
Research Article
Key Genes Are Associated with the Prognosis of Glioma, and
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Glioma is the most common primary tumor of the central nervous system. Currently, there is no effective treatment for glioma.
Melittin (MT) is the main component of bee venom, which was found to have therapeutic effects on a variety of tumors. In this
study, we explored the relationship between key genes regulated by MT and the prognosis of glioma. In cultured glioma U87 and
U251 cells, MT inhibited cell proliferation and induces cell apoptosis in a time- and concentration-dependent manner. RNA-seq
revealed that MT upregulated 11 genes and downregulated 37 genes. These genes are mainly enriched in cell membrane signaling
pathways, such as surface membrane, membrane-enclosed organelles, integral component of membrane, PPAR signaling pathway,
and voltage-gated potassium channel. PPI network analysis and literature analysis of 48 genes were performed, and 8 key genes
were identified, and these key genes were closely associated with clinical prognosis. Overexpression of PCDH18, PPL, DEPP1,
VASN, KCNE4, MYBPH, and C5AR2 genes or low expression of MARCH4 gene in glioma patients was associated with poor
survival. qPCR confirmed that MT can regulate the expression of these genes in glioma U87 cells. This study indicated that
MT significantly inhibited the growth and regulated the expression of PCDH18, C5AR2, VASN, DEPP1, MYBPH, KCNE4,
PPL, and MARCH4 genes in glioma U87 cells in vitro. These genes are closely related to the prognosis of patients with glioma
and can be used as independent prognostic factors in patients with glioma. MT is a potential drug for the treatment of glioma.

1. Introductions

Glioma is the most common primary malignant tumor of
the brain. It has high morbidity and low survival rate
[1–3]. In the 2021 World Health Organization (WHO) clas-
sification of central nervous system (CNS) tumors, low-

grade glioma (LGG) includes CNS WHO grade 1-2, and
high-grade glioma (HGG) includes CNS WHO grade 3-4.
LGG accounts for 6% of primary central nervous system
tumors in adults and has a good prognosis [4]. However,
compared with other benign intracranial tumors, there is
still a higher recurrence rate. Glioblastoma multiforme
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(GBM) is WHO grade 4, which is the most aggressive and
malignant primary brain tumor. Surgical is an important
treatment for LGG. However, due to the aggressive growth
of glioma, surgical treatment alone cannot completely cure
the diffuse growth of the tumor. At present, adjuvant thera-
pies such as radiotherapy and chemotherapy are mostly used
to delay the tumor recurrence time. But LGG are still diffi-
cult to cure completely. For HGG, the current standard
treatment includes surgical removal of the tumor [5],
tumor-treating fields (TT Fields) [6], targeted therapy [7],
immunotherapy [8], radiotherapy (RT) [9], and chemother-
apy [10]. Despite the continuous updates and advances in
diagnostic and therapeutic techniques, the prognosis of
patients is not satisfactory. In recent years, TMZ has made
some progress as the main drug in chemotherapy, but the
prognosis of patients is still poor [11]. It is urgent to find
effective treatment methods. Therefore, searching for effec-
tive treatment is still a hot spot in recent years.

MT is the main active component of honeybee venom,
honeybee venom is a kind of fragrant transparent venom
secreted by worker bee venom glands and accessory glands
(Figure 1(a)). Among the many components of honeybee
venom, the content of MT is the highest which makes up
more than 40% of honeybee venom, MT is a polypeptide
composed of 26 amino acid residues [12] (Figure 1(b)), the

molecular formula is C131H2 29N39O31, and the relative
molecular weight is 2846.46.

In recent years, there have been many studies on its
pharmacological action and mechanisms. It has been
reported that MT has antioxidant [13], antifungal [14], and
anti-inflammatory [15, 16] pharmacological effects. There-
fore, MT was used in the treatment of a variety of diseases,
especially rheumatoid arthritis [17]. The mechanism may
be related to regulating Th17/Treg balance [18] and inhibit-
ing the activation of NF-κB, STAT3, and bcl-2 expression
induced by IL-6/S IL-6R complex [19]. In addition, previous
studies have shown that MT destroys the cell membrane and
leads to cell death. It does not need to enter the cells, but can
show cytotoxicity to destroy tumor cells outside the cells
[20]. MT is believed to have a proapoptotic effect and antitu-
mor activity [21] by inhibition of the HIF-1 α/Akt pathway
in liver cancer [22], NF-κB signaling pathway in lung carci-
noma cells [23], TGF-β-mediated ERK signaling pathway in
lung cancer [24], Her2 enrichment and growth factor recep-
tor activation in triple negative breast cancer [25], MAPK in
melanoma [26], and JAK2/STAT3 in ovarian cancer [27]. In
addition, some studies [28–30] have shown that MT inhibits
proliferation and induces apoptosis of malignant human gli-
oma cells. The majority of the antineoplastic activity of hon-
eybee venom has been attributed to melittin through
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Figure 1: The honeybee and structure of MT (a, b).
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inhibition of VEGF, FLT-1, and MMP-9 in glioma C6 cells
[31]; metaloprotease-2 in human glioblastoma cells [32];
and STAT3 and VEGF in glioma SHG44 cell [33]. However,
information regarding the functional role of MT in glioma is
limited. The targets and mechanism of action of MT in the
treatment of glioma need to be further studied.

Therefore, on the basis of the previous studies, this study
further explored the effect of MT on glioma. In this study,
we evaluated the potential of MT in inhibiting U87 and
U251 cells in vitro. We generated deep sequencing RNA data
from U87- and MT-treated U87 cell samples, monitoring
the differentially expressed genes. TCGA database was used
to further screen genes related to the survival prognosis of
glioma. We found that MT can regulate the expression of
these genes associated with glioma prognosis in glioma
U87 cells. That could be helpful for determining the molec-
ular mechanism of MT in the treatment of glioma.

2. Methods

The methods were followed as previously described [34]
with some modifications.

2.1. MT Preparation. MT (20449-79-0, Shanghai Baishun
Biological Technology Co., Ltd., China) was dissolved in
saline and stocked at -20°C.

2.2. Cell Culture. U251 and U87 cells were derived from glio-
blastoma tissue of patients. U87 cells were cultured from a
grade III astrocytoma-glioblastoma of a 44-year-old woman.
U251 cells were cultured from a 75-year-old patient. U87
cells (provided by professor Yi Guan) and U251 cells
(Suzhou Institute of Cell Biology, Chinese Academy of Sci-
ences) were cultured in Dulbecco modified Eagle medium
(Gibco, USA) with 10% FBS (Gibco, USA) and 1% of
penicillin-streptomycin at 37°C, in humidified air containing
5% of CO2.

2.3. Cell Viability. Cell proliferation was determined by using
a Cell Counting Kit-8 (CCK-8, Meilunbio, Dalian, China).
Cells were seeded into a 96-well plate (2 × 103 cells/well)
with 100μL of culture medium. After 12 h, cells were treated
with various concentrations of MT (0, 30.0, 60.0, 150.0,
300.0, 600.0, and 1500.0 nM) for 24 and 48 h. 10μL CCK-8
solution was added to each well and cells were incubated at
37°C for 2 h. Light absorbance was measured at 450 nm
using a microplate reader (Bio Tek Elx800, USA).

The cell growth inhibition and the median inhibitory
concentration (IC50) were calculated from the cytotoxicity
curves. Cell morphological changes were observed using an
inverted microscope (Nikon, ECLIPSE E600, Tokyo, JPN).

2.4. Annexin V-FITC/PI Cell Apoptosis Analysis. Apoptosis
was detected by flow cytometry via the examination of
altered plasma membrane phospholipid packing by lipo-
philic dye Annexin V. Briefly, treated cells (treated with
MT, 0-150.0 nM) were harvested by trypsin, washed twice
with PBS, and then, resuspended in binding buffer. Thereaf-
ter, 5μL of Annexin V-FITC was added into cell suspension
and incubated for 15min at room temperature in the dark.

PI staining was performed 5min before evaluation by flow
cytometry within 30min (BD Accuri™ C6, BD Biosciences,
San Jose, CA). Data analysis was performed with BD Accuri
C6 software (Version 1.0.264.21).

2.5. Total RNA Isolation and Transcriptome Sequencing. U87
cells were seeded in a 6-well plate (1 × 106 cells/well). After
12h, cells were treated with MT (0μM and 150nM for 12h).
Total RNA was isolated using a RNA extraction kit (Beyotime,
Shanghai, China). Nanodrop 2000 spectrophotometer (Implen,
Los Angeles, USA) was used to test RNA purity and concentra-
tion. After that, mRNA was enriched, the enriched mRNA was
fragmented into short fragments and reverse transcribed into
cDNA. Second-strand cDNA was synthesized by DNA poly-
merase I, RNase H, dNTP, and buffer. Then, the cDNA frag-
ments were purified with a QIAQuick PCR extraction kit,
end-repaired, poly(A) tailed, and ligated to Illumina sequenc-
ing adapters. The ligation products were size selected by aga-
rose gel electrophoresis, PCR amplified, and sequenced using
an IlluminaHiSeqTM 2500 platform by GeneDenovo Biotech-
nology Co. (Guangzhou, China).

2.6. PPI Network Analysis and Key Genes. PPI network anal-
ysis plays a major role in predicting the functionality of
interacting genes or proteins and gives an insight into the
functional relationships and evolutionary conservation of
interactions among the genes. An interaction network is a
graphical representation of gene/protein interactome, where
each gene/protein is a node, and interaction between gene/
protein is an edge [35]. PPI was constructed using the String
Database (https://string-db.org/), and the key genes were
obtained.

2.7. Correlation Analysis between Key Genes and Survival
Prognosis. Survival analysis [36] is a statistical method used
to analyze the relationship between survival status and cor-
responding time. It has been widely used in medicine. Sur-
vival Rate represents the probability that the survival time
of the patient is greater than time t, denoted by RðtÞ. Time
represents the actual survival time of the patient. The sur-
vival rate curve can be obtained if the horizontal axis is taken
as the following prevention time t and the vertical axis is
taken as the survival probability RðtÞ.

Independent prognostic analysis of genes associated with
glioma survival was performed to obtain independent prog-
nostic factors associated with glioma. These genes as inde-
pendent prognostic factors are of great clinical interest
which suggested that these genes could be independent of
other clinical traits as independent prognostic factors [37].

To further verify the relationship between the key genes
and the survival prognosis of patients with glioma, RNA-seq
data and clinical data of glioma were taken from The Cancer
Genome Atlas (TCGA) database (https://tcga-data.nci.nih
.gov/tcga/). According to the expression of DEG mRNA in
glioma, DEGs were divided into high-expression group
(above average) and low-expression group (below average),
and the survival rate of patients was analyzed. Kaplan-
Meier curve was used to draw the survival curve to detect
the relationship between the expression level of DEGs and
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the survival of glioma patients. We then assessed the DEGs
based on other clinical factors in the univariate and multi-
variate Cox proportional-hazard analysis.

2.8. Quantitative Real-Time PCR Analysis. Total RNA was
isolated for RNA-seq. Based on the RNA-seq results, rele-
vant genes were selected, and primers were designed using
Primer Premier 5 software (primer sequences are shown in
Table 1). Reverse transcription into cDNA was performed
using a cDNA Synthesis SuperMix for qPCR Kit (Transgen,
Beijing, China), and the cDNA was amplified using an RT-
PCR amplification kit (PerfectStart Green qPCR SuperMix)
(Transgen, Beijing, China). The 2−ΔΔCt method was used to
perform analysis with GAPDH as the reference gene.

2.9. Statistical Analysis. Data were analyzed using GraphPad
Prism 7.0 (GraphPad Software, Inc. La Jolla, CA, USA) and
SPSS software (v.24.0). Data are presented as mean ±
standard error ðSEMÞ. Statistical analyses of multiple group
comparisons were performed by two-way ANOVA (CCK8
analysis, IC50, apoptotic rate, qPCR). Clinical correlation anal-
ysis was performed using R (version 4.0.4, http://www.r-
project.org). Cumulative survival time was calculated using
the Kaplan-Meier method, and the differences in survival
curves were analyzed using the log-rank test from “survival”
package [38] (version: 2.41.3). Univariate and multivariate
analyses were conducted using the Cox proportional hazard
regression model. For all tests, significance was defined at ∗p
< 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001.

3. Results

3.1. MT Affects Cell Morphology and Suppresses Cell
Proliferation. The human U87 and U251 cells were used to

evaluate the pharmacological effects of MT. Cells were
treated with different concentrations of MT for 48 h, then
the cell morphological changes were examined. At the con-
centration of 60.0 nM group, cells exhibited morphological
changes, such as cell rounding and the disappearance of pro-
truding spike. At the concentration of 150nM, treated cells
showed cell shrinking, disappearance of spikes, and detach-
ment from the substrate (Figure 2(a)).

CCK-8 assay on cell viability showed that MT treatment
remarkably inhibited U87 cell growth in a concentration-
dependent manner. The IC50 values of MT-induced inhibi-
tion at 24 and 48 h were 178:07 ± 6:67 and 125:71 ± 2:68
nM, respectively. In U251 cells, the IC50 values at 24 and
48 h were 185:20 ± 4:79 and 151:59 ± 10:79 nM, respectively
(Figures 2(b) and 2(c), Table 2).

3.2. MT Induces Cell Apoptosis. To evaluate the effects of MT
on cell apoptosis, U87 and U251 cells were treated with dif-
ferent concentrations of MT, then examined for cell apopto-
sis by Annexin V-FITC/PI flow cytometry (Figure 3(a)).
After treatment with 30.0, 60.0, and 150.0 nM MT on U87
cells, the early apoptotic rate increased from 4:27 ± 0:72%
(untreated control group) to 9:57 ± 2:91%, then decreased
to 0:57 ± 0:03% and 0:10% ± 0:00%, respectively. The
decrease of early apoptosis at 60.0 and 150.0 nM MT may
be due to the rapid occurrence of late apoptosis and even
death of tumor cells. Late apoptotic rate increased from
3:93 ± 1:10% (control) to 7:50 ± 4:38%, 41:30 ± 2:64%, and
80:70 ± 2:25% at 30.0, 60.0, and 150.0 nM MT, respectively.
Thus, the total apoptotic rate increased from 7:87 ± 0:75%
(control) to 17:07 ± 2:59%, 41:87 ± 2:67%, and 80:80 ± 2:25
% at 30.0, 60.0, and 150.0 nM MT, respectively. There was
a significant difference between the 60.0 and 150.0 nM
(∗∗∗∗p < 0:0001 vs. control) in late and total apoptosis. In

Table 1: qPCR primer sequences.

Gene Primer sequence Annealing T (°C)

PCDH18-F GGAACAGAGGGTTGGATCAGT 59.4

PCDH18-R GGCTCGAAATCGAACAGTAGAA 58.5

PPL-F GGCTGCAGAATCTGGAGTTTGC 62.3

PPL-R CTCAGTCTCCTCATCCAGTTCC 59.6

DEPP1-F TGCCCACAATTCGGGAGAC 60.0

DEPP1-R AGACCTCACGTAGTCATCCAG 59.0

VASN-F TCTCACCTATCGCAACCTATCG 59.5

VASN-R CAGACGGAGTAAGTGGCGTT 60.0

KCNE4-F ACGATGAGCTGGAGGAGACCTC 63.2

KCNE4-R CTCTAAGGTTGCTGGCTGATGG 61.0

MYBPH-F TCCACATCCGAGAGAACATTGA 59.2

MYBPH-R GAAGGGGATTTGCAGGTTGAC 59.5

C5AR2-F CTGCTGACCATGTATGCCAG 58.7

C5AR2-R CGCTGAACCGTAGACCACC 60.4

MARCH4-F TTGGCTCATCTGGTCAACTTTC 58.9

MARCH4-R GGTACACCGAGGGTCCTTCAT 61.2

GAPDH-F GTCTCCTCTGACTTCAACAGCG 59.5

GAPDH-R ACCACCCTGTTGCTGTAGCCAA 59.5
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Figure 2: The effects of MT on cell growth of U87 and U251 glioma cells. (a) Morphological and cell density changes of U87 and U251 cells
observed after 48 h treatment with different concentrations of MT. (b) Effects of MT on U87 cell proliferation using a CCK-8 assay. (c)
Effects of MT on U251 cell proliferation using a CCK-8 assay. Data are presented as the mean ± SEM, n = 4, ∗∗∗∗p < 0:0001 vs. control
group.
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Figure 3: The effect of MT on apoptosis of U87 and U251 glioma cells. (a) Cells treated with different concentrations of MT for 48 h. Cell
apoptosis detected by flow cytometry. The lower left represents normal cells, the lower right represents early apoptotic cells, the upper right
represents late apoptotic cells, and the upper left represents dead or late apoptotic cells. (b) Analysis of the altered rate of early apoptosis, late
apoptosis, and total apoptosis after MT treatment. Results are expressed as means ± SEM, n = 3, ∗∗∗∗p < 0:0001 vs. the control group.

Table 2: Inhibitory concentration 50% (IC50) of MT.

IC50 U87 U251

24 h 178:07 ± 6:67 nM 185:20 ± 4:79 nM

48 h 125:71 ± 2:68 nM 151:59 ± 10:79 nM
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U251 cells, we observed that MT had a statistically signifi-
cant effect on the late apoptosis and total apoptosis of
U251 cells at 60nM (∗p < 0:05 vs. control), while MT had
a statistically significant effect on the late apoptosis and total
apoptosis of U251 cells at 150nM (∗∗∗∗p < 0:0001 vs. con-
trol) (Figure 3(b)).

3.3. Transcriptome Sequencing. To investigate the possible
mechanisms of MT in inhibiting U87 glioma cells, we ana-

lyzed the transcription levels of associated mRNAs. Total
RNAs were isolated from the control and MT-treated groups,
and mRNA sequencing was performed. A total of 48 DEGs
were obtained with a fold change ≥ 2 and p < 0:01. Among
these, 37 genes were found to be upregulated, and 11 genes
were downregulated in the MT-treated group compared with
the control group (Figures 4(a)–4(c)). To determine the
potential function of the DEGs, Gene Ontology (GO) enrich-
ment analyses including categories of biological process (BP),
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Figure 4: MT-induced differentially expressed genes. (a) Number of up- and downregulated genes. (b) Groups of the differentially expressed
mRNAs: CON-1, CON-2, and CON-3 (0 nM MT); MT-1, MT-2, and MT-3 (150 nM). (c) Presentation of the volcano plot of DEGs
identified from the RNA-seq. Red plots stand for upregulated genes, and blue plots indicate downregulated genes with the following
criteria: p < 0:05 and absolute log2FC > 1. Grey plots indicate nonsignificantly expressed genes. The ordinate shows the -log10 of the
adjusted p value for each gene, symbolizing the strength of the association. (d) GO analysis of the differentially expressed genes in
cellular component, biological process and molecular function. (e) KEGG pathway analyzes the pathways involved in MT regulation.
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cellular component (CC), and molecular function (MF) were
performed. The results revealed that the DEGs were signifi-
cantly enriched in GO0009987 (cellular process), GO0044464
(cell part), and GO0005623 (cell). GO0043226 (organelle),
GO0016020 (membrane), GO0032501 (multicellular organis-
mal process), GO0044425 (membrane part), GO0044422
(organelle part), GO0005576 (extracellular region), GO:
0031974 (membrane-enclosed lumen), GO0030054 (cell junc-
tion), and GO0044421 (extracellular region part) (Figure 4(d)).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis revealed the top 20 significantly
enriched pathways that were directly associated with MT.
They involved peroxisome proliferator-activated receptor
(PPAR), interleukin 17 (IL-17), adenosine 5′-monopho-
sphate- (AMP-) activated protein kinase (AMPK), hemato-
poietic cell lineage, and cholesterol metabolism (Figure 4(e)).

3.4. PPI Network Analysis and Identification of Key Genes.
STRING was used to extract a PPI of the DEGs to evaluate
potential interactions of the keg genes following 150nM
MT treatment for 12 h. A total of seven genes were identified
from the PPI, including Sterol regulatory element-binding
transcription factor 1 (SREBF1), membrane-associated
ring-CH-type finger 4 (MARCH4), potassium voltage-
gated channel subfamily E regulatory subunit 4 (KCNE4),
angiopoietin-like 4 (ANGPTL4), myosin-binding protein H
(MYBPH), periplakin (PPL), and complement C5a receptor
2 (C5AR2) (Figure 5). In addition, there are four more
important genes protocadherin 18 (PCDH18), inhibitor of
DNA-binding 3, HLH protein (ID3), DEPP1 autophagy reg-
ulator (DEPP1) and vasorin (VASN) reported in the litera-
ture. These genes mainly concentrated in the ion channels:
membrane-related signaling pathways.

3.5. Relationship between the Key Genes and Survival
Prognosis in Patients with Glioma. RNA-seq data and clinical

data of glioma were obtained from TCGA database. Kaplan-
Meier analysis was performed on the prognosis of patients
with GBM and LGG in TCGA database, and survival curves
were drawn. The survival curve revealed that in patients with
LGG, there was a significant difference between the high-
expression group and the low-expression group of PCDH18
(p < 0:001), PPL (p < 0:01), DEPP1 (p < 0:001), KCNE4
(p < 0:001), MYBPH (p < 0:001), VASN (p < 0:001), ID3
(p < 0:05), and C5AR2 (p < 0:05) (Figure 6(a)). Over a 15-
year time horizon after diagnosis, the survival rate of patients
with low expression of these genes were significantly higher
than that of patients with high expression. These results sug-
gested that overexpression of these genes in LGG patients were
associated with poor survival. In addition, the survival rate of
patients in LGG was significantly different between the low-
expression group and the high-expression group of MARCH4
(p < 0:001) which suggested that low expression of the gene
predicted poor survival (Figure 6(b)). In patients with GBM,
B3GALT4 (p < 0:05) and MYBPH (p < 0:05) were signifi-
cantly different between the high-expression group and the
low-expression group. Overexpression of these genes were
associated with poor survival rate in patients with GBM
(Figure 6(c)). It is worth noting that MT administration
reduced the expression levels of these genes in U87 cells com-
pared with the control cells. These results indicated that the
expression level of these genes in glioma is closely associated
with the survival of patients, and may play an important role
in the development of glioma. MTmay promote the apoptosis
of tumor cells by regulating the expression level of these genes.

3.6. Expression of Survival Key Genes in Grade 2 (G2) and
Grade 3 (G3) Glioma Patients. Of the 508 patients with gli-
oma, the expression of PCDH18 (p < 0:001), DEPP1
(p < 0:001), VASN (p < 0:001), KCNE4 (p < 0:01), MYBPH
(p < 0:001) and MARCH4 (p < 0:01) genes was significantly
different between G2 and G3. Except that the expression of
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Figure 5: Results of the PPI. Each node represents a protein; each line is an interaction.
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Figure 6: Continued.
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MARCH4 was decreased in G3, the expression of other
genes was increased in G3 (Figures 7(a) and 7(b)).

3.7. Univariate Independent Prognostic Analysis. Univariate
and multivariate Cox regression analyses were performed
on 508 glioma patients to assess the influence of genes asso-
ciated with glioma survival and other clinicopathological
factors on survival status.

Univariate independent prognostic analysis was con-
ducted to compare clinical traits and risk values individually
with survival time and survival status to analyze whether
these factors were associated with survival. Risk score p <
0:05 indicates that the correlation between the factor and
survival is significant. Univariate independent prognostic
analysis showed that age (p < 0:001), tumor grade
(p < 0:001), PCDH18 (p < 0:05), PPL (p < 0:01), DEPP1
(p < 0:01), VASN (p < 0:001), KCNE4 (p < 0:001), MYBPH
(p < 0:001), C5AR2 (p < 0:01), and MARCH4 (p < 0:01)
gene expression levels were significantly different (Table 3).
It suggested that age, grade, and the level of PCDH18, PPL,
DEPP1, VASN, KCNE4, MYBPH, C5AR2, and MARCH4
genes were important predictors of survival.

3.8. Multivariate Factor Analysis.Multivariate factor analysis
is to compare clinical characteristics and risk values together
with survival time and survival status, and it takes into
account the influence of factors. Risk score p < 0:05 indi-
cated that the risk value can be used as an independent prog-
nostic factor [39]. Multivariate Cox regression analysis
showed that the expression of PCDH18 (p < 0:05), PPL
(p < 0:05), DEPP1 (p < 0:01), VASN (p < 0:001), KCNE4
(p < 0:001), MYBPH (p < 0:001), C5AR2 (p < 0:001), and
MARCH4 (p < 0:001) was an independent predictor of gli-
oma which is most closely related to the survival of patients

with glioma, independent of other variables, and has signif-
icant prognostic value (Figure 8).

3.9. Quantitative Real-Time PCR Analyses of the Key Genes
Related to MT Treatment. In order to confirm the regulatory
effect of MT on the eight key genes related to the prognosis
of patients with glioma, the eight key genes between MT-
treated (150 nM treatment for 12 h) and MT-untreated
groups were selected and verified using qPCR. The gene
expression levels, using the 2−ΔΔCT method and normaliza-
tion to GAPDH as a reference, were determined. The results
showed that PCDH18, PPL, DEPP1, VASN, KCNE4,
MYBPH, and C5AR2 genes were found to be downregulated
(Figure 9(a)), and MARCH4 gene was upregulated com-
pared to the control group (Figure 9(b)). This result sug-
gested that MT can regulate the expression of these genes
in glioma U87 cells. The expression profiles of these genes
was consistent with the RNA sequencing data.

4. Discussion

In our study, we identified 48 genes that differed between
MT treatment group and control group by transcriptome
sequencing. GO analysis showed that these genes are mostly
enriched in membrane-related signaling pathways such as
membrane part, membrane, and membrane-enclosed
lumen. The results suggest that MT mainly changed the cell
morphology and destroyed cell membrane, thus inducing
U87 cell death. KEGG enrichment analysis demonstrated
that the signaling pathways associated with these DEGs were
pathways in PPAR, IL-17, and AMPK signaling pathways.
PPAR plays an important role in the occurrence and devel-
opment of glioma, and PPAR agonists might represent novel
adjuvant therapeutic agents for the treatment of gliomas
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Figure 6: Kaplan-Meier analysis of overall survival (OS) in glioma patients with high and low expression of the key genes (red represents
high expression; blue represents low expression). (a) The survival rate of patients with low expression of these genes were significantly higher
than that of patients with high expression. Overexpression of PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, C5AR2, and ID3 genes in
patients with LGG was associated with poor survival. (b) Low expression of MARCH4 predicts poor survival in LGG patients. (c)
Overexpression of B3GALT4 and MYBPH genes in GBM patients was associated with poor survival.
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[40]. In glioma samples, PPAR hyperactivation is associated
with immunosuppression through increased regulatory T
cell expression [41], and MT has been reported to be
involved in T cell response and has immunomodulatory
effects [42]. Whether MT could act as a PPAR agonist to

promote tumor cell apoptosis by regulating the immune sys-
tem will be explored in our future research.

Studies have shown that ion channel activity changes dur-
ing tumorigenesis and development, and the abnormal
expression and activity changes of ion channels are closely
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Figure 7: Comparison of key genes expression level in glioma grade 2 and grade 3 patients. (a) The expression levels of PCDH18, DEPP1,
VASN, KCNE4, and MYBPH are higher in G3 than in G2. (b) The expression level of MARCH4 is lower at G3 than G2.

Table 3: Univariate analysis of prognostic factors in the validation cohort.

Variables
Single-variate factor analysis

HR 95% CI p value Variables HR 95% CI p value

Age (years) 1.06 1.05-1.08 1.56E-15 VASN 1.10 1.08-1.12 6.66E-20

Gender 1.06 0.73-1.55 0.762 KCNE4 1.12 1.08-1.16 1.14E-09

Grade 3.12 2.06-4.72 7.44E-08 MYBPH 1.22 1.15-1.29 1.52E-11

PCDH18 1.13 1.03-1.24 0.013 C5AR2 2.61 1.45-4.71 0.001

PPL 1.11 1.04-1.20 0.003 MARCH4 0.91 0.85-0.96 0.002

DEPP1 1.01 1.00-1.01 0.004

Abbreviations: HR: hazard ratio; CI: confidence interval.
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related to tumor cell proliferation and apoptosis [43]. In par-
ticular, the migration and invasion of glioma cells are pro-
moted by ion channels and transporters [44]. Voltage-gated
potassium channels are a large family of ion channels that
are important transmembrane channels in neurons, regulating
cell membrane potential and cell proliferation. Some studies
have found that the occurrence and development of a variety
of tumors are closely related to the dysregulation of voltage-
gated potassium channel, such as glioma [45] and lung cancer
[46]. The effects of voltage-gated potassium channels on pro-
liferation and apoptosis of glioma cells have been widely stud-
ied, which provides a new therapeutic target for the prevention

and treatment of glioma. In this study, KEGG enrichment
analysis showed that voltage-gated potassium channels were
abnormally expressed in U87 cells. It is noteworthy that MT
may be involved in the apoptotic process of tumor cells by reg-
ulating voltage-gated potassium channels to change mem-
brane function and influence membrane potential.

Through TCGA database, we identified that the eight
key genes (PCDH18, PPL, DEPP1, VASN, KCNE4,
MYBPH, C5AR2, and MARCH4) were associated with the
survival of patients with glioma. Overexpression of
PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, and
C5AR2 in glioma and low expression of MARCH4 were
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Figure 8: Multivariate Cox regression analysis was performed, and eight genes (PCDH18, PPL, DEPP1, VASN, KCNE4, MYBPH, C5AR2
and MARCH4) were selected to construct the risk signature.
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Figure 9: Relative expression of the key genes verified by qRT-PCR. (a) The results indicated that the expression of PCDH18, PPL,
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associated with poor survival. Interestingly, MT can down-
regulate the overexpression of PCDH18, PPL, DEPP1,
VASN, KCNE4, MYBPH, and C5AR2 genes and upregulate
the expression of MARCH4 gene in U87 cells. Independent
prognostic analysis showed that eight genes are strongly
associated with patient outcomes. It can be used as an inde-
pendent prognostic factor in patients with glioma.

KCNE4 is expressed abundantly in the brain [47]. It can
control the firing rate of neurons and synaptic transmission
[48]. KCNE4 is one of the genes that modify ion channels in
glioblastoma [49]. KCNE subunits are present in the immune
system and may play a role in the immune system via associa-
tions with leukocyte K+ channels, specifically KCNE4, as novel
targets for immunomodulation [50]. Our study showed that
KCNE4 is closely associated with the prognosis of cancer
patients. MT can inhibit the expression of KCNE4 gene on
the gated potassium channel in U87 cells. MT may act as an
inhibitor of potassium channel to inhibit the growth and prolif-
eration of U87 cells and induce apoptosis of U87 cells. As a
member of the ID protein family, ID3 plays an important role
in cell proliferation, differentiation, and senescence and is
involved in metastasis and angiogenesis of malignant tumors
[51]. ID3 expression is increased in advanced glioma [52],
and high ID3 expression had a shorter overall survival time
in glioma patients [53]. Studies have shown that VASN protein
has a cancer-promoting effect [54] and may be closely related
to the occurrence and development of liver cancer [55]. Some
studies found that glioma patients with high VASN expression
had a shorter overall survival time. VASN stimulates tumor
progression and angiogenesis in glioma and represents a novel
therapeutic target for glioma [56]. Our findings were inconsis-
tent with these studies. Importantly, we found that MT can
downregulate the expression of VASN in U87 cells. MARCH4
plays an important regulatory role in the immune system, and
its mechanism of action in glioma warrants further studied.

Although MT has the potential to inhibit tumor cell
growth, maybe it is also cytotoxic to normal cells, limiting its
clinical use [57, 58]. It has been suggested that this can be
solved by targeted delivery of melittin nanoparticles [59].
Someone developed transdermal delivery preparations for
bee venom, such as bee venom plastics with transdermal
administration; it was found to be safe in the range of experi-
mental doses and showed no acute or long-term toxicity [60].
In addition, the bee-sting therapy was used in clinical, and it
was found that there were no abnormalities in blood, urine,
stool routine, electrocardiogram, liver, and kidney function
within the safe dose range [61]. Bee products and cupping
are also commonly used in combination with bee-sting ther-
apy, which effectively improve the quality of life and survival
time of patients [62]. It was also reported that the toxicity of
the peptide to normal cells was less [25], which may be related
to the concentration of the peptide. Therefore, it is possible to
reduce the toxicity of MT on normal tissues and cells through
dose control or the use of drug delivery vectors.

5. Conclusion

It is worth noting that this study has certain limitations. For
instance, no in vivo validation was performed, and an in-

depth mechanistic exploration is needed. However, the cur-
rent study provides important clues regarding that MT pro-
motes apoptosis of U87 cells by regulating key genes that are
mainly enriched in membrane potential, PPAR signaling
pathway, and voltage-gated potassium channel. These genes
are closely associated with the prognosis of patients with gli-
oma. MT is a potential drug for the treatment of glioma.
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