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Background. The acquisition of invasive tumor cell behavior is considered to be the cornerstone of the metastasis cascade. Thus,
genetic markers associated with invasiveness can be stratified according to patient prognosis. In this study, we aimed to identify
an invasive genetic trait and study its biological relevance in lung adenocarcinoma. Methods. 250 TCGA patients with lung
adenocarcinoma were used as the training set, and the remaining 250 TCGA patients, 500 ALL TCGA patients, 226 patients
with GSE31210, 83 patients with GSE30219, and 127 patients with GSE50081 were used as the verification data sets. Subtype
classification of all TCGA lung adenocarcinoma samples was based on invasion-associated genes using the R package
ConsensusClusterPlus. Kaplan-Meier curves, LASSO (least absolute contraction and selection operator) method, and univariate
and multivariate Cox analysis were used to develop a molecular model for predicting survival. Results. As a consequence, two
molecular subtypes for LUAD were first identified from all TCGA all data sets which were significant on survival time. C1
subtype with poor prognosis has higher clinical characteristics of malignancy, higher mutation frequency of KRAS and TP53,
and a lower expression of immune regulatory molecules. 2463 differentially expressed invasion genes between C1 and C2
subtypes were obtained, including 580 upregulation genes and 1883 downregulation genes. Functional enrichment analysis
found that upregulated genes were associated with the development of tumor pathways, while downregulated genes were more
associated with immunity. Furthermore, 5-invasion gene signature was constructed based on 2463 genes, which was validated in
four data sets. This signature divided patients into high-risk and low-risk groups, and the LUDA survival rate of the high-risk
group is significantly lower than that of the low-risk group. Multivariate Cox analysis revealed that this gene signature was an
independent prognostic factor for LUDA. Compared with other existing models, our model has a higher AUC. Conclusion. In
this study, two subtypes were identified. In addition, we developed a 5-gene signature prognostic risk model, which has a good
AUC in the training set and independent validation set and is a model with independent clinical characteristics. Therefore, we
recommend using this classifier as a molecular diagnostic test to assess the prognostic risk of patients with LUDA.

1. Introduction

Lung cancer is the leading cause of cancer-related deaths,
both in China and globally. [1], with non-small-cell lung can-
cer (NSCLC) accounting for more than 80 percent of all lung
cancers, and adenocarcinoma is the most common type of
NSCLC. Many patients with newly diagnosed primary lung
adenocarcinoma have developed distant metastases at the
time of consultation. In the case of small early metastatic

lesions, they cannot be detected by imaging in a timely man-
ner, which makes accurate staging and timely treatment dif-
ficult [2]. For now, overall survival has improved with
advances in detection technology and the availability of many
targeted therapies and immunotherapies, but the 5-year sur-
vival rate for lung cancer patients after diagnosis is still less
than 20% [3–5]. In lung cancer patients, organ failure and
dysfunction associated with distant metastasis remain com-
mon causes of tumor-associated death [6]. In the choice of
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treatment for lung cancer patients, the patient’s physical con-
dition, treatment tolerance, and the presence of lymph nodes
and distant metastasis should be taken into consideration to
formulate a reasonable individualized treatment plan [7, 8].

Holistic gene expression profiling using microarray tech-
nology has proven to be an important tool to help reveal the
molecular basis of cancer. The molecular classification of
different cancers (e.g., colorectal cancer and lymphoma) con-
sistently stratifies tumors into different subtypes, with prog-
nostic outcomes independent of traditional clinical staging
[9, 10]. Gene expression profiling of breast cancer [6] leads
to subclassification of cancers previously thought to be
homogeneous, allowing prediction of those most likely to
benefit from chemotherapy [11] and overall survival [12].
Gene expression profiling has yielded many insights into
the molecular basis of lung adenocarcinoma in the past
decade [13–15]. However, this accumulation of knowledge
has not yet provided clinical benefit in terms of improved
patient treatment options or survival.

The aim of this study was to identify biomarkers of
cancer cell invasion through a collection of invasive-specific
gene signatures obtained from genome-wide gene expression
profiles. Therefore, we recommend using this classifier as a
molecular diagnostic test to assess the prognostic risk of
patients with LUDA.

2. Material and Methods

2.1. Data Acquisition and Processing. RNA-Seq data (FPKM)
and clinical follow-up information data of lung adenocarci-
noma (LUAD) were acquired from TCGA database
(https://portal.gdc.cancer.gov/). The raw data of the three

data sets GSE31210 [16], GSE30219 [17], and GSE50081
[18] were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/); all three data sets were
sequenced by GPL570 ([HG-U133_plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array). RMA (Robust
Multiarray Average expression measure) in the R package
affy (V1.66.0) [19] was used to process the expression profile
data and normalized to obtain the expression profile. The
metastasis-related gene sets were obtained from the 11
metastasis-related pathways in the c2.all.v7.0.symbols.gmt
file on the GSEA [20] website (https://www.gsea-msigdb
.org/gsea/index.jsp), and finally, a total of 1202 genes were
obtained. All the enrolled samples have not undergone any
treatment including chemotherapy and radiotherapy. The
sample clinical information of the database is shown in Table
S1. The work flow was showed in Figure 1.

2.2. Construction and Verification of Prognostic Models. First,
the 500 samples in TCGA data set are divided into a training
set and a validation set. In order to avoid random allocation
deviations from affecting the stability of subsequent model-
ing, all samples are randomly grouped 100 times in advance
with replacement according to the ratio of training set
: validation set = 1 : 1. The training set and test set samples
were tested using chi-squared test, and the results showed
that our grouping had no preference. In the training data
set, univariate cox survival analysis was performed for differ-
entially expressed genes using the coxph function of the R
package survival (V3.1-12), and p < 0:001 was selected as
the threshold for filtering. Next, LASSO (least absolute
shrinkage and selection operator) regression, multivariate
Cox survival analysis, and stepAIC were conducted to further
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Figure 1: The workflow.
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Figure 2: Continued.
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Figure 2: Continued.
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compress the filtered genes to reduce the number of genes in
the risk model. The final selected genes were those of the
prognostic model. The calculation formula of the prognostic
risk model is as follows:

RiskScore = 〠
n

i=1
coef ið Þ ∗ gene ið Þ: ð1Þ

Among them, coefðiÞ refers to the coefficient of the ith
gene, and geneðiÞ refers to the expression level of the ith gene.
Each sample is calculated to obtain a RiskScore value. The
cutoff of the RiskScore is the middle value, those greater than
the middle value are high-risk samples, and those less than or
equal to the middle value are low-risk samples.

The same risk calculation method is verified on TCGA
training data set, all TCGA data sets, and three completely
independent data sets GSE31210, GSE30219, and
GSE50081. At the same time, we draw the ROC curves of
RiskScore at different time points on and calculate the corre-
sponding AUC values to judge the performance of the model.

2.3. Statistic and Analysis.Univariate cox analysis was used to
analyzed 1202 metastasis-related genes using the coxph func-
tion of the R package survival (V3.1-12), and the genes
related to the prognosis of lung adenocarcinoma (p < 0:05)
were obtained. Next, the R package ConsensusClusterPlus
(V1.48.0; parameters: reps = 100, pItem = 0:8, pFeature = 1,

distance= “Pearson”) was used to uniformly cluster TCGA
samples (D2 and Euclidean distance are used as the cluster-
ing algorithm and distance measure). The chi-squared test
was used to identify the distribution of clinical features on
molecular subtypes. The R software package MCPcounter
(V1.2.0) was used to calculate the immune cell score of each
sample. The R software package limma (V3.44.3) was used to
perform differential expression gene between molecular sub-
types, and FDR < 0:001 and ∣FC∣ > 1:5 acted as thresholds. R
package clusterProfiler (V3.16.0) was used to perform GO
function annotation and KEGG pathway enrichment analy-
sis on differentially expressed genes, and FDR < 0:05 as the
threshold. Univariate and multivariate Cox survival analyses
of clinical characteristics and RiskScore were used to demon-
strate the independence of the RiskScore model. Based on the
results of univariate and multivariate Cox survival analyses,
the nomogram and the correction chart of the nomogram
were constructed to provide the basis for clinical diagnosis
and prognosis. And at the same time, we drew a DCA dia-
gram to prove the reliability of the model.

3. Results

3.1. Identification of Molecular Subtypes. Univariate cox sur-
vival analysis of 1130 metastasis-related genes was performed
using the coxph function of the R package survival, and 322
genes related to the prognosis of LUDA were obtained
(p < 0:05). The R package ConsensusClusterPlus was used
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Figure 2: Identification of molecular subtype: (a) consistent cluster analysis (K = 2); (b) KM curves between molecular subtypes; (c)
comparison of survival status distributions between molecular subtypes; (d) comparison of age distributions between molecular subtypes;
(e) comparison of gender distributions between molecular subtypes; (f) comparison of smoking status distributions between molecular
subtypes; (g) comparison of T stage distributions between molecular subtypes; (h) comparison of N stage distributions between molecular
subtypes; (i) comparison of M staging distributions between molecular subtypes; (j) comparison of stage staging distributions between
molecular subtypes.
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to cluster TCGA samples uniformly and divide them into
two categories (called C1 and C2, respectively) using 322
genes (Figure 2(a)). The KM survival curve between
molecular subtypes shows that the prognosis of molecular
subtype C2 is better than that of C1 (Figure 2(b),
p = 0:00038). We compared the distribution of survival sta-
tus, gender, age, T stage, N stage, M stage, stage, and
smoking status among the two subtypes. The results
showed that the number of dead, male, smoking sample
was higher, while the T1 samples, N0 samples, and stage
I samples are lower in the C1 subtype, compared with
the C2 subtype (Figures 2(c)–2(j)). The distribution data
of the above clinical characteristics indicated that the C1
subtype has a worse prognosis.

3.2. Analysis of Mutational Molecular Events, Existing
Subtypes, and Immunity between Molecular Subtypes. The
SNV/InDel detected by MUTect was downloaded from
TCGA database, and the mutation map of key mutated genes
in LUDA such as EGFR, KRAS, TP53, and BRAF was
selected. The mutation map of the key mutant genes in the
C1 subtype showed that the mutation frequency of KRAS
and TP53 in the C1 subtype was higher than that in the C2
subtype, while the mutation frequency of the EGFR in the
C1 subtype was lower than that in the C2 subtype
(Figures 3(a) and 3(b)). The six published immunoinfiltrat-
ing molecular subtypes were further compared with the
molecular subtypes we found; most LUDA patients in TCGA
data belong to the C1, C2, and C3 immune subtypes (about
89.8%), of which the C3 immune subtype has the best
prognosis (Figure S1). Interestingly, the C3 immune subtype
samples mostly overlap with our C2 subtype samples

(Figures 3(c) and 3(d)), which is consistent with the good
prognosis of our C2 subtype.

To identify the relationship between the immune cell
scores in the two molecular subtypes, the R software package
MCPcounter was used to calculate the immune cell scores (B
lineage, cytotoxic lymphocytes, endothelial cells, fibroblasts,
monocytic lineage, myeloid dendritic cells, and neutrophils)
of each sample. The results showed that except for fibro-
blasts, the scores of other immune cells are higher in the C2
subtype than that in the C1 subtype, which includes T cells
and CD8 T cells (Figure S2). It may also be a reason for the
better prognosis of the C2 subtype.

In recent years, immune checkpoint suppression (ICI)
research has made breakthroughs in the clinical response of
a variety of human cancers. However, most cancer patients
do not benefit from ICI. We compared the expression of
PDCD1 (PD-L1), CTLA4, and IFNG (IFN-γ) genes in
molecular subtypes and found that the expression of these
three genes in the C2 subtype was significantly higher than
that in the C1 subtype (Figure 3(e)). In addition, we calcu-
lated the Pearson correlation between PDCD1, CTLA4, and
IFNG gene expression and the immune cell scores of T cells
and CD8 T cells and found that there is a strong positive cor-
relation between them (Figure 3(f)). The above results indi-
cated that molecular subtype C2 may have a better response
to immunotherapy.

3.3. Identification of Differentially Expressed Genes. Through
the limma package, a total of 2463 differentially expressed
genes are filtered, of which 580 are upregulated and 1883
are downregulated (Figure 4(a)). 100 genes with the largest
differential upregulation and downregulation were selected
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Figure 3: Analysis of mutational molecular events, existing subtypes, and immunity between molecular subtypes: (a) map of key gene
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to draw a heat map (Figure 4(b)). GO functional enrichment
analysis and KEGG pathway analysis of differentially
expressed genes were performed using the R software pack-
age WebGestaltR (V0.4.2). 580 upregulated differential genes
were annotated to 320 functions with significant differences
such as cell replication, nuclear division related to mitosis,

DNA replication, DNA-dependent DNA replication, and
regulation of mitotic nuclear division (Figure 4(c)). 580
upregulated genes were annotated to 12 significant KEGG
pathways, including cell cycle, DNA replication, base exci-
sion repair, homologous recombination, and other tumor-
related pathways (Figure 4(d)). 1883 downregulated genes
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Figure 4: Identification of differentially expressed genes: (a) volcanic map of genes with differentially expressed genes between C1 and C2
molecular subtypes; (b) heat map of differentially expressed genes between C1 and C2 molecular subtypes; (c, d) GO and KEGG analysis
in upregulation genes; (e, f) GO and KEGG analysis in downregulation genes.
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were annotated to 1109 function terms with significant dif-
ferences, containing immune-related T cell activation,
regulation of lymphocyte activation, regulation of T cell
activation, and positive regulation of T cell activation
(Figure 4(e)). 1883 downregulated expression genes were
annotated to 61 significant KEGG pathways, including Th1
and Th2 cell differentiation, chemokine signaling pathway,
cytokine-cytokine receptor interaction, natural killer cell-
mediated cytotoxicity, T cell receptor signaling pathway, B
cell receptor signaling pathway, and other immune-related
pathways (Figure 4(f)).

3.4. Construction and Verification of Prognostic Models Based
on Differential Genes of Molecular Subtypes. On the training
data set, univariate Cox survival analysis was performed on
the 2463 differential expression genes, and 52 prognostic-
related genes (p < 0:001) were obtained. Then, the R software
package glmnet was used to perform LASSO cox regression
analysis. First, the change trajectory of each independent var-
iable is analyzed (Figure S3A), from which it can be seen that
with the gradual increase of lambda, the number of indepen-
dent variable coefficients approaching 0 also increases gradu-
ally. The 5-fold cross-validation was used to build the model,
and the confidence interval under each lambda was analyzed
(Figure S3B); when lambda = 0:02797, the model reached the
optimal value. For this reason, 12 genes were selected at
lambda = 0:02797 for the next step of analysis. These 12
genes were subjected to multivariate Cox survival analysis
and the stepAIC method to further reduce the number of
genes. Finally, 5 genes were used to construct the model
(Table 1). The expression of these five genes made a signifi-
cant prognosis difference between the risk of high and low
expression in the sample (Figure S4). The RiskScore of each
sample in TCGA training data set was obtained according
to the RiskScore calculation formula, and then, median value
was used as the cutoff point. If the RiskScore is greater than
the median value, it is high risk, and if the RiskScore is less
than or equal to the median value, it is low risk
(Figure 5(a)). The survival time distribution of TCGA train-
ing set samples from low risk to high risk is plotted, and in
the low-risk area, the proportion of survivors is higher
(Figure 5(b)). Higher expressions of KRT8, MAFK, and
PTTG1 were positively correlated with the risk score, and
the three were therefore considered as risk factors; Lower
expressions of ENPP5 and INPP5J were negatively correlated
with the risk score, and were regarded as protective factors
(Figure 5(c)). KM survival curve analysis found that the

high-risk group and the low-risk group had significant prog-
nostic differences (Figure 5(d), p < 0:0001). The ROC curve
analysis showed that the 1, 3, and 5-year AUC of RiskScore
were 0.64, 0.73, and 0.81, respectively (Figure 5(e)).

In order to verify the reliability of our risk model, we used
TCGA validation data set and all data sets for verification.
The results showed that our risk model in TCGA validation
data set (Figures 5(f) and 5(g)) and all data sets
(Figures 5(h) and 5(i)) also have good results.

3.5. Robustness of the Model. At the same time, in order to
further verify that our risk model has good effects on different
platforms and different data sets, the risk model was verified
in three independent data sets GSE31210, GSE30219, and
GSE50081. We used the same risk coefficient to calculate
the risk score of the sample in each data set and divide the
sample into high-/low-risk groups with the median cutoff.
We found that the KM curves of the high- and low-risk
groups of the three data sets have significant differences
(Figures 6(a), 6(c), and 6(e)). The ROC curves of RiskScore
in three data sets all have higher AUC (Figures 6(b), 6(d),
and 6(f)). This proved that our model has good performance
and versatility.

3.6. Analysis of Risk Score on Clinical Characteristics. The dis-
tribution of RiskScore among clinical feature groups showed
significant differences between T Stage, N Stage, stage, smok-
ing, gender, and our molecular subtype (p < 0:05) (Figure 7).
In our molecular subtypes, the risk score of the worse-
prognosis C1 subtype is significantly higher than that of the
C2 subtype with better prognosis.

Furthermore, we compared the differences of our models
in the chemotherapy and radiotherapy samples, and the
results are shown in Figure S5. Our models showed signifi-
cant differences in the chemotherapy samples, while there
was no significant difference in the radiotherapy samples.

3.7. Univariate and Multivariate Survival Analysis. In order
to identify the independence of the RiskScore model in clin-
ical application, we analyzed the relevant HR, 95% CI of HR,
and p value in the clinical information of the entire TCGA
data using univariate and multivariate survival analysis. We
systematically analyzed the clinical information of TCGA
patient records, including age, gender, T stage, N stage, M
stage, smoking, stage, and our RiskType grouping informa-
tion (Table 2). The results found that in both univariate
and multivariate survival analyses, RiskType was significant
in prognosis, which shows the independent reliability of
our model. At the same time, the clinical features of T stage
and N stage are also significant in univariate and multivariate
survival analysis, and they are also independent prognostic
factors.

3.8. Nomogram and Forest Diagram Constructed by RiskScore
and Clinical Features.We built a nomogram model based on
the independent prognostic factors T stage, N stage, and
RiskScore on all TCGA data sets. From the model results,
the RiskScore feature has the greatest impact on survival pre-
diction, indicating that the risk model could predict progno-
sis better (Figure 8(a)). At the same time, we corrected the

Table 1: The detailed information of five prognostic mRNAs
significantly associated with overall survival in patients with LUAD.

Gene Coef HR
HR

(lower, 0.95)
HR

(upper, 0.95)
p

KRT8 0.258 1.295 1.000 1.675 4.97E-02

MAFK 0.365 1.441 1.182 1.756 3.01E-04

PTTG1 0.355 1.426 1.136 1.792 0.002

ENPP5 -0.235 0.791 0.649 0.964 0.020

INPP5J -0.434 0.648 0.496 0.846 0.001
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Figure 5: Construction and verification of prognostic models based on differential genes of molecular subtypes: (a, b) the distribution of
RiskScore and the corresponding distribution of survival state in TCGA training data set; (c) heat map of gene expression of the RiskScore
model; (d, e) KM curve and ROC curve of the high- and low-risk group in TCGA training data set; (f, g) KM curve and ROC curve of the
high- and low-risk group in TCGA validation data set; (h, i) KM curve and ROC curve of the high- and low-risk group in all TCGA data sets.
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nomogram (1-, 3-, and 5-year data) to visualize the perfor-
mance of the nomogram (Figure 8(b)). DCA (Decision Curve
Analysis) is a simple method to evaluate clinical prediction
models, diagnostic tests, and molecular markers. DCA curve
analysis showed that RiskScore has better results, and the
model combined with clinical features (nomogram model)
has better results (Figure 8(c)).

3.9. Advantages of the Risk Model. Four prognostic-related
risk models (12-gene model (Xue) [21], 5-gene model (Yu)
[22], 3-gene model (Yue) [23], and 10-gene model (Mao)
[24]) were selected to compare with our 5-gene model. In
order to make the models comparable, we used the same
method to calculate the RiskScore of each LUAD sample in
TCGA based on the corresponding genes in these four
models. The KM survival curve showed that the LUAD prog-
nosis of the high and low group samples of the four models is
also different (Figures 9(a), 9(c), 9(e), and 9(g)). However, the
1-, 3-, and 5-year AUC values of the four models on TCGA
data are all lower than those of our model (Figures 9(b),
9(d), 9(f), and 9(h)), implying that our model has better
performance.

4. Discussion

With the development of microarray technology and RNA
sequencing technology, many studies have used gene expres-

sion profiles to classify tumors [25, 26]. Gene expression
profiles have been used to divide LUAD into subgroups.
For example, Bhattacharjee et al. used hierarchical and prob-
abilistic clustering methods to define different subtypes of
LUAD [27], showing the ability of gene expression profiling
to assist LUAD diagnosis. The hierarchical clustering method
was used to identify the expression patterns of 835 specific
genes for lung cancer subtypes [28]. Similarly, Hayes et al.
and Wilkerson et al. used ConsensusClusterPlus to deter-
mine the subtype of LUAD using gene expression data [29,
30]. Chen et al. combined multiplatform genomics data sets,
including DNA methylation, DNA copy changes, mRNA
expression, miRNA expression, and protein expression and
proposed a “cluster-cluster” lung cancer classification analy-
sis method [31]. Hu et al. used genome-wide mRNA expres-
sion profile to establish the robust molecular subtypes of
LUAD by using a combination method [32]. Many studies
have also found different LUAD subtypes, which have differ-
ent immune infiltration characteristics and molecular
mechanisms [33, 34]. More detailed genetic classification of
tumors may be more effective for clinical precision therapy.
However, the molecular subtype identification of
metastasis-related genes in LUAD is still unclear. In our
work, two molecular subtypes of LUAD were established
using metastasis-related mRNA expression profile. Further-
more, the survival analysis showed that patients in subtype
C2 had the best survival rate. By comparing the clinical
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Figure 6: Robustness of the model: (a, b) KM curve and ROC curve of the high- and low-risk group in the GSE31210 data set; (c, d) KM curve
and ROC curve of the high- and low-risk group in the GSE30219 data set; (e, f) KM curve and ROC curve of the high- and low-risk group in
the GSE50081 data set.
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Figure 7: Analysis of risk score on clinical characteristics: (a) the comparison of RiskScore among T1-T4 stage samples; (b) the comparison
between RiskScore among N0-N2 stage samples; (c) the comparison between RiskScore among M0-M1 stage samples; (d) the comparison
between RiskScore in the stage I-stage IV samples; (e) the comparison between RiskScore among samples of smoking; (f) the comparison
between RiskScore in gender (male and female) samples; (g) the comparison between RiskScore among molecular subtypes C1 and C2.

Table 2: Univariate and multivariate Cox survival analysis.

Feature
Univariable analysis Multivariable analysis

HR
95% CI of HR

p HR
95% CI of HR

p
Lower Upper Lower Upper

Age

≤65
0.192 0.068>65 1.217 0.906 1.635 1.406 0.976 2.025

Gender

Female
0.747 0.813

Male 1.049 0.784 1.405 0.957 0.667 1.375

T stage

T1-T2
<1e-5 0.008

T3-T4 2.298 1.568 3.366 1.934 1.19 3.143

N stage

N0
<1e-5 0.002

N1-N3 2.58 1.918 3.47 1.986 1.292 3.054

M stage

M0
0.006 0.226

M1 2.133 1.245 3.654 1.515 0.773 2.967

Smoking

1
0.536 0.541

2-4 0.878 0.581 1.326 0.852 0.51 1.423

Stage

I+II
<1e-5 0.678

III+IV 2.584 1.893 3.527 1.118 0.66 1.892

RiskType

Low
<1e-5 <1e-5

High 2.497 1.834 3.4 2.165 1.461 3.209
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characteristics of molecular subtypes, the clinical characteris-
tics of subtype C2 samples with good prognosis are in the
early stage of tumor. The mutation frequency of KRAS and
TP53 of the C2 subtype is significantly lower, and the
immune cell score is higher, compared with C1. These anal-
ysis results showed the reliability of our molecular subtype
and the reason for the better prognosis of the C2 subtype.

Additionally, a metastasis-specific 5-mRNA signature
was derived based on differentially expressed genes between
C1 and C2, containing KRT8, MAFK, PTTG1, ENPP5, and

INPP5J, which identified groups with low and high risk in
terms of TCGA training data set. KRT8 is a type II basic
intermediate filament (IF) protein, associated with EMT,
which is essential for the occurrence and metastasis of vari-
ous cancers. KRT8 mRNA expression was significantly
upregulated in LUAD tissues, indicating unfavorable prog-
nosis for poor OS and RFS in LUAD patients [35, 36]. Over-
expression of MAFK induced epithelial-mesenchymal
transition (EMT) phenotypes and promoted triple-negative
breast cancer formation and invasion in mice [37]. Pituitary
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Figure 8: Nomogram and forest diagram constructed by RiskScore and clinical features: (a) a nomogram model was built based on the
independent prognostic factors T stage, N stage, and RiskScore in all TCGA data sets; (b) calibration chart of the nomogram; (c) DCA
diagram of clinical features and the RiskScore.

18 BioMed Research International



+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ +

+

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++
++++++++++++++++++ +

+ ++ + + + + +

p < 0.0001

Log–rank

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

Su
rv

iv
al

 p
ro

ba
bi

lit
y

250 20 3 1 0
250 32 6 2 0Low

High

0 5 10 15 20

Number at risk

Follow up time (year)

Follow up time (year)

Xue
+ High
+ Low

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FP

TP

1 Year AUC: 0.68
3 Year AUC: 0.64
5 Year AUC: 0.61

Times

(b)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Low
High

Number at risk

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++ ++++++++++++++ +

+

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+++

+++++++++++++++
+ +

++++ + + + +

p < 0.0001

Log–rank

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
Follow up time (year)

Follow up time (year)

Yu
+ High
+ Low

250 20 2 1 0
250 32 7 2 0

0 5 10 15 20

Yu

(c)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FP

TP

1 Year AUC: 0.7
3 Year AUC: 0.68
5 Year AUC: 0.64

Times

(d)

Figure 9: Continued.

19BioMed Research International



Su
rv

iv
al

 p
ro

ba
bi

lit
y

Low
High

Number at risk

Follow up time (year)

Follow up time (year)

Yue
+ High
+ Low

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++

+++++ +
+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+++
+++++++ +++++++ ++

++ ++++ +

+ +

p < 0.0001

Log–rank

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

250 22 2 2 0
250 30 7 1 0

0 5 10 15 20

(e)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FP

TP

1 Year AUC: 0.68
3 Year AUC: 0.65
5 Year AUC: 0.63

Times

(f)

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Low
High

Number at risk

Follow up time (year)

Follow up time (year)

Mao
+ High
+ Low

++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++
++++++++++++++++++ +

++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++

+++++++++++++
++ +

++
+++ + + +

p < 0.0001

Log–rank

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

250 20 4 2 0
250 32 5 1 0

0 5 10 15 20

(g)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
FP

TP

Times
1 Year AUC: 0.67
3 Year AUC: 0.67
5 Year AUC: 0.62

(h)

Figure 9: Advantages of the riskmodel: (a, b) KM curve of the high/low group samples and the ROC curve of the 12-gene riskmodel (Xue); (c, d)
KM curve of the high/low group samples and the ROC curve of the 5-gene model (Yu); (e, f) KM curve of the high/low grouped samples and the
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tumor transforming gene 1 (PTTG1) is highly expressed in
many tumors and regulates tumor growth and progression.
The expression of PTTG1 protein was markedly upregulated
in LUAC tissues and was positively associated with the lym-
phatic invasion of the tumor [38]. INPP5J protein expression
was drastically decreased in human ovarian cancer cells [39]
and acted as a vital negative regulator of PI3K/Akt signaling
in numerous types of human cancers [40]. There are few
studies on ENPP5 in tumors. For the first time, we reported
a metastasis gene signature identified using bioinformatics
methods in LUDA patients, which displays prognostic value
for patients.

However, some limitations of the current study should be
considered. First, the population ethnicity in TCGA database
is primarily limited to whites and blacks, and extrapolation of
the findings to other ethnicities is needed. Second, the prog-
nostic model needs to be further validated in multicenter
clinical trials and prospective studies. In the future, we will
also explore the possibility of including additional prognostic
variables to further improve performance. Other regression
modeling approaches will be applied to determine if predic-
tive accuracy can be further improved. Basic experimental
studies are also a limitation of our study.

We first identified a new 5-gene marker metastasis risk
model that performed well in predicting the prognosis of
LUAD. These 5 genes have complex molecular functions,
among which ENPP5 and INPP5J have not been reported
to be related to LUAD. Our study emphasized the relation-
ship between metastasis-related genes and the prognosis of
LUAD. Our results may provide precision and personalized
treatment for clinical lung adenocarcinoma patients.
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