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Sarcoma, the second common type of solid tumor in children and adolescents, has a wide variety of subtypes that are often not
properly diagnosed at an early stage, leading to late metastases and causing serious loss of life and property to patients and
families. It exhibits a high degree of heterogeneity at the cellular, molecular, and epigenetic levels, where DNA methylation has
been proposed to play a role in the diagnosis of sarcoma subtypes. Thus, this study is aimed at finding potential biomarkers at
the DNA methylation level to distinguish different sarcoma subtypes. A machine learning process was designed to analyse
sarcoma samples, each of which was represented by lots of methylation sites. Irrelevant sites were removed using the Boruta
method, and remaining sites related to the target variables were kept for further analyses. Afterward, three feature ranking
methods (LASSO, LightGBM, and MCEFS) were adopted to rank these features, and six classification models were constructed
by combining incremental feature selection and two classification algorithms (decision tree and random forest). Among these
models, the performance of RF model was higher than that of DT model under all three ranking conditions. The specific
expression of genes obtained from the annotation of highly correlated methylation site features, such as PRKAR1B, INPP5A,
and GLI3, was proven to be associated with sarcoma by publications. Moreover, the quantitative rules obtained by decision
tree algorithm helped us to understand the essential differences between various sarcoma types and classify sarcoma subtypes,
providing a new means of clinical identification and determining new therapeutic targets.
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1. Introduction

Sarcomas are a heterogeneous group of mesenchymal neo-
plasms with a high incidence in children, and they can be
divided into two categories: soft tissue sarcomas and primary
osteosarcomas based on the anatomical site of occurrence
[1]. A detailed taxonomic approach classifies sarcomas from
hundreds of different bone and soft tissue types into more
than 60 sarcoma subtypes based on clinical features, as well
as genetic and molecular data [2]. For example, the tradi-
tional diagnosis of leiomyosarcoma has been based on the
characteristic pathological features of hematoxylin and eosin
staining [3]. Recent studies have revealed that leiomyosar-
coma can be further classified into three molecular subtypes
with different prognoses based on expression profiles [4].
Ewing sarcoma can be observed histologically as small round
cells with high CD99 expression and a genetic signature of
balanced chromosomal translocation, with EWSRI1-FLI1
fusion occurring in approximately 85% of patients [5]. Syno-
vial sarcoma was first defined as a fusion of the SS18 gene on
chromosome 18 with several synovial sarcoma genes on
chromosome 18, and it can be further classified into sub-
types with different treatment responses and prognoses
based on their histological features and gene expression
characteristics [6]. However, the lack of evident symptoms
in the early stage of sarcoma leads to delayed diagnosis
and late metastasis, resulting in huge loss of life [7]. At pres-
ent, about half of sarcomas lack significant tumor-specific
pathological or marker changes. Thus, the correct diagnosis
and effective treatment of sarcomas remain limited [8, 9].

DNA methylation is an important mechanism of tran-
scriptional regulation in mammals, which appropriately reg-
ulates gene expression through epigenetic modifications in
normal cells. However, considerable evidence indicates that
DNA methylation plays an important role in carcinogenesis
[10]. Researchers propose that DNA methylation can be
used as a powerful biomarker of human cancer and applied
in cancer diagnosis [11]. Several central nervous system
(CNS) tumor types are identified, making standardization
of the diagnostic process challenging. Studies have shown
that DNA methylation profiles can improve the diagnostic
accuracy of CNS tumors, indicating its great application
potential [12]. Moreover, other studies have shown that
DNA methylation profiles have an important classification
and diagnostic or prognostic role in a variety of solid tumors
[13, 14]. With the progress of research, a variety of commer-
cially available DNA methylation biomarkers are identified,
bringing new breakthroughs to cancer diagnosis [15]. In
the field of sarcoma research, growing evidence shows that
sarcomas are epigenetic diseases [16, 17]. DNA methylation,
an extensively studied epigenetic alteration, has also played
an important role in sarcoma. Recently, numerous studies
have indicated that DNA methylation of soft tissue sarcoma
and osteosarcoma subtypes has specific features and diag-
nostic potential [18-21]. Some histologically indistinguish-
able or indistinguishable sarcoma subtypes have specific
methylation signatures; thus, the methylation signature of
sarcoma is a potential tool for sarcoma classification and
diagnosis [22].
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In this study, an efficient machine learning based
method was designed to investigate 59 sarcoma subtypes.
The methylation profile on sarcoma samples retrieved from
Gene Expression Omnibus (GEO) was deeply analysed by
this method. In brief, the methylation features were first ana-
lysed by Boruta method [23] to exclude irrelevant features
and select important features. Then, the selected features
were investigated by three feature ranking algorithms (least
absolute shrinkage and selection operator (LASSO) [24],
light gradient boosting machine (LightGBM) [25], and
Monte Carlo feature selection (MCFES) [26]). Three feature
lists were generated, which were fed into incremental feature
selection (IFS) method [27], incorporating decision tree
(DT) [28], or random forest (RF) [29], to obtain essential
methylation sites, efficient classification models and rules.
Some genes (PRKARI1B, INPP5A, and GLI3), corresponding
to essential methylation sites, and classification rules were
discussed to confirm the reliability of the findings in this
study. The results reported in this study can provide addi-
tional evidence for the specificity of DNA methylation of dif-
ferent sarcoma subtypes and highlight the potential
application of methylation signatures in sarcoma diagnosis.

2. Materials and Methods

The machine learning-based research process is shown in
Figure 1. It can be summarized as follows: the methylation
sites of the samples were used as features, feature screening
was performed using the Boruta method, and feature rank-
ing was performed using three methods. Finally, key bio-
markers and quantitative classification rules were identified
using IFS method.

2.1. Data. This study is aimed at accurately classifying differ-
ent sarcoma types. We obtained gene methylation profile
data from a total of 1,473 sarcoma samples from the GEO
database with accession number GSE140686 [30]. These
samples were classified into a total of 59 different sarcoma
subtypes, and each sample was represented by 408,765
methylation sites. 59 sarcoma subtypes and their sample
sizes are shown in Table S1. In this study, the subtypes
were deemed as labels of samples, and methylation sites
were considered as features. The novel findings can be
identified by investigating such classification problem. The
purpose was to extract essential methylation sites and
patterns for different sarcoma subtypes. At the same time,
efficient classification models were built to correctly classify
sarcoma samples.

2.2. Boruta Feature Filtering. Removing redundant features
that are less helpful to the identification could prevent noise
in subsequent modelling. Lots of methylation features were
involved in the investigated dataset. It is necessary to
exclude irrelevant features. Here, the Boruta method was
adopted [23].

Boruta method can filter out key features that are corre-
lated with the dependent variable, regardless of its strong or
weak correlation with the dependent variable. This method
is based on the RF [23]. First, it shuffles the original feature
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F1GURE 1: Flow chart of the whole analysis process. Methylation site features from sarcoma samples were analysed by Boruta, and remaining
features were ranked in accordance with their relevance with three feature ranking algorithms, namely, LASSO, LightGBM, and MCEFS.
Subsequently, three ordered feature lists were fed into the incremental feature selection computational framework to access essential
methylation sites, models with high performance, and quantitative classification rules.

list, introduces randomness, and generates a random combi-
nation of shadow features. The shadow feature list is merged
with the original feature list and stitched into an expanded
dataset to train a RF model, and features are assigned scores
according to their importance. In each iteration, the score of
an actual feature is checked to see if it outperforms the high-
est score of the shadow features. If a feature is positive for
classification, then it must be more important than its ran-
dom version. Therefore, an actual feature is marked as
“important” if its score is significantly higher than the scores
of shadow features. Then, all “important” variables and
shadow features are removed. The updated data is fed into
the next round. This procedure is repeated several times
until all actual features are marked or a predetermined num-
ber of iterations are reached. The features marked as “impor-
tant” are picked up as the output of the Boruta.

The Boruta program used in this study was obtained
from https://github.com/scikit-learn-contrib/boruta_py [31]
and was executed using default parameters.

2.3. Feature Ranking Algorithms. The Boruta method helps
us extract important features. However, it cannot further
identify which features are more important. We further
employed three algorithms to rank remaining features,
including LASSO [24], LightGBM [25], and MCEFS [26].

2.3.1. Least Absolute Shrinkage and Selection Operator. Based
on the nonnegative garrote proposed by Breiman [32], Tib-
shirani first proposed the LASSO algorithm in 1996 [24]. As
a regression analysis method, it exhibits feature selection and
regularization, helping us to improve the accuracy and inter-
pretability of statistical models. The method uses the L1-type
regularization term or wavelength (1) to obtain sparse
results and determines the correlation by penalizing the
coefficients of features. The coeflicients of irrelevant and
redundant features were zero, whereas those of relevant fea-
tures are nonzero. Features with nonzero coefficients are
retained. In addition, the magnitude of the absolute value

of regression coefficients is proportional to the importance
of the features, which is used to generate the feature ranking
list. Such list was called LASSO feature list for convenience.
We used LASSO program integrated in scikit-learn package
in Python with default parameters.

2.3.2. Light Gradient Boosting Machine. The LightGBM is a
gradient boosting DT framework proposed by a research
team from Microsoft and Peking University in 2017 [25].
LightGBM introduces gradient one-sided sampling (GOSS),
exclusive feature bundling (EFB), and histogram algorithm.
GOSS splits the sample based on the absolute value of the
sample gradient, reduces the dimensionality of the sample
features by bundling them with EFB, using a leaf-wise node
splitting strategy different from that used in previous DTs,
and finally calculates the importance of each feature. The
developers describe various advantages of this algorithm,
including faster training with high accuracy, smaller mem-
ory footprint, and support for parallel learning with direct
feature classification, which are excellent when dealing with
large-scale data. Features are ranked in a list according to
their occurrence in DTs, which is called LightGBM feature
list in this study. Here, we used LightGBM program imple-
mented by Python, which can be obtained from https://
lightgbm.readthedocs.io/en/latest/, and default parameters
were adopted.

2.3.3. Monte Carlo Feature Selection. MCFS was proposed in
2008 by Draminski et al. [26]. It is based on the original
dataset and several subsets of features that are randomly
selected to form a number of DT classifiers. The importance
of each feature is determined on the basis of its involvement
in the tree classifiers. It is determined by a measurement,
named, relative importance score (RI)

pxt no.inn_ (1)\"
RI, = Y (wAcc)" Y I1G(n,y(7)) (g()> (1)

no.int
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where wA . is the weighted accuracy of all samples; n_g (t)
is a feature node of the DT 7 related to feature g, whose
information acquisition is denoted as IG(n_g (7)); no.inn_
g (7) and no.in7 denote the training sample size in n_g (1)
and the root of 7; u and v are conventional coeflicients indi-
cating the significance of the weights. By default, u and v are
set to 1. Based on the results of the MCEFS, the features can
be ranked in accordance with the decreasing order of their
RI values as a higher RI indicates that a feature is more
important. Such list was called MCEFS feature list. This study
adopted the MCES program from http://www.ipipan.eu/
staff/m.draminski/mcfs.html with default parameters.

2.4. Incremental Feature Selection. Using the three above
mentioned algorithms, a total of three feature lists were
obtained, all of which represent the importance ranking of
each feature under the corresponding method rule. How-
ever, the selection of most important features is still a prob-
lem. We do not known how many top features in each list
can be selected. Thus, IFS method [27] was adopted to ana-
lyse each list.

In the IFS method, the feature list, denoted by F =[f,,
fo» o5 f,)> is transformed into a series of feature subsets,
each of which has 10 more features than the previous subset.
The first subset F, contains the top 10 features in the list
(ie, Fy={ff5 > f10}); the second subset F, contains
the top 20 features (ie, F,={f},f,, "> f5})> and so on.
For each subset, just the features from it are used to build
a model based on one classification algorithm. Its perfor-
mance is evaluated by cross-validation [33]. After all models
have been tested, the model with best performance can be
obtained. This model was termed as the optimal model
and features used in this model constituted the optimal
features.

2.5. Synthetic Minority Oversampling Technique. By check-
ing the distribution of samples in 59 sarcoma subtypes
(Table S1), the largest subtype contained much more
samples than the smallest subtype. The large disparity in
the number of samples of different sarcoma subtypes in the
dataset can lead to biased results as the trained model
develops a preference for some of the categories with a high
number of samples. The synthetic minority oversampling
technique (SMOTE) [34] was used in this study to balance
the dataset.

The SMOTE determines the k-nearest neighbors for one
sample, say x, in the minority class by calculating the Euclid-
ean distance of that sample to other samples in the same
minority class. A sample, say y, is randomly selected from
the k-nearest neighbors. A point in the concatenation of x
and y is identified as the new constructed sample, which
putted into the same minority class. The process is repeated
several times until the minority class has the same capacity
as the majority class. After all minority classes have been
considered, a balanced dataset can be obtained.

We used the SMOTE program downloaded from https://
github.com/scikitlearn-contrib/imbalanced-learn, using the
default parameters.
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2.6. Classification Algorithm. In the present study, IFS was
performed using two classification algorithms, namely, DT
[28] and RF [29], which are widely used in life science
[35-39].

2.6.1. Decision Tree. The DT can be presented by a tree-like
structure. Each internal node in this structure represents the
judgment of one feature, and the different results are output
in the form of tree branches, after which the next node is
moved to a new feature. All samples starts from the root
node, and the judgment is repeated until all samples reach
the leaf node. The leaf nodes represent the final classification
results for the sample categories. DT has various advantages,
including the high classification accuracy, simplicity of the
generated patterns, and ease of understanding and interpre-
tation. In this study, we used the CART classification tree
algorithm with node ranking by the Gini coefficient. The
program was obtained from the scikit-learn package, and
the default parameters were used for execution.

2.6.2. Random Forest. The RF algorithm is an ensemble
learning method based on DT, which introduces random-
ness for selecting samples and features. RF can handle
high-dimensional data, and it has higher accuracy compared
with a single classifier because it is an integrated algorithm.
In addition, it prevents RF classifiers from overfitting and
makes such classifier noise resistant because of the introduc-
tion of randomness. The RF program in the scikit-learn
package was used in this study and performed using default
parameters.

2.7. Performance Evaluation. The F1 score commonly used
in machine learning evaluates the predictive ability of all
models [40-42]. In this multiclassification problem, the first
step is to calculate the precision and recall of each category.
They can be computed as follows

et TP, 2
recision; = T 1 FP,
TP,
Recall, = ——~— 1 3
4T TP, + FN, G)

where TP;, FP; and FN, represent true positives, false posi-
tives, and false negatives for the i-th category. Then the F1
score for the i-th category can be computed by

2 x Precision; x Recall
F1 score; =

(4)

Precision; + Recall,

Aggregating the F1 scores of all categories can describe
the overall performance of the classifier. If all F1 scores are
equal, the macro F1 can be obtained. The weighted F1 fur-
ther considers the weights of F1 scores on different catego-
ries. Clearly, weighted F1 can give a more objective
evaluation of models” performance. Thus, it was selected as
the major measurement.

In addition, other widely used measurements were also
employed in this study, including overall accuracy (ACC)
and Matthews’ correlation coefficient (MCC) [43]. The
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FiGURk 2: IFS curves showing the performance of decision tree (DT) and random forest (RF) based on the weighted F1 under different
feature subsets derived from the LASSO feature list. The optimal DT/RF model yielded the weighted F1 of 0.867/0.987.

ACC is defined as the proportion of correctly predicted sam-
ples and MCC can be calculated by

cov (X,Y)

MCC=
cov (X, X) cov (Y,Y)

()

where X and Y are two binary matrices storing the actual
and predicted classes of all samples, and cov (X, Y) stands
for the covariance of X and Y.

3. Results

Based on the process shown in Figure 1, we screened and
extracted key features that can characterize different sar-
coma subtypes and established quantitative rules for their
depictions and classification. The results of various stages
of the entire computational process are summarized in the
following section.

3.1. Boruta Feature Selection and Feature Ranking. Firstly,
the methylation sites were streamlined using Boruta method.
Irrelevant methylation sites were removed. Table S2 shows the
final selection of 8954 features. Then, the features resulting
from Boruta filtering were ranked using three algorithms,
resulting in three feature lists: LASSO, LightGBM, and MCFS
feature lists. These lists are also shown in Table S2.

3.2. IFS Results. Apply IFS to each obtained list to construct a
number of subsets with an interval of 10. Based on each fea-
ture subset, two models, based on DT and RF, were con-
structed. During this process, the number of minority class
samples was supplemented using the SMOTE method, and
the performance of all constructed models was evaluated
using 10-fold cross-validation, yielding several measure-
ments listed in Section 2.7. The detailed evaluation results

are shown in Table S3. For easy observations, the IFS
curves were plotted with the number of features as the
horizontal coordinate and the weighted F1 as the vertical
coordinate, as shown in Figures 2-4.

For the feature subsets derived from the LASSO feature
list, the performance of all models under these subsets is
shown in Figure 2. RF can yield the highest weighted F1 of
0.987 when top 8850 methylation sites in the list were
adopted. As for DT, its highest weighted F1 was 0.867 when
top 7490 methylation sites were used. Accordingly, the top
8850 and 7490 methylation sites comprised the optimal fea-
tures for RF and DT, respectively, based on which the opti-
mal RF and DT models were constructed. Other overall
measurements of these two models are listed in Table 1.
Figure 5 shows their detailed performance on 59 sarcoma
subtypes. Clearly, the optimal RF model was much better
than the optimal DT model.

The same arguments can be conducted for the LightGBM
and MCES feature lists. For the LightGBM feature list, the
optimal RF model used the top 4520 methylation sites in the
list and yielded the weighted F1 of 0.991 (Figure 3), whereas
the optimal DT model yielded the weighted F1 of 0.868, which
was obtained by using top 3900 methylation sites (Figure 3).
Likewise, Table 1 lists other measurements of these two opti-
mal models and Figure 5 shows their performance on all sar-
coma subtypes. Also, the optimal RF model outperformed
the optimal DT model. Finally, the optimal RE/DT model on
the MCFS feature list generated the weighted F1 of 0.987/
0.868 (Figure 4) when top 7020/5520 methylation sites were
used. The performance of these two models is shown in
Table 1 and Figure 5. Evidently, the optimal RF model also
outperformed the optimal DT model.

3.3. Intersection of Essential Features Derived from Different
Feature Lists. As the optimal RF model performs better than
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FiGure 3: IFS curves showing the performance of decision tree
(DT) and random forest (RF) based on the weighted F1 under
different feature subsets derived from the LightGBM feature list.
The optimal DT/RF model yielded the weighted F1 of 0.868/0.991.
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FIGURE 4: IFS curves showing the performance of decision tree
(DT) and random forest (RF) based on the weighted F1 under
different feature subsets derived from the MCFS feature list. The
optimal DT/RF model yielded the weighted F1 of 0.868/0.987.

the optimal DT model for all feature lists, the optimal fea-
tures for RF were selected as the optimal features on the cor-
responding feature list. However, there were too many
optimal features, which was not easy to give further analyses.
By checking the IFS results with RF on each feature list
(Table S3), we can find that when top 110/30/310 features
in the LASSO/LightGBM/MCES feature list were used, the
RF model can yield the weighted F1 of 0.971/0.940/0.978,
which was only a little lower than that of the optimal RF
model. The detailed performance of these models is listed
in Table 1. Clearly, these models provided quite high
performance. However, they adopted much less features
than the optimal RF models, suggesting the extreme
importance of these features. These methylation sites were
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annotated to genes, resulting in 83, 186, and 18 genes,
respectively (Table S4), which constituted three gene sets.
The intersection of these gene sets is shown in a Venn
diagram (Figure 6). The detailed results of the intersection
of the three sets are visible in Table S5. Some genes were
included in multiple sets, which meant they were selected
by multiple feature ranking algorithms. They may be
highly relevant to the differentiation of different sarcoma
subtypes. The specific analysis will be discussed in detail in
subsequent sections.

3.4. Classification Rules. According to Figures 2-4, the per-
formance of DT was evidently lower than that of RF on each
feature list. However, DT has its own merit, which can make
the classification procedures completely open. Such merit is
helpful to understand its classification principle, providing
more insights to figure out hidden information in the data-
set. As mentioned above, the optimal DT models adopted
top 7490 methylation sites in the LASSO list, top 3900 meth-
ylation sites in the LightGBM list, and top 5520 methylation
sites in the MCFS list. With these features and all sarcoma
samples, three big trees were obtained by DT. Accordingly,
three sets of rules were summarized from these trees, which
are provided in Table S6. 182, 190, and 198 rules,
respectively, were included in three rule sets. In each rule
set, all sarcoma subtypes were assigned some rules that
could represent them. The rough distribution of rules in
each set on 59 sarcoma subtypes is shown in Figure 7. It
can be observed that most sarcoma subtypes were assigned
2-4 rules. Each rule indicated a special methylation pattern
for its result (sarcoma subtype), which was a new way to
investigate the essential differences between various sarcoma
subtypes. Some of the important rules are discussed in detail
in subsequent sections.

4. Discussion

The reliability of results obtained in this study was verified
by existing studies. As some methylation sites have not been
intensively studied, they may be new classification criteria
and potential therapeutic targets for the corresponding
sarcoma.

4.1. Analysis of the Decision Rules for Sarcoma Classification.
Three rule sets were obtained by DT (Table S6). Here, we
discussed some classification rules or criteria in different
sets. We hypothesized that these methylation patterns,
which are present as conditions in multiple rules, may be
more important.

Based on the results, cg00982952 showed importance for
Ewing (Ewing sarcoma) classification in all classifiers, and
this methylation site could be annotated to the gene GLGI.
Based on previous reports, GLG1 can be used as an auxiliary
marker for the diagnosis of Ewing sarcoma by immunohis-
tochemistry [44]. Although the detailed mechanism between
GLGI and Ewing sarcoma formation has not been clearly
studied, the researchers found that GLG1 may be involved
in the progression of multiple tumors by affecting the trans-
port of key molecules involved in cell migration [45].
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TaBLE 1: Performance of random forest and decision tree under some feature subsets derived from three lists generated by three feature

ranking algorithms.

Feature ranking algorithms Classification algorithm Number of features Weighted F1 Macro F1 MCC ACC
RF 110 0.971 0.980 0.971 0.971
LASSO RF 8850 0.987 0.990 0.987 0.987
DT 7490 0.867 0.863 0.863 0.867
RF 30 0.940 0.948 0.939 0.940
LightGBM RF 4520 0.991 0.993 0.990 0.990
DT 3900 0.868 0.861 0.864 0.868
RF 310 0.978 0.982 0.978 0.978
MCES RF 7020 0.987 0.991 0.987 0.987
DT 5520 0.868 0.860 0.863 0.866
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FIGURE 5: Violin plot showing the performance of the optimal models on sarcoma subtypes. (a) Performance of the optimal decision tree
(DT) models. (b) Performance of the optimal random forest (RF) models.

Some methylation sites play different roles in the decision
rules of multiple sarcoma types. For example, our rules show
that the AFF1 gene corresponding to the cg12109728 probe
is hypermethylated in OS (HG)/high-grade conventional oste-
osarcoma but relatively hypomethylated in CHORD/chor-
doma. The transcript of AFFI serves as a transcriptional
regulator, and it can promote the expression of CD133, which
is considered as a marker of normal or cancerous tissue [46].
At present, no studies have clearly pointed out the relationship
between AFF1 methylation and OS (HG) or CHORD, but
some studies have reported that the expression of CD133 in
these two types of sarcomas changes specifically, which may
serve as a potential therapeutic target [47]. High CDI133
expression in CHORD may be related to its cancer stem-like
cells and may enable CHORD to maintain self-renewal and
resistance to chemotherapy [48].

The decision rules of different algorithms also have dif-
ferent criteria for some sarcoma types. For example, in the
decision rules of alveolar rhabdomyosarcoma from the
LASSO algorithm, we found that the FHL2 gene targeted
by the ¢g02563156 probe requires hypermethylation. This
finding has been indirectly confirmed by previous studies,
that is, FHL2 is downregulated in rhabdomyosarcoma [49],
which may be related to the hypermethylation of the FHL2
gene in this sarcoma type. In the MCES algorithm, the classi-
fication is based on the methylation status of two sites,
cg23157618 (ABCBY, hypomethylation) and cg23477348
(C21orf33, hypermethylation). By contrast, in the LightGBM
algorithm, another gene, RNPEPL1 (cg16412000), is required
to be hypomethylated, and the hypermethylation of this
RNPEPLLI can be further used as a criterion for the decision
rule of embryonal rhabdomyosarcoma. At present, the
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feature ranking algorithms.
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FIGURE 7: Boxplot showing the distribution of rules on sarcoma
subtypes.

relationship among several methylation sites, including these
genes and sarcoma, has not been studied, but these genes have
been reported to be associated with sarcoma or other tumors
[50-53]. We hypothesize that their methylation may serve as
a basis for classification and provide reference for future sar-
coma research and molecular pathology classification.

4.2. Analysis of the Predictive Features. Essential methylation
sites extracted from three feature lists were mapped to genes,
resulting in three gene sets. As shown in Figure 6, some
genes occurred in multiple gene sets. These genes tended
to be more important. We performed a preliminary analysis
on these genes.

PRKARIB is a key feature present in all three algorithms.
Study has shown that circRNA circPRKAR1B promotes
osteosarcoma progression, and it could be a potential thera-
peutic target [54]. At present, few studies have been con-
ducted on the role of PRKARIB gene in sarcoma, but it
has been reported to play an important role in various
tumors [55, 56]. This gene also encodes the regulatory sub-
unit of gene PKA, and it is involved in the cAMP signaling
pathway. In addition, PKA is involved in various sarcoma
genesis and progression [57-59]. Therefore, the methylation
of PRKARIB gene may be very important for the identifica-
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tion or tumorigenesis of sarcoma, which deserve further
investigation.

Methylation of INPP5A is a decisive feature in two algo-
rithms, and our previous studies have shown the importance
of gene methylation such as INPP5A for the diagnosis of
multiple tumors [60]. Other studies have found that gene
expression of INPP5A has an important role in sarcoma
classification [61].

GLI3 is a transcription factor involved in the Hedgehog
signaling pathway, and it plays an important role in develop-
ment, immune system, and cancer [62]. Previous studies
have found that GLI3 is highly expressed in embryonal rhab-
domyosarcoma and some alveolar rhabdomyosarcoma, and
it is associated with the prognosis of Ewing sarcoma [63,
64]. Therefore, expression changes caused by the aberrant
methylation of GLI3 may serve as a basis for the classifica-
tion of sarcomas.

In other previous studies, some genes (CCND1, CD109,
NOSI, and ABLIM1) were found to be abnormally expressed
in sarcomas, which can be used as prognostic markers or clas-
sification features for different sarcomas [65-69].

Some characteristically methylated genes are associated
with bone lesions or osteocyte activity, but detailed investi-
gation of their relationship with sarcoma is still lacking, for
example, PHOSPHO1 and NFATC1. PHOSPHOL is specif-
ically expressed in bone lesions [70], and NFATCL is associ-
ated with normal osteocyte function and osteosarcoma
pathogenesis [71, 72]. We believe that further research of
these genes may provide insights into sarcoma diagnosis
and treatment.

5. Conclusions

Using a set of advanced machine learning methods, we
designed a high-performance computational method to ana-
lyse sarcoma subtypes at the DNA methylation level.
Through such method, genes highly associated with sarcoma
subtypes, such as PRKARIB, INPP5A, GLI3, and other
genes, were obtained. The expression of these genes has been
shown to be associated with sarcoma formation, demon-
strating the robustness of our results. Furthermore, we com-
bined IFS and two classification algorithms to build
classification models with high performance. Three quanti-
tative classification rule sets constructed by DT described
the special patterns for different sarcoma subtypes. Our
results provided scientific and theoretical guidance for clini-
cal diagnosis and treatment of sarcoma.
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