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SSD (Single Shot MultiBox Detector) is one of the best object detection algorithms and is able to provide high accurate object
detection performance in real time. However, SSD shows relatively poor performance on small object detection because its shallow
prediction layer, which is responsible for detecting small objects, lacks enough semantic information. To overcome this problem,
SKIPSSD, an improved SSD with a novel skip connection of multiscale feature maps, is proposed in this paper to enhance the
semantic information and the details of the prediction layers through skippingly fusing high-level and low-level feature maps. For
the detail of the fusion methods, we design two feature fusion modules and multiple fusion strategies to improve the SSD
detector’s sensitivity and perception ability. Experimental results on the PASCAL VOC2007 test set demonstrate that SKIPSSD
significantly improves the detection performance and outperforms lots of state-of-the-art object detectors. With an input size of
300× 300, SKIPSSD achieves 79.0% mAP (mean average precision) at 38.7 FPS (frame per second) on a single 1080 GPU, 1.8%
higher than the mAP of SSD while still keeping the real-time detection speed.

1. Introduction

/e object detection algorithms based on deep learning
could be roughly divided into two categories: based on
region proposals and based on end to end. As known, the
former models generally include R-CNN [1], Fast R-CNN
[2], Faster R-CNN [3], and R-FCN [4], which firstly generate
a category-independent set of region proposals for subse-
quent feature extraction and classification. /e two most
popular latter models based on end to end are YOLO (You
Only Look Once) [5] and SSD (Single Shot MultiBox De-
tector) [6], which need setting the default box, training the
network, and establishing the relationship of the prior box,
default box, and ground truth box.

/e two-stage methods such as SPP-net [7], Fast R-CNN
[2], and Faster R-CNN [3], generally only use the last layer as
the prediction layer, but the layer with the fixed receptive
field size is not suitable for both too larger and smaller object
detections. SSD innovatively uses the pyramid feature hi-
erarchy of ConvNet and combines predictions frommultiple
feature maps with different resolutions to deal with the scale

variation problem for object detector. Generally speaking,
SSD is not only able to achieve real-time object detection but
also known for its high detection accuracy. On the PASCAL
VOC 2007 test [8], SSD achieves 77.2% mAP at the speed of
46 FPS with the input size 300× 300 using a single NVIDIA
Titan X GPU [6]. However, the linkages between multiscale
prediction layers of SSD are not fully considered, and the
low-level feature maps lack enough semantic information
for small object detection; thus, SSD shows poor perfor-
mance on small object detection [9]. As shown in Figure 1,
some small objects, for example boats in the red box, are not
detected by SSD.

To deal with the problem that SSD shows poor per-
formance on small object detection and to maintain a sat-
isfactory detection speed at the same time, we adopt a novel
skip connection of multiscale feature maps to SSD, and the
overall architecture is illustrated in Figure 2. /e main
contributions are summarized as follows: (1) SKIPSSD, an
improved SSD with a novel skip connection of multiscale
feature maps, is proposed to enhance the semantic infor-
mation and the details of the prediction layers through
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skippingly fusing high-level and low-level features; (2) six
multiscale feature maps fusion structures over the SSD
network, and two feature fusion modules and multiple fu-
sion strategies are designed to investigate the optimal feature
fusion framework; (3) experiments on the PASCAL VOC
2007 test set are conducted to compare the performance of
SKIPSSD with other state-of-the-art object detectors.

/e experimental results demonstrate that SKIPSSD
significantly improves the detection performance and out-
performs a lot of state-of-the-art object detectors. With an
input size of 300× 300, SKIPSSD achieves 79.0% mAP
(mean average precision) at 38.7 FPS (frame per second) on
a single 1080 GPU, 1.8% higher than the mAP of SSD while
still keeping the real-time detection speed.

2. Methodology

2.1. Related Work. In the field of object detection, image
pyramids are often used to solve the degradation of detection
performance caused by the change of object scale. However,
such kind of algorithms is very time consuming. SSD in-
novatively uses a ConvNet’s pyramidal feature hierarchy and
combines predictions from multiple layers with different
scales, mitigating the problem of object scale change in
certain degree [6]. However, the linkages between multiscale
prediction layers of SSD are not fully considered, and the
low-level feature maps lack enough semantic information
for small object detection; thus, SSD shows poor perfor-
mance on small object detection [9].

Figure 1: /e framework of our SKIPSSD. SKIPSSD skippingly fuses high-level and low-level feature maps to enhance semantic in-
formation of the model.
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Figure 2: /e framework of our SKIPSSD. SKIPSSD skippingly fuses high-level and low-level feature maps to enhance semantic in-
formation of the model.
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In order to deal with the abovementioned problem of
SSD, DSSD (Deconvolutional Single Shot Detector) [10] uses
Resnet-101 [11] in place of VGG used in SSD and adds
deconvolutional layers to introduce large-scale context.
Although DSSD improves the performance of small object
detection of SSD, its detection speed is much slower than
SSD, and it is not able to realize real-time detection. After
that, much has been done to balance accuracy and speed for
small object detection of SSD. RSSD [12] adopts weight-
sharing strategy between different layers to SSD and im-
proves the accuracy by 0.8% with the speed dropping to 35
FPS because of the increase of computational complexity.
FSSD [9] uses a lightweight and efficient feature fusion
module and achieves 78.8% mAP on the VOC2007 test set at
65.8 FPS, outperforming RSSD300 on both accuracy and
speed. Feature-Fused SSD300 [13] simply conducts elt_sum
function between Conv4_3 and Conv5_3 of SSD and ach-
ieves 78.9% mAP, which is little higher than FSSD. Com-
bining the advantages of the two-stage and one-stage
methods, RefineDet [14] uses the ARMmodule to reduce the
search space, transfers the features from the ARM to ODM
module through the TCB connection module, and achieves
81.8% mAP at 40.3 FPS with an input size 512× 512, sur-
passing DSSD513. To further improve the accuracy of SSD,
DES (Detection with Enriched Semantics) [15] not only
introduces the segmentation module to obtain the mask,
which objectively enhances the semantic information of the
shallow features, but also introduces the global activation
module to enhance the semantic information of the high-
level features. DES512 boosts the mAP on the VOC2007 test
set to 81.7% at 31.7 FPS./e accuracy of DES512 is improved
at the cost of speed.

/e abovementioned algorithms improve the detection
accuracy of SSD. However, their inference time increase a
lot. Overall speaking, it is of great value to obtain high
precision object detection performance with satisfactory real
time performance.

2.2.Multiscale Feature Fusion StructureDesign. Many works
have led to the discovery that the features from different
layers of the network are complementary, and integrating
the multiscale features can benefit the multiscale object
detection [9, 10, 16]. More specifically, the very invariance
properties of the DCNN model make the high-level feature
maps of DCNN learn abstract features of data well which is
good for object recognition but show side effect to object
location, and the low-level feature maps contain rich spatial
structural details which are beneficial to locate objects. In-
spired by an encoder-decoder network U-Net [17], which
uses the skip connection to associate low-level feature maps
and high-level feature maps to realize the positioning at the
pixel level, we adopt the idea of skip connection to SSD to
enhance semantic information. In this paper, we design and
evaluate a series of multiscale feature maps fusion structures
over SSD to explore the optimal fusion structure: multiscale
prediction feature maps skip connection (SKIPSSD), part
skip connection (Part-SKIPSSD), bidirectional skip con-
nection (Bi-SKIPSSD), skip connection with partial feature

maps of base network (Base-SKIPSSD), adjacent connection
(AdjacentSSD), and multiscale prediction feature pyramid
network (FPNSSD).

Figure 3(a) shows the skip connection between the
multiscale prediction feature maps, where SKIPSSD
upsamples Conv9_2 to fuse with Conv7_2 to get
Conv7_2_ff, upsamples Conv8_2 to fuse with Conv6_2 to
get Conv6_2_ff, upsamples Conv7_2 to fuse with fc7 to get
fc7_ff, and upsamples Conv6_2 to fuse with Conv4_3 to get
Conv4_3_ff. /e multiscale prediction feature maps skip-
connection network is called SKIPSSD in this paper.
Figure 3(b) shows the structure of the prediction layer of
SKIPSSD, Conv8_2, and Conv9_2, and the fused feature
maps Conv4_3_ff, fc7_ff, Conv6_2_ff, and Conv7_2_ff are
used as the multiscale prediction layers.

As shown in Figure 4(a), the structure of Part-SKIPSSD
is described. Compared with SKIPSSD, Part-SKIPSSD
removes the feature fusion of Conv7_2 layer and only uses
the Conv4_3_ff, fc7_ff, and Conv6_2_ff and Conv7_2,
Conv8_2, and Conv9_2 of the original SSD as the multiscale
prediction feature maps.

/e structure in Figure 5(a) is called Bi-SKIPSSD in this
paper. Compared with SKIPSSD, Bi-SKIPSSD adds the
feature fusion of layers Conv8_2 and Conv9_2, respectively.
Conv6_2, which undergoes convolution and pooling layers,
is then merged with Conv8_2 to generate Conv8_2_ff.
Similarly, Conv7_2, which undergoes convolution and
pooling layers, is then merged with Conv9_2 to generate
Conv9_2_ff. /e Figure 5(b) shows that Bi-SKIPSSD uses
Conv4_3_ff, fc7_ff, Conv6_2_ff, Conv7_2_ff, Conv8_2_ff
and Conv9_2_ff as the multiscale prediction feature maps.

Different from the abovementioned three networks,
Base-SKIPSSD in Figure 6 conducts skip connection be-
tween the layers in VGG base network and prediction layers.
Conv4_1, which undergoes convolutional and pooling
layers, is thenmerged with Conv4_3 to generate Conv4_3_ff,
and the latter fc7, Conv6_2, Conv7_2, Conv8_2, and
Conv9_2 are merged with their corresponding basic feature
layers in a similar way. /e fusion feature maps Conv4_3_ff,
fc7_ff, Conv6_2_ff, Conv7_2_ff, Conv8_2_ff, and Conv9_2_ff
act as the multiscale prediction feature maps.

/e structure in Figure 7(a) is called AdjacentSSD.
Compared with SKIPSSD, AdjacentSSD conducts adjacent
connection instead of skip connection. Layer fc7, which
undergoes the upsampling layer, is merged with Conv4_3 to
generate Conv4_3_ff, and the latter layers Conv6_2,
Conv7_2, Conv8_2, and Conv9_2 are merged with their
adjacent layers in a similar way. /e Figure 7(b) shows that
AdjacentSSD uses Conv4_3_ff, fc7_ff, Conv6_2_ff,
Conv7_2_ff, Conv8_2_ff, and Conv9_2 as the multiscale
prediction feature maps.

/e structure in Figure 8(a) is called FPNSSD. Different
from AdjacentSSD, in which the high-level layer Conv9_2 is
only fused with adjacent layer Conv8_2 to generate
Conv8_2_ff, FPNSSD adopts a top-down architecture with
lateral connections called FPN [16], shown in Figure 9, and
the high-level layer Conv9_2 is fused layer by layer and
contributes to the generation of Con8_2_ff, Conv7_2_ff, and
so on. /e Figure 8(b) shows that FPNSSD uses Conv4_3_ff,
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fc7_ff, Conv6_2_ff, Conv7_2_ff, Conv8_2_ff, and Conv9_2
as the multiscale prediction feature maps.

/e abovementioned six multiscale feature maps fusion
structures over SSD are analysed and evaluated on the
PASCAL VOC2007 test set in Section 3.4 to explore the
optimal multiscale feature maps fusion structure.

2.3. Feature FusionModuleDesign. In this paper, two feature
fusion modules are designed for high-level and low-level
feature fusion, and the fusion effect is compared in our
experiments. Concat and eltsum are two common methods
of feature fusion. Concat operation is channel concatenation
of two feature maps. In Caffe, there are three operations of

the Eltwise layer: product (dot product), sum (add or
subtract), and max (take the large value), and the sum
operation is selected in this paper.

As shown in Figure 10, fusionmodule a firstly upsamples
the high-level feature map to generate high-level feature
map_up, which undergoes 3× 3 convolutional layer and relu
activation function to obtain high-level feature map_fused.
In addition, the low-level feature map, which undergoes
3× 3 convolutional layer and relu activation function, is
transformed into low-level feature map_fused. /en, concat
or eltsum function is applied to conduct feature fusion
between low-level feature map_fused and high-level feature
map_fused to obtain the high-low-level feature map concat/
sum. Finally, the high-low-level feature map concat/sum,
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Figure 5: Multiscale prediction feature maps bidirectional skip connection (Bi-SKIPSSD). (a) Bidirectional skip connection structure. (b)
Multiscale prediction layers.
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Figure 3: Multiscale prediction feature maps skip connection (SKIPSSD). (a) Skip connection structure. (b) Multiscale prediction layers.
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Figure 4: Multiscale prediction feature maps part skip connection (part-SKIPSSD). (a) Part skip connection structure. (b) Multiscale
prediction layers.
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Figure 7: Multiscale prediction feature maps adjacent connection (adjacentSSD). (a) Multiscale prediction feature maps adjacent con-
nection structure. (b) Multiscale prediction layers.
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Figure 8: Multiscale prediction feature pyramid network (FPNSSD). (a) Multiscale prediction feature pyramid network structure. (b)
Multiscale prediction layers.
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Figure 6: Skip connection with partial feature maps of base network (base-SKIPSSD). (a) Skip connection structure with partial feature
maps of base network. (b) Multiscale prediction layers.
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which undergoes a 1× 1 convolutional layer to reduce
channel dimensions, is activated with the relu activation
function to obtain the prediction feature map high-low-level
feature map_fused.

Compared with fusion module a in Figure 10, the fusion
module b in Figure 11 is briefer. Firstly, fusion module b
upsamples the high-level feature map to generate high-level
feature map_up and transform low-level feature map into
low-level feature map_reduce through a 1× 1 convolutional
layer. /en, concat or eltsum function is applied to conduct
feature fusion between low-level feature map_reduce and
high-level feature map_up to obtain the high-low-level
feature map concat/sum. Finally, the high-low-level feature
map concat/sum, which undergoes a 3× 3 convolutional
layer to reduce the aliasing effect, is activated with the relu
activation function to obtain the prediction feature map
high-low-level feature map_fused.

3. Results and Discussion

To evaluate the performance of the proposed improved SSD
network and to find the optimalmultiscale featuremaps fusion
framework, four types of test cases are designed in this paper:

(1) Compare the performance of SKIPSSD when using
different feature fusion modules. /rough this ex-
periment, the most effective feature fusion module
can be found.

(2) Compare the influence of different fusion strategies
on SKIPSSD model performance. /rough this

experiment, the most effective fusion strategy can be
selected.

(3) Compare the effect of different upsampling methods
on SKIPSSD model performance. /rough this ex-
periment, the most effective upsampling method can
be selected.

(4) Compare the performance of SSD with different
feature maps fusion structures. /rough this ex-
periment, the most effective feature fusion structure
can be found.

/e experimental hardware and software configurations
are listed in Table 1. In order to evaluate the performance of
SKIPSSD, the union of VOC2007 trainval and VOC2012
trainval is used as the training data, and the VOC2007 test as
the test data. For fair comparison, the experiments are all
based on VGG16, which is preprocessed as what is con-
ducted in SSD, and SKIPSSD is trained in the same way as
SSD. /e parameter settings are listed in Table 2. /e mAP
and FPS are adopted as the metric for evaluating detection
performance.

High-level
feature map

Low-level
feature map

High-level
feature map_up

Upsample

Conv 1 × 1
relu

Low-level
feature map_reduce

High-low-level
feature map
concat/sum

Concat/eltsum High-low-level
feature map_fused

Conv 3 × 3
relu

Figure 11: Fusion module b.

Table 1: Experimental hardware and software configurations.

Hardware and software Profile
CPU Intel XeonE5-2620v4@2.10GHz
GPU GeForce GTX 1080
Operating system Ubuntu 16.04
Deep learning frame Caffe

Predict

Predict

Predict

Figure 9: Feature pyramid network.

High-level
feature map

Low-level
feature map

High-level
feature map_up

Upsample High-level
feature map_fused

Conv 3 × 3
relu

Conv 3 × 3
relu

Low-level
feature map_fused

High-low-level
feature map
concat/sum

Concat/eltsum High-low-level
feature

map_fused

Conv 1 × 1
relu

Figure 10: Fusion module a.
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3.1. *e Effect of Two Feature Fusion Modules on Model
Performance. In order to find the optimal feature fusion
module, SKIPSSD with different feature fusion modules are
evaluated on the PASCAL VOC 2007 test, and the perfor-
mance evaluated with an input size 300× 300 is recorded in
Table 3. In this experiment, the network of SKIPSSD is
shown in Figure 3, and the BN (Batch Normalization) layer
is added after all the convolutional kernels in the fusion
module.

According to the results in Table 3, SKIPSSD with fusion
module a achieves 78.1% mAP, 0.9% higher than SSD, and
the mAP of SKIPSSD with fusion module b is 1.1% mAP
higher than SSD, demonstrating that skip connection of

multiscale feature maps indeed improves the performance of
SSD. Since SKIPSSD with fusion module b outperforms
fusion module a on both accuracy and speed, the fusion
module b is chosen in this paper for high-low level feature
fusion.

3.2. *e Effect of Fusion Strategies on Model Performance.
In this experiment, two aspects of the factors are compared:
(1) concat and eltsum fusion methods; (2) full and partial use
of BN layers./e experimental results are recorded in Table 4.
In the experiment, the upsampling method is deconvolution
and dilated convolution, and the fusion module is b.

Table 2: Training parameter settings.

Parameter Size
Input size 300× 300
Number of iterations 240,000 steps
Batch size 16
Initial learning rate 0.0005 (it is divided by 10 in steps of 160,000, 200000, and 240,000)
Weight learning rate 0.0005
Momentum 0.9

Table 3: /e effect of the feature fusion connection module on model performance.

Model Data Pretrained model Fusion module Fusion method FPS mAP (%)
SSD 07 + 12 VGGNet × × 41.4 77.2
SKIPSSD 07 + 12 VGGNet a Eltsum 32.3 78.1
SKIPSSD 07 + 12 VGGNet b Eltsum 37.8 78.3

Table 4: /e effect of different fusion strategies on model performance.

Model Data Pretrained model Fusion model BN mAP (%)
SKIPSSD 07 + 12 VGGNet Concat Used after all convolution layers of the fusion module 77.9
SKIPSSD 07 + 12 VGGNet Eltsum × 78.0
SKIPSSD 07 + 12 VGGNet Eltsum Used after all convolution layers of the fusion module 78.3
SKIPSSD 07 + 12 VGGNet Eltsum Used only after the eltsum function 78.4
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Figure 12: Configuration of sampling parameters on deconvolution and dilated convolution.
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Conv4_3_fea_eltsum fc7_fea_eltsum

Input: conv6_2
Type: interp
Height: 38
Width: 38

Output: conv6_2_Interp

Conv4_3

Operation: sum

Input: conv7_2
Type: convolution

conv1-1024
Output: conv7_2_plus
Input: conv7_2_plus

Type: interp
Height: 19
Width: 19

Output: conv7_2_Interp

fc7

Operation: sum
Conv6_2_fea_eltsum
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Operation: sum
Conv7_2_fea_eltsum

Conv7_2

Operation: sum

Input: conv8_2
Type: convolution

conv1-512
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Type: interp
Height: 10
Width: 10

Output: conv8_2_Interp

Input: conv9_2
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Height: 5
Width: 5

Output: conv9_2_Interp

Figure 13: Configuration of sampling parameters on bilinear interpolation.

Table 5: Effect of different upsampling methods on model performance.

Model Data Pretrained model Upsampling method FPS mAP (%)
SKIPSSD 07 + 12 VGGNet Deconvolution + dilated convolution 36.8 78.4
SKIPSSD 07 + 12 VGGNet Bilinear interpolation 38.7 79.0

Table 6: Effect of different feature fusion network structures on model performance.

Model Data Pretrained model FPS mAP (%)
SKIPSSD 07 + 12 VGGNet 38.7 79.0
Part-SKIPSSD 07 + 12 VGGNet 39.2 78.7
Bi-SKIPSSD 07 + 12 VGGNet 38.1 78.8
Base-SKIPSSD 07 + 12 VGGNet 39.2 78.6
AdjacentSSD 07 + 12 VGGNet 38.0 78.8
FPNSSD 07 + 12 VGGNet 37.9 78.8
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Table 8: Comparison of speed and accuracy on the PASCAL VOC2007 test dataset.

Model Data Base network mAP (%) FPS GPU Input size
Faster R-CNN [3] 07 + 12 VGGNet 73.2 7 Titan X ∼600×1000
R-FCN [4] 07 + 12 ResNet-101 79.5 9 Titan X ∼600×1000
YOLOv2 [18] 07 + 12 VGGNet 76.8 67 Titan X 416× 416
YOLOv3 [19] 07 + 12 VGGNet 78.3 57.7 Titan Xp 416× 416
SSD300 [6] 07 + 12 VGGNet 77.2 46 Titan X 300× 300
DSSD321 [10] 07 + 12 ResNet-101 78.6 9.5 Titan X 321× 321
DSOD300 [20] 07 + 12 DS/64-192-48-1 77.7 17.4 Titan X 300× 300
RSSD300 [12] 07 + 12 VGGNet 78.5 35 Titan X 300× 300
FSSD300 [9] 07 + 12 VGGNet 78.8 35 Titan X 300× 300
RefineDet [14] 07 + 12 VGGNet 80.0 40.3 Titan X 320× 320
SSD300 [6] 07 + 12 VGGNet 77.2 41.4 1080 300× 300
RSSD300 [12] 07 + 12 VGGNet 78.5 34.8 1080 300× 300
RefineDet [14] 07 + 12 VGGNet 80.0 36.0 1080 320× 320
SKIPSSD300 07 + 12 VGGNet 79.0 38.7 1080 300× 300
RefineDet_SKIP 07 + 12 VGGNet 80.4 37.0 1080 320× 320

(a) (b)

(c) (d)

Figure 15: Continued.

10 Computational Intelligence and Neuroscience



From the data of the first and third rows in Table 4, it
could be concluded that in the same network structure, the
eltsum fusion method provides better accuracy than concat
does. Comparing the second, third, and fourth rows in
Table 4, adding BN layers can improve the accuracy of
SKIPSSD. When only using BN layers after the eltsum
function, SKIPSSD achieves 78.4% mAP, 0.1% higher than
SKIPSSD using BN layers after all convolution layers of the
fusion modules. After comprehensive analysis, the SKIPSSD
in this paper adopts the eltsum fusion method, and only uses
BN layers in the convolution layer behind eltsum function.

3.3. *e Effect of the Upsampling Method on Model
Performance. In order to study the effect of upsampling
methods on the performance of SKIPSSD, we adopt two
kinds of upsampling methods to feature fusion module of
SKIPSSD. /e first method is deconvolution and dilated
convolution, and the specific network structure parameters
are shown in Figure 12. /e second method is bilinear
interpolation, and the specific network structure parameters
are shown in Figure 13.

Table 5 shows that SKIPSSD with the bilinear interpo-
lation upsampling method achieves 79.0% mAP at 38.7 FPS
on the PASCAL VOC2007 test set, outperforming the

deconvolution and dilated convolution upsampling method
both on speed and accuracy. /erefore, bilinear interpola-
tion is selected as the upsampling method in this paper.

3.4. Effect of the Feature Fusion Structure on Model
Performance. /is experiment compares the performance
on the PASCAL VOC 2007 test set of six different feature
fusion structures: SKIPSSD, Part-SKIPSSD, Bi-SKIPSSD,
Base-SKIPSSD, AdjacentSSD, and FPNSSD. In this exper-
iment, the upsampling method is bilinear interpolation, the
fusion module is b, the fusion method is eltsum, and BN
layers are only used in the convolutional layer after eltsum
function.

As shown in Table 6, Base-SKIPSSD achieves 78.6%
mAP, 1.4% higher than SSD by conducting skip connection
between layers of VGG base network and prediction layers.
However, the lower prediction layers such as Conv4_3_ff
still lack enough semantic information for small object
detection. FPNSSD adopts a top-down architecture with
lateral connections to build high-level semantic feature maps
at all scales which is good for multiscale object detection, but
fusing features layer by layer is not efficient enough while
there are many layers to be combined together. And
AdjacentSSD achieves almost the same performance as

(e) (f )

(g) (h)

Figure 15: Comparison of detection performances of SSD and SKIPSSDmodels on some test samples. /e first column shows the results of
SSD, and the second column is the results of SKIPSSD.
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FPNSSD, indicating that there is no need to densely fuse
features layer by layer via a top-down architecture. Com-
pared with FPNSSD, by fusing low-level and high-level
feature maps skippingly, SKIPSSD is more lightweight and
efficient. And the performance of Part-SKIPSSD and Bi-
SKIPSSD demonstrates that less skip connection do not
bring obvious advantage of speed, and more skip connec-
tions would cause redundancy and do not bring significant
accuracy improvement. /us, in the end, SKIPSSD network
is selected as the optimal feature fusion structure.

3.5. Experiments on PASCAL VOC 2007. /e loss curve of
SKIPSSD is shown in Figure 14(a). Loss keeps decreasing
during the training process. In the first 50,000 steps, the loss
decreases sharply. After 16,000 steps, the decline speed slows
down further, and the loss curve tends to remain unchanged
after 200,000 steps. Accordingly, as shown in Figure 14(b), in
the first 50,000 steps, the accuracy increases sharply and
tends to remain unchanged after 2000 steps, reaching 79.0%
at 22,500 steps.

Table 7 shows the object detection results on the PAS-
CAL VOC 2007 test set. Compared with SSD, SKIPSSD
shows a large improvement for 18 classes, including small
objects like bottle, boat, bird, plant, and so on, demon-
strating that the weakness of small object detection in SSD is
improved. With low dimension input 300× 300, SKIPSSD
achieves 79.0% mAP without bells and whistles, out-
performing a lot of state-of-the-art object detection algo-
rithms like Faster R-CNN [3], YOLOv2 [18], YOLOv3 [19],
and DSSD [10]. Although the mAP of SKIPSSD is 1% lower
than RefineDet320 [14], RefineDet_SKIP320 achieves 0.4%
mAP higher than RefineDet320 by adopting skip connection
of multiscale feature maps, demonstrating that the skip
connection proposed in this paper is effective and can also be
integrated into other object detectors.

3.6. Inference Time. Table 8 shows the comparison of speed
and accuracy of SKIPSSD and the state-of-the-art object
detectors on the PASCAL VOC 2007 test set. For fair
comparison, we also test SSD300 [6], RSSD300 [12], and
RefineDet320 [14] on the GeForce GTX 1080.

On a single 1080 GPU, SKIPSSD300 achieves 79.0%
mAP at 38.7 FPS, 1.8% mAP higher than the original SSD
and surpassing most of the other state-of-the-art object
detection models including two-stage and one-stage
methods and other improved SSD models. Although the
detection speed of SKIPSSD is a bit slower than SSD due to
the extra feature fusion between high-level and low-level
features, it is still faster than RSSD [12] and RefineDet [14]
and is able to realize real-time detection. And Refine-
Det_SKIP outperforms RefineDet [14] on both accuracy and
speed, demonstrating that skip connection proposed in the
paper works better than FPN in the object detection task.

3.7. Visualization. As shown in Figure 15, compared with
Figures 15(a) and 15(b), SKIPSSD detects more targets of the
same class than SSD when the targets are dense. Compared

with Figures 15(c)–15(h), SKIPSSD can detect small objects
better than original SSD, and can also “capture” distant
objects, which proves that the proposed SKIPSSD based on
skip connection of multiscale feature maps can improve the
performance of the whole model and the detection per-
formance of small objects.

4. Conclusions

In this paper, an improved SSD algorithm SKIPSSD based
on skip connection of multiscale feature maps is proposed.
In order to fuse high-level and low-level features effectively,
a variety of feature fusion modules and fusion connection
modules are designed and compared. Experimental results
show that with an input size 300× 300 on 1080 GPU,
SKIPSSD achieves 79.0% mAP at 38.7 FPS, 1.8% higher than
SSD and can still keep real-time detection speed. In addition,
although the skip connection is only adopted to SSD and
RefineDet in this paper, it can also be integrated into other
object detectors.

In the future work, channel attention mechanism will be
adopted to filter out the unimportant channels and improve
the saliency of features by learning the importance of each
channel.
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