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Introduction. Hepatocellular carcinoma (HCC) accounts for approximately 90% of primary liver malignancies and is currently the
fourth most common cause of cancer-related death worldwide. Due to varying underlying etiologies, the prognosis of HCC differs
greatly among patients. It is important to develop ways to help stratify patients upon initial diagnosis to provide optimal treatment
modalities and follow-up plans. .e current study uses Artificial Neural Network (ANN) and Classification Tree Analysis (CTA)
to create a gene signature score that can help predict survival in patients with HCC.Methods. .e Cancer Genome Atlas (TCGA-
LIHC) was analyzed for differentially expressed genes. Clinicopathological data were obtained from cBioPortal. ANN analysis of
the 75most significant genes predicting disease-free survival (DFS) was performed. Next, CTA results were used for creation of the
scoring system. Cox regression was performed to identify the prognostic value of the scoring system. Results. 363 patients
diagnosed with HCC were analyzed in this study. ANN provided 15 genes with normalized importance >50%. CTA resulted in a
set of three genes (NRM, STAG3, and SNHG20). Patients were then divided in to 4 groups based on the CTA tree cutoff values.
.e Kaplan–Meier analysis showed significantly reduced DFS in groups 1, 2, and 3 (median DFS: 29.7 months, 16.1 months, and
11.7 months, p< 0.01) compared to group 0 (median not reached). Similar results were observed when overall survival (OS) was
analyzed. On multivariate Cox regression, higher scores were associated with significantly shorter DFS (1 point: HR 2.57
(1.38–4.80), 2 points: 3.91 (2.11–7.24), and 3 points: 5.09 (2.70–9.58), p< 0.01). Conclusion. Long-term outcomes of patients with
HCC can be predicted using a simplified scoring system based on tumor mRNA gene expression levels. .is tool could assist
clinicians and researchers in identifying patients at increased risks for recurrence to tailor specific treatment and follow-up
strategies for individual patients.

1. Introduction

Hepatocellular carcinoma (HCC) is the most common
primary tumor of the liver and a leading cause of cancer
death worldwide [1]. Within the USA, nearly 42,230 new
cases and 30,230 estimated deaths of HCC will occur in 2021
[2]. Despite recent advances in therapeutic intervention,
such as liver transplantation, surgical resection, locoregional
therapies, and chemotherapy, the recurrence and overall
survival rates remain poor [3]. Patients with localized HCC
usually have 5-year OS rates of 30%, and they are less than

5% for patients with distant metastasis [4]. Etiologic factors
including underlying liver disease as well as stage of pre-
sentation greatly vary between patients. In addition, intra-
tumoral heterogeneity influences the ability to predict
outcomes as well as develop individualized therapeutic
strategies for patients [5].

Over the last decade, numerous attempts have been
made to find biomarkers that can detect HCC in early stages,
help predict disease-free survival (DFS) and overall survival
(OS), and establish guidelines for long-term prognosis of
HCC [6]. Traditional serum markers, particularly alpha-
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fetoprotein (AFP) and AFP mRNA, have been found to be
prognostic [7]. However, they rely on significant tumor
burden and often have poor sensitivity and specificity in
relation to the cutoff value used; taking this into consid-
eration, their usefulness is often questionable [8].

Recent years have shown a rapid development of pre-
dictive biomarkers with advances in the understanding of
tumor biology and the use of data mining through bio-
informatics. A large series of studies has described the role of
tissue and serum markers, oncogenes, tumor suppressor
genes, and microRNAs in HCC prognosis [9–11]. However,
the majority of scoring systems that have been developed are
often complicated and impractical in the real-world setting
[11, 12].

.e aim of the current study was to create an easy-to-
calculate gene-based risk score using machine learning to
predict outcomes in patients with hepatocellular carcinoma
using the Cancer Genome Atlas (TCGA) public database.
Here, we found that the developed risk score was able to
stratify patients into different risk groups for shorter DFS
and OS.

In general, such models should not be viewed as re-
placements for good clinical judgment but as additional
instruments to assist clinicians in counseling and choosing
individualized treatment strategies for every patient.

2. Methods

RNA-Seq and corresponding clinical data for liver hepa-
tocellular carcinoma (LIHC) were obtained from TCGA
database [13]. A list of 363 samples was obtained. We used
GEPIA: a web server for cancer and normal gene expression
profiling, to determine the top 75 genes with highest impact
on DFS [14]. CBio Portal was used to extract mRNA gene
expression and sociodemogrpahic data as well as clinical
characteristics [15]. Clinicopathological data of the study
population were limited to age, sex, ethnicity, tumor stage,
and histologic grade.

We next performed ANN analysis to determine the
relative weight of the chosen genes and their impact on DFS.
For this purpose, a 10-fold cross validationmethodology was
used, in which the whole dataset was randomly divided and
90% of the patients were selected for the training step and
10% were selected for the final testing. .e final model was
the one that maximized the correct classification of patients
by DFS outcomes. .e importance of independent predic-
tors represented a measure of how much the predicted
values changed with variations of the independent variables.
Genes with a normalized importance >50% were used for
subsequent CTA. CTA did not require assumptions on the
distribution of variables or linearity of the data and could
handle highly skewed or multimodal continuous variables
[16]. .e output of CTA provided cutoff values for the top
three genes predicting DFS. We then used a simple scoring
system (0 or 1 point) to give points for each gene based on
the individual gene cutoff levels that were derived through
CTA. Patients were then grouped based on their total scores
(0–3). DFS and OS were obtained by Kaplan–Meier survival
analyses (log-rank test). We furthermore examined the

association for RFS and OS of the new scoring system and
multiple other variables using Cox proportional hazard
regression analysis.

3. Results

3.1. Neural Network Analysis and Classification Tree Analysis.
A total of 363 patients with biopsy-proven HCC were de-
rived from TCGA-LIHC database. .e 75 most significant
genes that predict DFS along with normalized mRNA ex-
pression levels were derived from GEPIA and cBioPortal.
ANN identified 15 genes with normalized importance > 50%
(Figure 1). We next used these 15 genes to perform CTA.
Here, we identified Nuclear Envelope Membrane Protein
(NRM (Ensembl: ENSG00000137404)), Stromal Antigen 3
(STAG3 (Ensembl: ENSG0000066923)), and Small Nucle-
olar RNA Host Gene 20 (SNHG20 (Ensembl:
ENSG00000234912)) as the strongest independent predic-
tors of DFS. Detailed CTA along with node cutoff values for
each gene can be obtained from Figure 2.

3.2. Score Development. Following the initial steps of NNA
and CTA, we performed survival analysis for each gene.
CTA provided node cutoff values, and based on these
numbers, we divided the population in below and above the
cutoff (Figure 2). Survival analysis showed that patients with
mRNA expression levels for NRM and SNHG20 above the
CTA cutoff had significantly worse DFS and OS (p< 0.01),
whereas patients with STAG3 mRNA levels above the cutoff
had significantly better DFS and OS (p< 0.01) (A and C in
Figures 3(a) and 3(b)).

Based on the prediction of survival for each gene, we
developed a simple risk score. Patients with NRM and
SNHG20 mRNA levels above the cutoff (prediction of worse
survival) received 1 point. Patients with STAG3 mRNA
levels below the cutoff (prediction of worse survival) re-
ceived 1 point. A simplified table with scores for individual
gene levels can be obtained from Figure 2. Patients were then
grouped based on their overall score into 0–3 points.

3.3. Patient Demographics and Kaplan–Meier Survival
Analysis. Patient demographics for the entire cohort and
each scoring group can be obtained from Table 1. Among
the 363 patients, the majority was male (n � 244, 67.2%)
with a mean age of 60 ± 13 years. .e majority of patients
wereWhite (n � 177, 48.80%) with Stage 1 disease (n � 167,
48.7%) and had alcohol as underlying risk factor (n � 108,
29.8%) and histologic grade 2 (n � 169, 47.2%). .e dis-
tribution for each score was 20.1% (0 points), 30.9% (1
point), 28.4% (2 points), and 20.7% (3 points). .ere were
no significant differences in regard to baseline demo-
graphic parameters among the groups. .e Kaplan–Meier
survival analysis showed that the developed scoring sys-
tem could stratify among patients for DFS (0 points,
median DFS: not reached; 1 point, median DFS: 29.7
months; 2 points, median DFS: 16.1 months; 3 points,
median DFS: 11.7 months, p < 0.01). Similarly, the same
score was able to stratify patients for decreased OS. .is
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information can be derived from Figures 3(a) and 3(b)
(overall score comparison (A), NRM (B), STAG3 (C), and
SNHG20 (D)).

3.4. Predictors of DFS and OS. We next performed Cox re-
gression analysis and found that on univariate analysis, pa-
tients with higher scores had significantly worse DFS (1 point,
HR (95% CI): 2.57 (1.38–4.80), 2 points, HR (95% CI): 3.91
(2.11–7.24), and 3 points, HR (95% CI): 5.09 (2.70–9.58),
p< 0.01). Onmultivariate analysis, patients with higher scores
as well as male patients (HR (95% CI): 1.81 (1.21–2.70),
p< 0.01) did significantly worse. Black (HR (95% CI): 0.16
(0.04–0.67), p< 0.01) and Asian (HR (95% CI): 0.49
(0.32–0.74), p< 0.01) patients had prolonged DFS. On uni-
variate analysis for OS, patients with higher scores (2 points,
HR (95% CI): 2.05 (1.34–4.39), and 3 points, HR (95% CI):
2.42 (1.34–4.39), p< 0.01) and advanced stage (Stage 2 HR
(95% CI): 2.00 (1.30–3.07), p< 0.01) performed significantly
worse. .is information can be obtained from Table 2.

4. Discussion

.e significant increase in mortality rates from primary
hepatobiliary cancers, particularly over the past decade, has
coincided with a rapidly growing interest to seek effective

biomarker-driven approaches to determine prognosis and
risk of death in patients undergoing treatment [17].

Estimating the individual patients risk of recurrence or
death following tissue diagnosis is helpful for physicians and
patients. With a certain estimation on long-term prognosis,
physicians can better tailor follow-up and patients have the
opportunity to make decisions in regard to treatment op-
tions and future care. It is therefore of high importance to
develop diagnostic tools that are readily available to predict
DFS and OS in patients that were diagnosed with hepatic
malignancies.

In this current study, we used Neural Network and
Decision Tree Analysis to create a genetic signature score to
aid in prediction of DFS and OS in patients with HCC. Using
the above techniques, we found that the tumor expression
levels of STAG3, SNHG20, and NRM significantly differed
among patients. With the help of CTA, we transformed the
gene expression levels into a scoring system which provided
the ability to adequately stratify between patients with
different risk for shorter DFS and OS (0–3 points). .e
calculated scoring system remained a significant predictor
for shorter DFS and OS following multivariable Cox re-
gression adjustment.

Given the vast differences among patients and the
inherent molecular heterogeneity of the disease and
cancer genetics, personalized medicine in cancer can be
particularly effective [18]. Recent studies have shown the
use of cancer genomic analysis to discover biomarkers for
drug sensitivity, drug resistance, and predictors of out-
comes along with establishing personalized oncology by
targeting HER2-positive patients in breast cancer [19, 20].
It is worth noting that several prior studies have evaluated
the importance of the genes that we used in developing
this score [21–25]. STAG3 is a subunit of the cohesin
complex that regulates the cohesion of sister chromatids
during cell division. It has been found to be important in
DNA repair, meiosis, and its work as a tumor suppressor
gene. .e loss of STAG3 has been associated with in-
creased metastasis and drug resistance in melanoma
[25, 26]. Similarly, NRM has been shown to play critical
roles in chromatin organization, gene regulation, and
signal transduction. NRM serves as a scaffold for nu-
merous transcription factors and regulator of transcrip-
tion and cell division. Its presence and prognosis in
cancers have been less frequently evaluated; however,
some studies suggest that the upregulation of NRM leads
to decreased apoptosis along with enhanced cell migration
and advanced cancer stage [23, 24]. Lastly, SNHG20 has
been shown to directly predict poor prognosis in HCC
patients. High SNHG20 expression can be detected within
the tumor but not the healthy background. .e SNHG20/
EZH2/E-cadherin pathway was also identified as the
potential mechanism in promoting tumor progression
and epithelial-mesenchymal transition [22].

As with all retrospective studies, there are several
limitations associated with this analysis. First and foremost,
TCGA cohort analysis provides data from untreated tu-
mors. As a result, any genomic change that happens due to
intervention is unaccounted for from a genetic standpoint.
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Figure 1: Artificial Neural Network (ANN) analysis of the 75 most
significant genes predicting DFS was performed. Shown are the 15
genes along with their adjusted normalized importance.
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In addition, only limited clinicopathologic data are avail-
able with a lack of information on tumor size, lympho-
vascular invasion, resection margin, etc. Within the US,
studies have shown that Asians have the highest incidence
for HCC followed by Blacks, Hispanics, and non-Hispanic
Whites. TCGA-LIHC database underrepresents Black pa-
tients. .is makes the finding of the study less generalizable

and will therefore need to be confirmed in a cohort that is
more representative of the current HCC population within
the USA [27]. Furthermore, the calculated risk score was
created using Neural Network analysis using an intrinsic
training and testing cohort. An extended retrospective
study to validate the score is currently underway at our
institution.
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Figure 3: (a) Disease-free survival and (b) overall survival: Kaplan–Meier curve of calculated scores and Kaplan–Meier survival curves for
each gene based on cutoff value derived from CTA analysis (gene expression< cutoff or≥ cutoff, respectively) and Kaplan–Meier curve
combination of calculated scores.
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Table 1: Comparison of demographics by risk score.

All patients 0 points 1 point 2 points 3 points p value
Gender 0.026
Female 119 32.80% 15 20.50% 37 33.00% 34 33.00% 33 44.00%
Male 244 67.20% 58 79.50% 75 67.00% 69 67.00% 42 56.00%
Age, mean STD 60 13 60 13 61 12 60 13 56 14 n.s.
Race n.s.
White 177 48.80% 43 58.90% 56 50.00% 44 42.70% 34 45.30%
Black 17 4.70% 3 4.10% 6 5.40% 5 4.90% 3 4.00%
Asian 157 43.30% 23 31.50% 47 42.00% 52 50.50% 35 46.70%
Unknown/other 12 3.30% 4 5.50% 3 2.70% 2 1.90% 3 4.00%
Etiology n.s.
No risk factor 88 24.20% 13 17.80% 26 23.20% 30 29.10% 19 25.30%
Alcohol 108 29.80% 30 41.10% 30 26.80% 25 24.30% 23 30.70%
HBV 74 20.40% 13 17.80% 27 24.10% 18 17.50% 16 21.30%
HCV 34 9.40% 4 5.50% 7 6.30% 13 12.60% 10 13.30%
NAFLD 18 5.00% 5 6.80% 7 6.30% 3 2.90% 3 4.00%
Other/unknown 41 11.30% 1 1.40% 6 5.40% 5 5.00% 1 1.40%
Stage n.s.
1 167 48.70% 34 50.00% 61 58.10% 44 44.90% 28 38.90%
2 85 24.80% 16 23.50% 20 19.00% 24 24.50% 25 34.70%
3 84 24.50% 16 23.50% 23 21.90% 28 28.60% 17 23.60%
4 7 2.00% 2 2.90% 1 1.00% 2 2.00% 2 2.80%
Histologic grade n.s.
1 52 14.50% 8 11.10% 13 11.70% 22 21.80% 9 12.20%
2 169 47.20% 45 62.50% 45 40.50% 45 44.60% 34 45.90%
3 124 34.60% 18 25.00% 47 42.30% 29 28.70% 30 40.50%
4 13 3.60% 1 1.40% 6 5.40% 5 5.00% 1 1.40%

Table 2: Cox regression: DFS and OS.

Disease-free survival Overall survival
Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR 95% CI p value HR 95% CI p value HR 95% CI p value HR 95% CI p value
Score <0.01 <0.01 0.010
0 1 : 00 reference 1 : 00 reference 1 : 00 reference 1 : 00 reference 0.01
1 2.57 1.38 4.80 0.01 3.41 1.76 6.61 <0.01 1.48 0.83 2.62 0.18 1.95 1.03 3.67 <0.05
2 3.91 2.11 7.24 <0.01 5.54 2.87 10.67 <0.01 2.05 1.17 3.60 <0.01 2.46 1.30 4.63 <0.01
3 5.09 2.70 9.58 <0.01 6.36 3.24 12.49 <0.01 2.42 1.34 4.39 <0.01 2.92 1.52 5.62 <0.01
Gender
Female 1 : 00 reference 1 : 00 reference 1 : 00 reference 1 : 00 reference
Male 1.13 0.79 1.61 0.51 1.81 1.21 2.70 <0.01 0.81 0.57 1.15 0.24 1.05 0.69 1.59 0.82
Age, mean STD 1.00 0.98 1.01 0.73 0.99 0.98 1.00 0.15 1.01 1.00 1.03 0.07 1.00 0.99 1.02 0.74
Race 0.12 <0.01 0.09 0.13
White 1 : 00 reference 1 : 00 reference 1 : 00 reference 1 : 00 reference
Black 0.25 0.06 1.02 0.05 0.16 0.04 0.67 0.01 1.31 0.60 2.85 0.50 1.19 0.50 2.81 0.69
Asian 0.76 0.54 1.07 0.11 0.49 0.32 0.74 0.01 0.66 0.45 0.97 0.04 0.67 0.42 1.06 0.09
Unknown/other 0.99 0.36 2.70 0.98 0.63 0.22 1.79 0.39 1.34 0.54 3.32 0.53 1.75 0.69 4.44 0.24
Stage 0.95 0.85 <0.01 <0.01
1 1 : 00 reference 1 : 00 reference 1 : 00 reference 1 : 00 reference
2 1.03 0.68 1.55 0.89 1.03 0.67 1.59 0.89 1.15 0.73 1.83 0.55 1.10 0.68 1.79 0.70
3 1.14 0.74 1.74 0.56 1.22 0.78 1.90 0.39 2.00 1.30 3.07 <0.01 2.08 1.32 3.28 <0.01
4 1.13 0.28 4.63 0.87 0.97 0.23 4.16 0.97 1.67 0.40 6.91 0.48 2.04 0.48 8.61 0.33
Histologic grade 0.53 0.12 0.43 0.67
1 1 : 00 reference 1 : 00 reference 1 : 00 reference 1 : 00 reference
2 1.47 0.84 2.58 0.17 1.97 1.09 3.55 0.03 1.07 0.63 1.81 0.80 1.19 0.68 2.09 0.54
3 1.27 0.71 2.26 0.43 1.47 0.80 2.71 0.22 0.94 0.54 1.63 0.81 1.05 0.59 1.88 0.87
4 1.13 0.44 2.93 0.79 1.46 0.50 4.28 0.49 0.34 0.08 1.49 0.15 0.53 0.12 2.41 0.41
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5. Conclusion

.e current study used individual patient tumor genomic
data to develop a three-gene predictive score to stratify
patients and their risk for shorter DFS and OS. .is study
serves to deepen our understanding of how a patient’s in-
dividual genetic profile can be utilized to better understand
their prognosis and consequently improve and individualize
their treatment.
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