%, 10%, and 10%, respec-
tively) randomly in Google Cloud AutoML Vision. 10% of
the dataset was used for validation. The model learning
framework incorporates training data at each iteration of the
training process and then uses the model’s performance on
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| 1356 Patients with pneumonia between January 2007 and October 2019

61 cases without CXR examination at
pneumonia diagnosis were excluded.

1295 Patients with CXR examination at pneumonia diagnosis

21 cases without outcome data were
excluded.

| 1274 Patients with outcome data available included for model training

Google Cloud AutoMLVision

2 CXR images were not be uploaded
due to unexplained technical problems.

()

Original Dataset for training of deep learning models
(1274 CXR images; 1031 non-fatal images, 243 fatal images )

The external validation test
dataset of CXR images of

pneumonia patients (100 CXR

images; 50 non-fatal images, 50

Automated deep learning model built on Google
Cloud AutoML Vision
(1272 CXR images; 1030 non-fatal images, 242
fatal images)

1

fatal images)

Sony Neural Network Console

Training (80%)
(1019 CXR images;
824 non-fatal images,
195 fatal images)

Test (20%)
(255 CXR images; 207
non-fatal images,
48 fatal images)

Training (80%)
(1016 CXR images;
823 non-fatal images,
193 fatal images)

Validation (10%)
(125 CXR images; 102
non-fatal images,
23 fatal images)

Test (10%)
(131 CXR images; 105
non-fatal images,
26 fatal images)

(b)

FIGURE 1: Patient selection flow. (a) Flowchart demonstrating the exclusion and inclusion of patients with pneumonia at Harasanshin
Hospital. (b) Splitting of the CXR image datasets at pneumonia diagnosis for training and testing of the deep learning model using Google
Cloud AutoML Vision and Sony Neural Network Console. CXR, chest X-ray.

the validation set to adjust the model’s hyperparameters
(variables that specify the model’s structure). In the current
study, we used Google Cloud AutoML Vision to create a
deep learning model for classifying CXR images of fatal or
nonfatal pneumonia.

2.4. Performance of the Deep Learning Model in External
Validation and Comparison with Physicians. After training,
the deep learning model using Google Cloud AutoML Vision
was deployed for online predictions. The model provided a
score for each prediction of pneumonia prognosis based on
CXR images. The score was a confidence estimate between 0.0
and 1.0. A higher value indicated greater confidence that the
annotation was accurate. We assessed the performance of the
deep learning model using an external validation test dataset of
100 CXR images to verify the generalizability of the model. The
external validation test dataset was not used in the training,
validation, or testing of the deep learning models. In addition,
respiratory physicians 2 and 3 and residents 1 and 2, who were
not informed of the prognosis of pneumonia patients, were
asked to infer the prognosis from the 100 CXR images of the
external validation test dataset. Respiratory physician 3 is a
board-certified physician with more than 10 years of experi-
ence. Residents 1 and 2 are physicians within 2 years of
graduation.

2.5. Sony Neural Network Console. Sony Neural Network
Console (NNC) is a graphical user interface-based deep
learning development tool [27]. NNC has been used in

studies of retinal diseases and the classification of neutrophil
fractions (Table S4). We evaluated whether NNC can also be
used to create a deep learning prediction model with the
ResNet model for fatal pneumonia from CXR images. We
used the same dataset for training NNC and Google Cloud
AutoML vision (Figure 1, Table 1). The ResNet model,
shown in Figure 2, is a neural network model proposed by
Microsoft Research in 2015 and is believed to exhibit high
image discrimination performance [28]. In addition, the
application of the deep learning model by ResNet to image
diagnosis of pneumonia using CXR images had shown high
performance, with a sensitivity of 96.5%, specificity of 92.7%,
and accuracy of 94.6% [15], and it was expected that a high-
performance model would be developed in this study.

2.6. Statistical Analysis. Google Cloud AutoML Vision
provides an area under the precision-recall curve (AUPRC),
sensitivity (recall), and positive predictive value (PPV)
(precision). Sensitivity, specificity, PPV, negative predictive
value (NPV), and accuracy were calculated to evaluate the
performance of the model at a threshold of 0.5. In the deep
learning model with NNGC, the sensitivity, specificity, PPV,
NPV, and accuracy were also calculated. Similar metrics
were calculated for the prognostic performance of physicians
on the external validation test dataset of 100 CXR images.
We evaluated the performance of our deep learning models
using sensitivity, specificity, PPV, negative predictive value
(NPV), accuracy, and F1 score. Categorical variables were
compared using Fisher’s exact test. Survival was evaluated
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TaBLE 1: Characteristics of the study patients in the CXR image original dataset for training of deep learning models (n=1274).

Characteristics N (%)
Median age (range), years 75 (15-104)
Gender

Male 750 58.9

Female 524 41.1
Hospitalization for pneumonia treatment

No 282 22.1

Yes 992 77.9
Pneumonia type

CAP 417 32.7

Other than CAP (NHCAP, HAP, VAP) 857 67.3
Complication of congestive heart failure

No 1149 90.2

Yes 125 9.8
Positive results with the sputum culture test 455 35.7
Positive results with the blood culture test 20 1.6
Positive results with the pleural fluid culture test 4 0.3
Positive results with the bronchial lavage fluid culture test 7 0.5
Posteroanterior chest radiographs 841 66.0
Chest radiographs under intubation 15 1.2
Prognosis

Nonfatal 1031 80.9

Fatal 243 19.1

CAP, community-acquired pneumonia; NHCAP, nursing and healthcare-associated pneumonia; HAP, hospital-acquired pneumonia; VAP, ventilator-

associated pneumonia.

using the Kaplan-Meier method, and differences in survival
were analyzed using the log-rank test. The observed pro-
portional interobserver agreement rate for the presence or
absence of radiographic findings was calculated by sum-
mation of the proportions of equal interpretations of two
board-certified respiratory physicians (respiratory physi-
cians 1 and 2). The kappa statistic is a measure of inter-
observer reliability that adjusts for agreement by chance. A
% <0.20 indicates poor agreement; a x of 0.21-0.40, fair
agreement; a k¥ of 0.41-0.60, moderate agreement; a x of
0.61-0.80, good agreement; and a x of 0.81-1.00 indicates
very good agreement between two observers [26]. Logistic
regression analyses were used to examine the associations
among radiographic characteristics, complications of con-
gestive heart failure, and mortality. In the first step, each risk
factor was tested individually in a univariate analysis by
Fisher’s exact test. In the second step, all risk factors that
showed an association in the univariate model (P <0.15)
were added to the multivariable model. Finally, a backward
stepwise selection was used to determine factors associated
with mortality. All statistical analyses were performed using
EZR, a graphical user interface for R [29].

3. Results

3.1. Interobserver Variation in the Interpretation of CXR Image
Findings for Pneumonia. Table S3 shows the patient char-
acteristics of the 100 patients with pneumonia prepared for
the external validation of the deep learning models. Two
respiratory physicians (respiratory physicians 1 and 2)
evaluated the findings of these CXR images at pneumonia
diagnosis. Table S5 shows the agreement rates on the specific

patterns of radiographic infiltrates in the external validation
test dataset in which both respiratory physicians agreed on
the presence of a pulmonary infiltrate. Among the external
validation test datasets, the calculation of agreement rates
and x demonstrated the following results: the number of
lobes involved (overall agreement, 86%; x = 0.62); location of
the infiltrate (overall agreement, 77%; x=0.529), pleural
effusion (location) (overall agreement, 73%; x = 0.687), and
cavitation (overall agreement, 97%; x =0.556) (Table S5).

3.2. Patient Demographic Characteristics in the CXR Image
Original Dataset for Training of Deep Learning Models. Of
1356 patients with pneumonia, 1274 (94.0%) were included in
the present study (Figure 1(a)). The demographic and clinical
characteristics of the study participants are presented in Ta-
ble 1. The cohort comprised 750 (58.9%) men and 524 (41.1%)
women with a median age of 75 years (range: 15-104 years). A
total of 1031 (80.9%) patients had nonfatal pneumonia, and 243
(19.1%) patients had fatal pneumonia. A positive sputum
culture was found in 455 (35.7%) patients with pneumonia, and
the most common organism detected was methicillin-resistant
Staphylococcus aureus (MRSA) (Table S6).

3.3. Association of Radiographic Findings and Cardiac
Complications with Fatal Pneumonia in the Original Dataset
of 1274 Patients with Pneumonia. Univariate analyses
demonstrated the following radiographic characteristics to
be significantly associated with fatal pneumonia (Table 2):
(1) cardiomegaly (odds ratio (OR), 1.69; 95% confidence
interval (CI), 1.26-2.26, P <0.0005); (2) two or more lobes
involved with infiltrates (OR, 15.08; 95% CI, 8.66-28.41,
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FIGURE 2: Network architectures of the ResNet model. The revised
template of the network (tutorial.basics. 12_residual_learning)
(https://dl.sony.com/) was used to provide the structure of the deep
neural network. The square box indicates the function of the layer.
The numbers to the right of the box indicate the specifications of each
layer. For example, the three numbers to the right of the first input
layer indicate the number of colors and size (height and width) of the
input image, respectively. In the second convolutional layer, the same
format is used to indicate the number of outputs and size (height and
width) of the feature map, respectively. “ReLU” stands for rectified
linear unit. “Kernel shape” indicates the pixel size of each filter for
convolution of the input. The NNC models were trained with a batch
size of 16, epochs of 100, and Adam optimization (learning rate
0.001). For other specifications, please refer to the reference (Sony
Network Communications Inc. 2020).

P<0.0001); (3) bilateral infiltrate (OR, 5.25; 95% CI,
3.75-7.45, P <0.0001); (4) unilateral (OR, 1.78; 95% CI,
1.22-2.59, P < 0.0005) or bilateral pleural effusion (OR, 4.69;
95% CI, 3.28-6.71, P<0.0001) (Table 2). Furthermore,
complications of CHF were observed in 9.8% of patients
with pneumonia and were significantly associated with fatal

pneumonia (OR, 4.68; 95% CI, 3.12-7.01, P <0.0001) (Ta-
ble 3). Multivariate logistic regression analysis revealed that
two or more lobes involved with infiltrates (odds ratio: 11.3,
95% confidence interval: 6.39-20.00, P < 0.0001), no pleural
effusion compared to unilateral pleural effusion (odds ratio:
0.50, 95% confidence interval: 0.35-0.73, P <0.005), uni-
lateral pleural effusion compared to bilateral pleural effusion
(odds ratio: 0.53, 95% confidence interval: 0.35-0.80,
P <0.005), and complications of CHF (odds ratio: 3.3, 95%
confidence interval: 2.17-5.01, P < 0.0001) were independent
risk factors for mortality (Table 4).

3.4. Performance of the Deep Learning Model by Google Cloud
AutoML Vision. A total of 1016 CXR images randomly se-
lected by the platform were used for training, 125 CXR images
were used for validation, and 131 CXR images were used for
testing in Google Cloud AutoML Vision (Figure 1(b)). Based
on the self-evaluation of the platform, the deep learning model
using Google Cloud AutoML Vision showed an AUPRC of
0.929, with a sensitivity of 50.00% and specificity of 92.4%, and
accuracy of 84.0% (Figure 3(a) and Table 5). The confusion
matrix of validation results for the test data is shown in
Figure 3(b). Figure 3(c) shows the CXR image at pneumonia
diagnosis that was correctly assessed as fatal pneumonia by the
deep learning model. Figure 3(d) shows the CXR image at
pneumonia diagnosis that was correctly assessed as nonfatal
pneumonia by the deep learning model.

3.5. External Validation and Analysis of Poor Prognostic
Findings in Pneumonia CXR Images at Diagnosis by the Deep
Learning Model with Google Cloud AutoML Vision. We
deployed a deep learning model using Google Cloud AutoML
Vision for online predictions. An overview of the deployed
deep learning model viewer is shown in Figures 4(a)-4(d). The
Kaplan—-Meier plots for time to death from the diagnosis of
pneumonia showed that patients predicted for fatal pneumonia
had a lower survival rate at 30 days after diagnosis of pneu-
monia than patients predicted for nonfatal pneumonia
according to the prediction by the deep learning model by
Google Cloud AutoML Vision in the external validation test
dataset (Figure 4(e)). The performance of the deep learning
model using Google Cloud AutoML Vision for classifying fatal
and nonfatal pneumonia using the external validation test
dataset is shown in Figure 5 (confusion matrix) and Figure 6(a),
and the numerical values are presented in Table 6. In the group
predicted to have fatal pneumonia by the deep learning model
by Google Cloud AutoML Vision, the rate of poor prognostic
findings on pneumonia CXR images and complications, such
as multilobar involvement, bilateral infiltrate, bilateral pleural
effusion, cardiomegaly, and complication of CHF, were sig-
nificantly higher than those in the group predicted to have
nonfatal pneumonia (Figure 6(b)).

3.6. Performance of the Deep Learning Model by NNC.
The CXR images of pneumonia diagnosis were randomly
allocated to the training and validation datasets (80% and
20%, respectively) (Figure 1(b)). The CXR images used in
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TaBLE 2: Univariate association of radiographic characteristics and mortality in the original dataset (n=1274).

Radiographic characteristics Frequency, no, (%) Mortality rate (%) OR (95% CI) P value
Cardiomegaly

No 711 (55.8) 15.5

Yes 563 (44.2) 23.6 1.69 (1.26-2.26) <0.0005
Number of lobes involved with infiltrates

1 509 (40.0) 2.8 -

>2 765 (60.0) 29.9 15.08 (8.66-28.41) <0.0001
Location of infiltrates

Unilateral 666 (52.3) 8.0 o

Bilataral 608 (47.7) 31.2 5.25 (3.75-7.45) <0.0001
Pleural effusion (location)

None 773 (60.7) 12.5

Unilateral 280 (22.0) 20.4 1.78 (1.22-2.59) <0.005

Bilateral 221 (17.3) 40.3 4.69 (3.28-6.71) <0.0001
Cavitation

No 1237 (97.1) 18.8 A

Yes 37 (2.9) 27.0 1.60 (0.68-3.46) 0.21

Univariate analysis was performed by Fisher’s exact test. P values of <0.05 are shown in bold. ®ellipses indicate that this variable was used as the baseline

variable in the univariate analysis.

TaBLE 3: Univariate association of complications of congestive heart failure and mortality in the original dataset (n=1274).

Complication Frequency, no, (%) Mortality rate (%) OR (95% CI) P value
Congestive heart failure
No 1149 (90.2) 16.0 R
Yes 125 (9.8) 47.2 4.68 (3.12-7.01) <0.0001

Univariate analysis was performed by Fisher’s exact test. P values of <0.05 are shown in bold. “ellipses indicate that this variable was used as the baseline

variable in the univariate analysis.

TABLE 4: Multivariate analysis.

Factors OR (95% CI) P value
Number of lobes involved with infiltrates
1 1.0
>2 11.3 (6.39-20.00) <0.0001
Pleural effusion (location)
None 0.50 (0.35-0.73) <0.005
Unilateral 1.0
Pleural effusion (location)
Unilateral 0.53 (0.35-0.80) <0.005
Bilateral 1.0
Congestive heart failure
No 1.0 R
Yes 3.3 (2.17-5.01) <0.0001

P values of <0.05 are shown in bold.

NNC were not trained at 720 x 960 pixels because of technical
problems; therefore, the images were processed to 240 x 320
pixels for further training (Figure 2). An evaluation using
validation data from a deep learning model by NNC showed a
sensitivity of 39.6%, specificity of 92.8%, and accuracy of
82.7% (Table 5). The confusion matrix of validation results for
the test data is shown in Figure 3(e). The performance of the
deep learning model by NNC for classifying fatal and nonfatal
pneumonia using the external validation test dataset is shown
in Figure 5 (confusion matrix) and Figure 6(a), and the
numerical values are presented in Table 6.

3.7. Comparison of the Performance between the Deep
Learning Models and Physicians. Respiratory physicians had
better specificity and PPV than deep learning models
(Figure 6(a) and Table 6). On the other hand, residents had
lower specificity and PPV than deep learning models
(Figure 6(a) and Table 6).

4. Discussion

We developed deep learning models to predict fatal
pneumonia using CXR images. The deep learning pre-
diction models showed a performance comparable to that
of physicians in predicting the prognosis of pneumonia
based on CXR images (Figure 6(a) and Table 6). These
results suggest that the deep learning model is useful for
prognostic evaluation using CXR images in patients with
pneumonia at diagnosis. Feng et al. developed a deep
learning prognostic model for CAP using nonimaging
data (such as comorbidities, vitals, and blood bio-
markers), with a sensitivity of 74.4% to 98.2%, specificity
of 83.1% to 100%, and accuracy of 79.3% to 99% [30].
Furthermore, deep learning models have been reported to
predict the severity of COVID-19 pneumonia using CXR
images [21-23]. However, the prognosis prediction of
non-COVID-19 pneumonia by deep learning using CXR
images has not been sufficiently studied. Our report
suggests that AI with deep learning can also be useful in
predicting the prognosis of pneumonia using CXR images
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images at diagnosis predicted accurately by Google Cloud AutoML Vision. (e) The confusion matrix of validation results for the test data by
NNC. CXR, chest X-ray; PPV, positive predictive value.

TaBLE 5: The performance of the deep learning models in the original dataset for training.

AUPRC Sensitivity (%) Spcecificity (%) PPV (%) NPV (%) Accuracy (%)
AutoML 0.929 50.0 92.4 61.9 88.2 84.0
NNC NR 39.6 92.8 55.9 86.9 82.7

NR, not reported.

with the same level of performance as the similar study
above, which was innovative noticeably. Deep learning
models for automated assessment of COVID-19 pneu-
monia severity on CXR have been trained using radiol-
ogists’ CXR severity scores as labels [21, 22]. These
labelings by severity scores are subjective to interpretation
and variability exists [23]. On the other hand, image la-
beling in this study is highly objective, based on the
clinical outcome data (fatal or nonfatal) which are a
ground truth definition [31].

Multilobar pneumonia, bilateral pneumonia, and bilateral
pleural effusions have been reported as poor prognostic factors
for pneumonia [4, 5]. Similarly, these findings were also poor
prognostic factors in our study (Table 2). In addition, external
validation showed that these findings were significantly more

frequent in the group predicted as fatal pneumonia than in the
group predicted as nonfatal pneumonia by Google Cloud
AutoML Vision (Figure 6(b)). These results suggest that the
deep learning model may have learned these findings as fea-
tures of fatal pneumonia. In this study, 9.8% of patients with
pneumonia also had CHF (Table 1). It has been reported that
the prognosis of pneumonia is poor in patients with CHF [24].
In this study, the multivariate logistic regression model showed
that the complication of heart failure in patients with pneu-
monia was an independent risk factor. The risk of death in
pneumonia patients with CHF was 3.3 times higher than that in
pneumonia patients without CHF (Table 4). Furthermore,
external validation by the deep learning model of Google Cloud
AutoML Vision showed that the group predicted to have fatal
pneumonia contained significantly more patients with CHF
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FIGURE 4: Overview of the deployed deep learning model viewer by Google Cloud AutoML Vision and Kaplan-Meier plots for time to death
from the diagnosis of pneumonia in the external validation test dataset. (a) A true-positive CXR image: the deep learning model accurately
predicted it as a fatal case with a score of 0.64, and the actual prognosis was fatal. (b) A false-positive CXR image: the deep learning model
predicted it as a fatal case with a score of 0.60, and the actual prognosis was nonfatal. (c) A false-negative CXR image: the deep learning
model predicted it as a nonfatal case with a score of 0.75, and the actual prognosis was fatal. (d) A true-negative CXR image: the deep
learning model predicted it as a nonfatal case with a score of 0.99, and the actual prognosis was nonfatal. (e) The deep learning model by
Google Cloud AutoML Vision predicted nonfatal or fatal pneumonia using CXR images (a survival rate of 0.34 for patients with fatal
pneumonia predicted versus 0.75 for those with nonfatal pneumonia predicted, P < 0.0005). CXR, chest X-ray.

than the group predicted to have nonfatal pneumonia
(Figure 6(b)). This result suggests that the deep learning model
can accurately differentiate between fatal and nonfatal pneu-
monia, even in pneumonia patients with CHF.

The performance evaluation of deep learning using the
Google Cloud AutoML Vision model in differentiating fatal
pneumonia from the external validation test dataset showed
a sensitivity of 68%, specificity of 86%, and accuracy of 77%
(Figure 6(a) and Table 6). The sensitivity and accuracy of
NNC were lower than those of Google Cloud AutoML
Vision, but the specificity was as high as 92.0%. This may
have been due to the effect of image degradation during
training and the small number of fatal cases. The CXR
images used for NNC could not be trained at 720 x 960 pixels

due to technical problems, so images processed to 240 x 320
pixels were used for training. In addition, in the case of
Google Cloud AutoML, the details of the architecture of the
model are not known, making it difficult to study the details,
which is an issue that needs to be considered in the future.
There is a good possibility that the performance of deep
learning models can be improved by increasing the number
of training data. Further study of additional metadata such
as age, gender, and presence/absence of heart failure com-
plications is expected to further improve learning perfor-
mance and is considered a topic for future research.
Furthermore, in terms of specificity and PPV, the perfor-
mance of both deep learning models on the two platforms
was comparable to that of the physicians. These results
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FiGgure 5: Confusion matrix of prediction performance of fatal and nonfatal pneumonia in the external validation test dataset by deep

learning models and physicians.

indicated that the reproducibility of deep learning pneu-
monia prognosis modeling using CXR images had good
performance. Additionally, the accuracy and F1 score of the
deep learning model using Google Cloud AutoML Vision
were higher than those of board-certified respiratory phy-
sicians. These results suggest the possibility that by further
improving the performance of this deep learning model, the
clinical implementation of this model for the severity as-
sessment of pneumonia patients may assist physicians in
general practice, especially physicians in clinics or remote
islands and suburbs, where it is difficult to consult respi-
ratory specialists.

Compared to classical deep learning frameworks, it has
been reported that the image learning performance with
Google Cloud AutoML is comparable to that of conventional
deep learning models [10]. What is important in the future is
how to implement deep learning models in clinical practice.
This study was conducted solely by clinicians, and we believe
that this research is very important for the future application
of deep learning models by clinicians in clinical practice.

Regarding the difference in sensitivity between respi-
ratory physicians and residents, we were not allowed in this
study to review patient history or previous examinations that
have been shown to improve the physician’s diagnostic
ability in interpreting CXR images [32]. In particular, re-
spiratory physicians were more likely to refer to patient
history and previous examinations, which may have influ-
enced the difference in sensitivity with residents.

In our study, 67.3% of cases were of pneumonia other
than CAP (NHCAP, HAP, and VAP) (Table 1), and MRSA
and Pseudomonas aeruginosa were reported frequently as

causative organisms (Table S6). This was because most of our
patients were elderly people in nursing homes, and the
absolute number of NHCAP and HAP was particularly high
compared to that of CAP.

This study had several limitations. First, this was a single-
center study with small datasets, and these deep learning
models cannot be directly applied clinically in medical insti-
tutions nationwide. Furthermore, deep learning models with
higher accuracy are required for clinical applications. To create
deep learning models with higher accuracy and robustness that
can be used at multiple institutions, it is necessary to develop
models using a larger sample size with multi-institutional data.
Second, the CXR radiographic findings of the original 1274
CXR image dataset (Table 2) were assessed by a single physician
(respiratory physician 1). Therefore, radiographic findings may
not be sufficiently accurate [33, 34]. However, the validation
using external validation data showed moderate to good
agreement, with x values ranging from 0.529 to 0.687 between
respiratory physicians 1 and 2 (Table S5). Furthermore, the
performance evaluation of the deep learning model in the
external validation showed a similar trend in the radiographic
findings assessed by respiratory physicians 1 and 2
(Figure 6(b)). Based on these results, the radiologic findings in
the original 1274 CXR image dataset at pneumonia diagnosis
were also considered to have a certain degree of accuracy.
Third, the model cannot retain its ability to accurately diagnose
fatal pneumonia without updating. Medical care is advancing
daily, and the survival rate of pneumonia is also expected to
change over time. Therefore, deep learning models must be
retrained using additional data to dynamically update their
performance [35].
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TaBLE 6: Performance measures of the deep learning models and physicians on the external validation test dataset.
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5. Conclusions

The diagnostic tool based on deep learning models yielded
good classification accuracy for classifying fatal pneumonia.
By further improving the performance of these learning
models, Al could assist physicians in the severity assessment
of pneumonia patients in general practice.
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Al Artificial intelligence

AP: Anteroposterior

AUPRC:  Area under the precision-recall curve
BNP: Brain natriuretic peptide

CAP: Community-acquired pneumonia
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COVID- Coronavirus disease 2019

19:

CTR: Cardiothoracic ratio

CXR: Chest X-ray

HAP: Hospital-acquired pneumonia

JPEG: Joint Photographic Experts Group

LVEEFE: Left ventricular ejection fraction

MRSA: Methicillin-resistant Staphylococcus aureus
NHCAP:  Nursing and healthcare-associated pneumonia
NPV: Negative predictive value

OR: Odds ratio
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PPV: Positive predictive value.
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