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In the present work, a new series of dihydronaphthalene derivatives were synthesized starting with 6-methoxy-1-tetralone 1, and
the corresponding hydrazine derivative 2. Reaction of compound 2 with aryl isothiocyanates produced thiosemicarbazides 3a-d,
which were reacted with ethyl chloroacetate to give thiazolidinone derivatives 4a-d. Pyrano thiazolecarbonitrile derivatives 5a-f
were prepared by heating a mixture of compounds 4a or 4c, aryl aldehydes, and malononitrile utilizing distilled water in the
presence of catalytic amount of potassium hydrogen phthalate. Also, treatment of 4a with DMF-DMA under solvent-free
conditions gave enaminone derivative 6, which condensed with ethyl acetoacetate or acetylacetone or malononitrile or
cyanothioacetamide to give compounds 7-10, respectively. Finally, reaction of the enaminone 6 with 2-aminoimidazol or 2-
aminothiazol in the presence of glacial acetic acid produced derivatives 11 and 12, respectively. Cytotoxic evaluation of eleven
compounds, against MCF-7 (human breast adenocarcinoma) cell lines, was estimated. Results revealed that five of the examined
compounds 5a, 5d, 5e, 10, and 3d showed potent cytotoxic activities recording, IC50 values; 0:93 ± 0:02, 1:76 ± 0:04, 2:36 ± 0:06,
2:83 ± 0:07, and 3:73 ± 0:09μM, respectively, which were more potent than the reference used (Saturosporin, IC506:08 ± 0:15
μM). The new products were also examined towards normal epithelial breast cells (MCF10A). All of them showed very good
safety profile with different degrees and were safer than the reference drug used. Compound 5a was the most effective against
MCF-7 cells and was less toxic than Saturosporin by about 18.45-folds towards MCF01A normal cells. All the new compounds
were fully characterized by the different spectral and analytical tools. Herein, detailed syntheses, spectroscopic, and biological
data are reported.

1. Introduction

Breast cancer represents the most common cancer disease
among women. It represents the second-highest rate leading
cause of women mortality worldwide [1]. Chemotherapy is
the most common for cancer treatment. Developing cancer
drugs is essential to discover more active products with high

potential [2]. This work represents an attempt to develop
new therapeutic compounds of high efficacy in treating
breast cancer disease. Literature reports confirmed the
important diverse types of pharmaceutical activities of thia-
zole, pyrane, and/or pyridine derivatives. Thiazoles have con-
cerned a great era of attention due to their association with
various types of biological activities. Their derivatives
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exhibited important potency as anticancer [3–5], antibacte-
rial [6], anti-inflammatory [7], antioxidant [8], antimalarial
[9] agents, and HIV-inhibitors [10]. Also, pyrane containing
derivatives have been identified as anticancer [11], antimi-
crobial [12], anti-inflammatory [13], and antimalarial [14]
agents. Furthermore, literature survey reported that com-
pounds containing pyridine ring demonstrated anticancer
[15], antimicrobial [16], anti-inflammatory [17], antiviral
[18], and antioxidant [19] activities. Based on our recent
work which demonstrated that various tetralone-based deriv-
atives verified significant inhibitory activity towards different
types of cancer disease, they displayed highly significant cyto-
toxic activity against MCF-7 human cancer cells (breast can-
cer), for all the tested compounds, all of them showed activity
more potent than that obtained by the reference drug (Dox-
orubicine) [20]. Also, significant cytotoxic effects on U373
(human glioblastoma cells) were testified [21]. Additionally,
cytotoxic activity against HepG-2 (human cancer cells) was
established [22]. These facts motivated us to synthesize new
compounds derived from coupling of 6-methoxy-1-tetralone
with different heterocyclic ring systems such as thiazole, pyr-
ano [2,3-d] thiazole, and dihydrothiazolo [4,5-b] pyridine in
one molecule aiming to construct new candidates of enhanc-
ing anticancer activity. Herein, 6-methoxy-1-tetralone was
used as good building blocks to construct the desired hetero-
cyclic products.

2. Materials and Methods

2.1. Chemistry. Melting points were uncorrected and were
taken in open capillary tubes using Electrothermal apparatus
9100. Infrared spectra were recorded on a Shimadzu FT-IR
Affinity-1 Spectrometer, Infrared spectrometer at cm-1 scale
using KBr disc technique at Faculty of Pharmacy-Cairo Uni-
versity, Cairo, Egypt. 1H NMR and 13C NMR spectra were
determined by using a Bruker High-Performance Digital
FT-NMR Spectrometer Avance III 400MHz, Faculty of
Pharmacy-Cairo University, Cairo, Egypt. Chemical shifts
were expressed in δ (ppm) downfield from TMS as an inter-
nal standard. The mass spectra were recorded on a GCMC-
QP 1000 EX Shimadzu gas chromatograph-mass spectrome-
ter (GC-MS; Shimadzu Corp. Kyoto, Japan) at electron ioni-
zation (EI) of 70 eV. Elemental analyses (C, H, and N) were
conducted at the Micro Analytical Center of the Faculty of
Science of Cairo University, Cairo, Egypt. All reagents were
commercial grade and used without further purification.
Reaction progress was monitored by thin-layer chromatogra-
phy (TLC) on precoated (0.75mm) silica gel GF254 plates
(Merck Group, Darmstadt, Germany). Products were visual-
ized under ultraviolet (UV) light.

2.1.1. Synthesis of 6-Methoxy-3, 4-dihydronaphthalen-1(2H)-
ylidene hydrazine 2. Compound 2 was prepared and charac-
terized as described in our literature report [23].

2.1.2. N-(Substituted)-2-(6-methoxy-3,4-dihydronaphthalen-
1(2H)-ylidene) hydrazinecarbothio amide (3a-d). A mixture
of compound 2 (0.002mol) and the appropriate substituted
isothiocyanates (0.002mol) namely (p-bromophenyl, p-flour-

ophenyl, phenoxyphenyl, or ethyl) isothiocyanate in dry ben-
zene (30mL) was refluxed for 30min. After cooling, the excess
solvent was evaporated; the solid product was filtered off,
dried, and recrystallized from ethyl alcohol to give the desired
products 3a-d, respectively.

2.1.3. N-(4-Bromophenyl)-2-(6-methoxy-3,4-dihydronaphtha-len-
1(2H)-ylidene)hydrazine-1-carbo thioamide 3a. Yield: 91%;
m.p.: 191-193°C; IR (υmax/cm

-1): 3381, 3317 (2NH); 1H-
NMR (DMSO-d6): δ, 1.82-1.85 (m, 2H, CH2, C-3), 2.58 (t,
J=1.7, 2H, CH2, C-2), 2.7 (t, J=6.5, 2H, CH2, C-4), 3.79 (s,
3H, OCH3), 6.7-6.8 (m, 2H, Ar), 7.5-7.6 (m, 4H, Ar), 8.3 (d,
J=8.6, 1H, Ar, CH-8), 10.0, 10.5 (2 s, 2H, 2NH); 13C-NMR
(DMSO-d6): δ; 21.9 (CH2, C-3), 26.5 (CH2, C-2), 29.6
(CH2,C-4), 55.6 (OCH3), 112.7, 113.6, 117.8, 124.8, 128.0,
128.1, 131.2, 139.1, 142.8, 150.2, 160.7 (Ar-C and CN),
176.8 (C=S); MS: m/z (%) 403, 405 (M+, 37, 36) consistent
with the molecular formula C18H18Br N3OS. Anal. Calcd.
C,53.47; H,4.49; N,10.39, Found C,53.69; H, 3.99; N,10.71%.

2.1.4. N-(4-Fluorophenyl)-2-(6-methoxy-3,4-dihydronaphtha-
len-1(2H)-ylidene)hydrazine-1-carbo thioamide 3b. Yield: 85%;
m.p.: 154-156°C; IR (υmax/cm

-1): 3365, 3320 (2NH); 1H-
NMR (DMSO-d6): δ, 1.8 (m, 2H, CH2, C-3), 2.6 (t, J=6,
2H, CH2, C-2), 2.9 (t, J=6, 2H, CH2, C-4), 3.8 (s, 3H,
OCH3), 6.7 (s, 1H, Ar, CH-5), 7.2-7.5 (m, 4H, Ar), 7.68 (d,
J=8.5, 1H, Ar), 8.2 (d, J=8.5, 1H, Ar), 8.3 (br s, 1H, NH),
9.3 (br s, 1H, NH); 13C-NMR (DMSO-d6): δ, 20.5 (CH2, C-
3), 26.5 (CH2,C-2), 27.9 (CH2, C-4), 55.6 (OCH3), 111.2,
113.6, 119.4, 120.8, 123.4, 124.4, 126.4, 127.1, 129.8, 131.1,
133.2, 134.1, 158.2, 159.1, 168.5, (Ar-C and CN), 170.3
(C=S); MS: m/z (%) 343 (M+, 25) consistent with the molec-
ular formula C18H18FN3OS. Anal. Calcd. C, 62.95; H, 5.28; N,
12.24,Found C,62.53; H, 4.73; N,11.81%.

2.1.5. 2-(6-Methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)-N-
(4-phenoxyphenyl)-hydrazine-1-carbo thioamide 3c. Yield:
94%; m.p.: 171°C; IR (υmax/cm

-1): 3325, 3275 (2NH); 1H-
NMR (DMSO-d6): δ, 1.85 (m, 2H, CH2-3), 2.7 (t, J=6.5, 2H,
CH2-2), 2.86 (t, J=6, 2H, CH2-4), 3.8 (s, 3H, OCH3), 6.2 (t,
J=6.5, 1H, C-4`, phenyl ring), 6.78 (s, 1H, Ar, CH-5), 7.1-7.3
(m, 8H, Ar and NH), 7.65 (d, J=8.5, 1H, Ar), 8.4 (d, J=8.5,
1H, Ar), 8.6 (br s, 1H, NH); 13C-NMR (DMSO-d6): δ, 20.5
(CH2-3), 27.9 (CH2-2), 29.5 (CH2-4), 55.6 (OCH3), 111.2,
113.6, 119.4, 120.8, 123.4, 124.4, 126.4, 127.1, 129.8, 130.0,
133.2, 134.1, 158.2, 159.1, 168.5, (Ar-C and CN), 170.3
(C=S); MS: m/z (%) 417 (M+, 53) consistent with the molecu-
lar formula C24H23N3O2S. Anal. Calcd. C, 69.04; H, 5.55; N,
10.06, Found C,68.67; H, 5.16; N,9.68%.

2.1.6. N-(4-Ethyl)-2-(6-methoxy-3,4-dihydronaphthalen-1(2H)-
ylidene)hydrazine-1-carbothioamide 3d. Yield: 93%; m.p.:
150-153°C; IR (υmax/cm

-1): 3370, 3281 (2NH); 1H-NMR
(DMSO-d6): δ,1.1 (t, J=5.9, 3H, -CH2CH3), 1.79 (m, 2H,
CH2, C-3), 2.6 (t, J=6.4, 2H, CH2, C-2), 2.7 (t, J=5.8, 2H,
CH2, C-4), 3.59-3.64 (q, 2H, -CH2-CH3), 3.79 (s, 3H,
OCH3), 6.7 (s, 1H, CH-5), 6.8 (d, J=8.8, 1H, CH-7), 8.2 (d,
J=8.8, 1H, CH-8), 8.4 (br s, 1H, NH), 9.9 (s, 1H, NH); 13C-
NMR (DMSO-d6): δ,14.8 (CH2CH3), 22.3 (CH2-3), 27.01
(CH2-2), 29.6 (CH2-4), 38.8 (CH2CH3), 55.5 (OCH3),
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112.7, 113.5, 125.9, 128.7, 142.6, 148.3, 160.7 (Ar-C and CN),
(177 C=S); MS: m/z (%)277 (M+, 65) consistent with the
molecular formula C14H19N3OS. Anal. Calcd. C, 60.62; H,
6.90; N, 15.15; Found C, 60.13; H, 6.63; N, 14.98%.

2.1.7. 2-Substituted-3-((6-methoxy-3,4-dihydronaphthalin-
1(2H)-ylidene)amino)thiazolidin-4-ones 4a-d. To a solution
of 3a-d (0.001mol) in ethanol (20mL), ethyl chloroacetate
(0.001mol) was added and refluxed for 4 h. After cooling,
the solid product was filtered off, dried, and recrystallized
from ethanol to give the desired compounds 4a-d.

2.1.8. 2-((4-Bromophenyl)imino)-3-((6-methoxy-3,4-dihydro-
naphthalen-1(2H)-ylidene)amino) thiazolidin-4-one 4a.
Yield: 81%; m.p.: 183°C; IR (υmax/cm

-1): 1710 (C=O); 1H-
NMR (DMSO-d6): δ, 1.8 (m, 2H, CH-3), 2.55 (t, J=6.4, 2H,
CH2-2), 2.7 (t, J=6, 2H, CH2-4), 3.7 (s, 3H, OCH3), 4.05 (s,
2H, CH2 thiazolidinone), 6.7-6.8 (m, 3H, Ar), 7.3 (d, J=8.5,
1H, Ar), 7.5-7.6 (m, 2H, Ar), 8.3 (d, J=8.5, 1H, Ar, CH-8);
13C-NMR (DMSO-d6): δ; 22.5 (CH2, C-3), 26.8 (CH2, C-2),
29.7 (CH2,C-4), 32.9 (CH2, thizolidinone), 55.6 (OCH3),
110.7, 112.7, 113.6, 117.8, 124.8, 128.0, 128.1, 131.2, 139.1,
142.8, 150.2, 160.7, 167.4 (Ar-C, CN and C=O); MS: m/z
(%): 443, 445 (M+, 5, 5) consistent with the molecular for-
mula C20H18 BrN3O2S. Anal. Calcd. C, 54.06; H, 4.08; N,
9.46; Found C, 53.61; H, 3.79; N,8.91%.

2.1.9. 2-((4-Fluorophenyl)imino)-3-((6-methoxy-3,4-dihydro-
naphthalen-1(2H)-ylidene)amino) thiazolidin-4-one 4b.
Yield: 89%; m.p.: 190°C; IR (υmax/cm

-1): 1728 (C=O); 1H-
NMR (DMSO-d6): δ, 1.9 (m, 2H, CH2-3), 2.7 (t, J=5.9, 2H,
CH2-2), 2.9 (t, J=6.5, 2H, CH2-4), 3.8 (s, 3H, OCH3), 4.06
(s, 2H, thiazolidinone), 6.6 (s, 1H, Ar, CH-5), 6.8-6.9 (m,
3H, Ar), 7.1-7.4 (m, 2H, Ar), 8.3 (d, J=9.3, 1H, Ar, CH-8);
13C-NMR (DMSO-d6): δ, 21.4 (CH2-3), 27.4 (CH2-2), 29.6
(CH2-4), 32.7 CH2 thiazolidinone), 55.3 (OCH3), 111.03,
112.9, 113.2, 113.4, 114.2, 116.2, 116.8, 124.2, 125.5, 128.1,
129.6, 130.5, 143.4, 146.9, 161.7, 162.9 (Ar-C and CN), 171
(C=O); MS: m/z (%) 383, (M+, 1) consistent with the molec-
ular formula C20H18FN3O2S. Anal. Calcd. C, 62.65; H, 4.73;
N, 10.96; Found C, 62.34; H, 7.53; N,10.75%.

2.1.10. 3-((6-Methoxy-3,4-dihydronaphthalen-1(2H)-ylidene)
amino)-2-((4-phenoxyphenyl)imino) thiazolidin-4-one 4c.
Yield: 94%; m.p.: 171°C; IR (υmax/cm

-1): 1717 (C=O); 1H-
NMR (DMSO-d6): δ, 1.86 (m, 2H, CH2-3), 2.7 (t, J=6.5,
2H, CH2-2), 2.8 (t, J=6, 2H, CH2-4), 3.8 (s, 3H, OCH3),
3.99 (s, 2H, CH2 thiazolidinone), 6.2 (t, J=6.5, 1H, C-4, phe-
nyl ring), 6.7 (s, 1H, Ar, CH-5), 7.1-7.3 (m, 7H, Ar), 7.6 (d,
J=8.5, 2H, Ar), 8.3 (d, J=8.5, 1H, Ar); 13C-NMR (DMSO-
d6): δ; 20.5 (CH2-3), 27.9 (CH2-2), 29.5 (CH2-4), 32.6 (CH2
thiazolidinone), 55.6 (OCH3), 111.2, 113.6, 119.4, 120.8,
123.4, 124.4, 126.4, 127.1, 129.8, 130.0, 133.2, 134.1, 145.8,
158.2, 159.1, 160.6, (Ar-C and CN), 177.1 C=O); MS: m/z
(%) 457 (M+, 67) consistent with the molecular formula
C26H23N3O3S. Anal. Calcd. C, 68.25; H, 5.07; N, 9.18; Found
C, 69.12; H, 4.62; N,8.71%.

2.1.11. 2-(Ethylimino)-3-((6-methoxy-3,4-dihydronaphthalen-
1(2H)-ylidene)amino)thiazolidin-4-one 4d. Yield: 76%; m.p.:

117°C; IR (υmax/cm
-1): 1707 (C=O); 1H-NMR (DMSO-d6): δ,

1.2 (t, J=7, 3H, -CH2-CH3), 1.7-1.8 (m, 2H, CH2-3), 2.7 (t,
J=5.8, 2H, CH2-2), 2.8 (t, J=6.5, 2H, CH2-4), 3.74-3.79 (m,
5H, OCH3 and –CH2CH3), 3.9 (s, 2H, CH2 thiazolidinone),
6.7 (s, 1H, Ar, CH-5), 6.8 (d, J=8.8, 1H, Ar, CH-7), 8.05 (d,
J=8.8, 1H, Ar, CH-8); 13C-NMR (DMSO-d6): δ, 12.6
(CH2CH3), 22.2 (CH2-3), 27.1 (CH2-2), 29.9 (CH2-4), 32.4
(CH2 thiazolidinone), 38.2 (CH2CH3), 55.6 (OCH3), 113.06,
113.6, 125.2, 126.8, 143.1, 161.0, 161.1, 161.3, (Ar-C and
CN), 172.3, (C=O); MS: m/z (%): 317 (M+, 68) consistent with
the molecular formula C16H19N3O2S. Anal. Calcd. C, 60.55; H,
6.03; N, 13.24; Found C, 60.09; H, 5.74; N, 12.88%.

2.1.12. 5-Amino-2-(4-substitutedimino)-3-((6-methoxy-3,4-di
hydronaphthalen-1(2H)-ylidene) amino)-7-(4-substituted-
phenyl)-3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile
5a-f. To a mixture of thiazolidinone derivatives 4a or 4c
(0.001mol), aryl aldehyde, namely, 4-methoxy benzaldehyde,
4-nitrobenzaldehyde and 2-furaldehyde (0.001 mole), and
malononitrile (0.001 mole), potassium hydrogen phthalate
(KHP) (25mol %) in distilled water (5mL), was added. The
mixture was heated at 50°C, after completion of the reaction
and cooling, and the solid product was collected by filtration,
washed with distilled water, dried, and recrystallized from
dilute ethanol to give compounds (5a-f), respectively.

2.1.13. 5-Amino-2-((4-bromophenyl)imino)-3-((6-methoxy-3,
4-dihydronaphthalen-1(2H)-ylidene) amino)-7-(4-metho-
xyphenyl)-3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carboni-
trile 5a. Yield: 78%; m.p.: 247°C; IR (υmax/cm

-1): 3470, 3366
(NH2), 2208 (CN); 1H-NMR (DMSO-d6): δ, 1.7 (m, 2H,
CH2-3), 2.57 (t, J=6.2, 2H, CH2-2), 2.73 (t, J=5.7, 2H,
CH2-4), 3.74 (s, 6H, 2OCH3), 3.78 (s, 1H, CH-4, pyran),
4.06 (s, 2H, NH2), 6.7 (s, 1H, Ar, H-5), 6.8 (d, J=8.8, 1H,
Ar), 7.09-7.23 (m, 4H, Ar), 7.40-7.5 (m, 4H, Ar), 8.05 (d,
J=8.8, 1H, Ar, H-8). 13C-NMR (DMSO-d6): δ, 22.2 (CH2-
3), 27.1 (CH2-2), 29.6 (CH2-4), 32.6 (CH-4, pyran), 45.7
(C-5, pyran), 55.7 (2OCH3), 65.7 (C-3, pyran), 113.0,
113.76, 118.6, 119.8, 124.6, 125.2, 126.9, 130.1, 130.4, 130.7,
143.0, 156.3, 157.2, 161.1, 161.5, 162.1, 165.9, 168.1, 169.0
(Ar-C and CN); MS: m/z (%): 628.630 (M+, 100, 98) consis-
tent with the molecular formula C31H26BrN5O3S. Anal.
Calcd. C, 59.24; H, 4.17; N, 11.14; Found C, 60.23; H, 3.71;
N, 10.96%.

2.1.14. 5-Amino-2-((4-bromophenyl)imino)-3-((6-methoxy-3,4-
dihydronaphthalen-1(2H)-ylidene) amino)-7-(4-nitrophenyl)-
3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile 5b. Yield:
56%; m.p.: 213°C; IR (υmax/cm

-1): 3450, 3373 (NH2), 2195
(CN); 1H-NMR (DMSO-d6): δ, 1.9 (m, 2H, CH2-3), 2.7 (t,
J=6.2, 2H, CH2-2), 2.9 (t, J=5.7, 2H, CH2-4), 3.8 (s, 3H,
OCH3), 4.0 (s, 1H, CH-4, pyran), 6.7 (s, 1H, Ar, H-5), 7.4-
7.9 (m, 11H, Ar and NH2), 8.3 (d, J=8.2, 1H, Ar, H-8).13C-
NMR (DMSO-d6): δ, 22.3 (CH2-3), 27.4 (CH2-2), 29.9
(CH2-4), 31.7 (CH-4, pyran), 45.5 (CH-5, pyran), 55.67
(OCH3), 67.8 (C-3, pyran), 113.0, 113.76, 118.6, 119.8,
124.6, 125.2, 126.9, 130.4, 130.7, 140.7, 143.0, 146.0, 156.3,
159.5, 161.1, 161.5, 162.1, 165.9, 168.1 (Ar-C and CN); MS:
m/z (%): 641, 642 (M+, 15 13.9) consistent with the molecular
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formula C30H23BrN6O4S. Anal. Calcd. C, 55.99; H, 3.60; N,
13.06; Found C, 55.39; H, 3.41; N, 12.81%.

2.1.15. 5-Amino-2-((4-bromophenyl)imino)-7-(4-furan-2-yl)-
3-((6-methoxy-3,4-dihydronaphthalen -1(2H)-ylidene)amino)-
3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile 5c. Yield:
72%; m.p.: 255°C; IR (υmax/cm

-1): 3428, 3310 (NH2), 2210
(CN); 1H-NMR (DMSO-d6): δ, 1.7 (m, 2H, CH2-3), 2.57
(t, J=6.5, 2H, CH2-2), 2.7 (t, J=5.7, 2H, CH2-4), 3.7 (s, 3H,
OCH3), 4.05 (s, H, CH-4, pyran), 5.06 (s, 2H, NH2), 6.7
(s, 1H, Ar, H-5), 6.8 (t, J=5.9, 1H, furyl), 7.0-7.5 (m,
5H, Ar), 8.0 (d, J=9.3, 1H, Ar), 8.1 (d, J=9.3, 1H, Ar),
8.3 (d, J=8.5, 1H, Ar, H-8); 13C-NMR (DMSO-d6): δ,
22.2 (CH2-3), 27.1 (CH2-2), 29.7 (CH2-4), 32.6 (CH-4,
pyran), 45.7 (C-5, pyran), 55.6 (OCH3), 67.9 (C-3, pyran),
106.2, 107.5, 110.8, 118.6, 119.8, 124.6, 125.2, 130.1, 130.7,
143.0, 146.3, 156.3, 157.2, 161.1, 161.5, 162.1, 165.9, 168.1,
169.0 (Ar-C and CN); MS: m/z (%): 587, 590 (M+, 59, 58)
consistent with the molecular formula C28H22BrN5O3S.
Anal. Calcd. C, 57.15; H, 3.77; N, 11.90; Found C, 56.87;
H, 3.63; N, 11.48%.

2.1.16. 5-Amino-3-((6-methoxy-3,4-dihydronaphthalen-1(2H)-
ylidene)amino)-7-(4-methoxyphenyl) -2-((4-phenoxyphenyl)
imino)–3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile
5d. Yield: 81%; m.p.: 209°C; IR (υmax/cm

-1): 3444, 3370
(NH2), 2215 (CN); 1H-NMR (DMSO-d6): δ, 1.7 (m, 2H,
CH2-3), 2.4 (t, J=6.2, 2H, CH2-2), 2.7 (t, J=5.7, 2H, CH2-
4), 3.72 (s, 3H, OCH3), 3.78 (s, 3H, OCH3), 4.05 (s, 1H,
CH-4, pyran), 6.7 (s, 1H, Ar, H-5), 6.8-7.3 (m, 10H, Ar),
7.4 (d, J=7.6, 2H, Ar), 8.02 (d, J=8.5, 2H, Ar), 8.1 (d,
J=8.5, 1H, Ar, H-8), 10.5 (s, 2H, NH2);

13C-NMR (DMSO-
d6): δ, 21.9 (CH2-3), 26.5 (CH2-2), 29.6 (CH2-4), 32.6 (CH-
4, pyran), 45.7 (C-5, pyran), 55.64, 55.66 (2OCH3), 65.9 (C-
3, pyran), 113.0, 113.76, 114.8, 117.2, 118.6, 119.8, 120.9,
124.6, 125.2, 126.9, 130.1, 130.4, 131.2, 134.1, 143.0, 156.3,
157.2, 161.1, 161.5, 162.1, 165.9, 168.1, 169.0 (Ar-C and
CN); MS: m/z (%): 641 (M+, 42) consistent with the molecu-
lar formula C37 H31N5O4S. Anal. Calcd. C, 69.25; H, 4.87; N,
10.90; Found C, 69.09; H, 4.63; N, 10.67%.

2.1.17. 5-Amino-3-((6-methoxy-3,4-dihydronaphthalen-1(2H)-
ylidene)amino)-7-(4-nitrophenyl)-2-((4-phenoxyphenyl)imino)-
-3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile 5e.Yield:
61%; m.p.: 223°C; IR (υmax/cm

-1): 3465, 3360 (NH2), 2197
(CN); 1H-NMR (DMSO-d6): δ, 1.7 (m, 2H, CH2-3), 1.8 (t,
J=6.2, 2H, CH2-2), 2.9 (t, J=5.7, 2H, CH2-4), 3.8 (s, 3H,
OCH3), 4.05 (s, 1H, CH-4, pyran), 6.7 (s, 1H, Ar, H-5), 6.8-
7.4 (m, 10H, Ar), 7.53 (d, J=9.3, 2H, Ar), 7.6 (d, J=9.3, 2H,
Ar), 8.2 (d, J=8.5, 1H, Ar, H-8), 12.2 (s, 2H, NH2);

13C-NMR
(DMSO-d6): δ, 21.9 (CH2-3), 27.1 (CH2-2), 29.9 (CH2-4),
31.6 (CH-4, pyran), 46.0 (C-5, pyran), 55.2 (OCH3), 66.8 (C-
3, pyran), 113.0, 113.7, 118.6, 119.8, 124.6, 125.2, 126.9, 130.1,
130.4, 130.7, 142.7, 143.0, 144.9, 149.0, 153.8, 156.3, 157.2,
161.1, 161.5, 162.1, 165.9, 168.1, 169.0 (Ar-C and CN); MS:
m/z (%): 656 (M+, 63) consistent with the molecular formula
C36 H28N6O5S. Anal. Calcd. C, 65.84; H, 4.30; N, 12.80; Found
C, 66.08; H, 4.11; N, 12.68%.

2.1.18. 5-Amino-7-(furan-2-yl)-3-((6-methoxy-3,4-dihydrona-
phthalen-1(2H)-ylidene)amino)-2-((4-phenoxyphenyl)imino)-
3,7-dihydro-2H-pyrano [2,3-d]thiazole-6-carbonitrile 5f. Yield:
55%; m.p.: 280°C; IR (υmax/cm

-1): 3475, 3334 (NH2), 2208
(CN); 1H-NMR (DMSO-d6): δ, 1.9 (m, 2H, CH2-3), 2.4 (t,
J=5.9, 2H, CH2-2), 2.9 (t, J=5.7, 2H, CH2-4), 3.7 (s, 3H,
OCH3), 4.1 (s, 1H, CH-4, pyran), 6.2-6.9 (m, 7H, Ar), 7.1
(t, J=7.6, 1H, C-4` of phenyl), 7.5 (d, J=9.3, 2H, Ar), 7.6
(d, J=9.3, 2H, Ar), 7.9-8.2 (m, 5H, Ar and NH2);

13C-NMR
(DMSO-d6): δ, 22.2 (CH2-3), 26.5 (CH2-2), 29.8 (CH2-4),
33.1 (CH-4, pyran), 42.6 (C-5, pyran), 55.6 (OCH3), 66.8
(C-3, pyran), 107.0, 108.0, 110.8, 118.6, 119.8, 124.6, 125.2,
130.1, 130.7, 142.7, 143.0, 144.9, 146.3, 149.0, 153.8, 156.3,
157.2, 161.1, 161.5, 162.1, 165.9, 168.1, 169.0 (Ar-C and
CN); MS: m/z (%): 600, 602 (M+, 18, 30) consistent with
the molecular formula C34H27N5O4S. Anal. Calcd. C, 67.87;
H, 4.52; N, 11.64; Found C, 67.56; H, 4.23; N, 11.89%.

2.1.19. 2-((4-Bromophenyl)imino)-5-((dimethylamino)methy
lene)-3-((6-methoxy-3,4-dihydronaph thalene-1(2H)-ylidene)
amino)thiazolidin-4-one 6. A mixture of compound 4a
(0.001mol) and DMF-DMA (2mL) was refluxed for ~1h;
after cooling, the solid product was filtered, washed with
petroleum ether, dried, and recrystallized from dilute ethanol
to give compound 6. Yield: 87%; m.p.: 236°C; IR (υmax/cm

-1):
1670 (C=O); 1H-NMR (DMSO-d6): δ; 1.7 (m, 2H, CH2-3),
2.59 (t, J=6.1, 2H, CH2-2), 2.7 (t, J=5.6, 2H, CH2-4), 3.6,
3.7 (2 s, 6H, -NMe2), 3.8, (s, 3H, OCH3), 6.7 (s, 1H, Ar,
CH-5), 6.8 (d, J=8.8, 1H, Ar, CH-7), 7.4 (d, J=8.6, 2H, Ar,
CH-3`,5`), 7.5 (s, 1H, =CH-N), 7.7 (d, J=8.6, 2H, Ar, CH,
2`,6`) 8.04 (d, J=8.8, 1H, Ar, CH-8); 13C-NMR (DMSO-
d6): δ; 22.4 (CH2-3), 26.5 (CH2-2), 29.2 (CH2-4), 35.9
(-NMe2), 55.6 (OCH3), 86.2, 110.2, 110.6, 112.5, 113.6,
117.8, 124.8, 128.0, 128.1, 131.2, 139.1, 142.8, 149.6, 160.3,
167.4 (Ar-C, CN and C=O); MS: m/z (%): 498, 501 (M+,
58, 56), consistent with the molecular formula C23H23 Br
N4O2S. Anal. Calcd. C, 55.31; H, 4.64; N, 11.22; Found C,
55.09; H, 4.54; N, 10.98%.

2.1.20. Ethyl-2-((4-bromophenyl)imino)-3-((6-methoxy-3,4-di
hydronaphthalen-1(2H)-ylidene) amino)-5-methyl-2,3-dihy-
drothiazolo [4,5-b]pyridine-6-carboxylate (7) and 2-((4-
bromo phenyl)imino)-3-((6-methoxy-3,4-dihydronaphthalen-
1(2H)-ylidene)amino)-5-methyl-2,3-dihydrothiazolo [4,5-b]
pyridin-6-yl) ethanone 8. To a solution of compound 6
(0.005mol) and ammonium acetated (0.5gm) in glacial acetic
acid (5mL), ethyl acetoacetoacetate or acetylacetone
(0.005mol) was added. The mixture was heated under reflux
for 4h.; after completion of the reaction and cooling, the prod-
uct was poured onto ice cold water, dried, and recrystallized
from the suitable solvent to give compounds 7 and 8.

2.1.21. Ethyl-2-((4-bromophenyl)imino)-3-((6-methoxy-3,4-
dihydronaphthalen-1(2H)-ylidene) amino)-5-methyl-2,3-
dihydrothiazolo [4,5-b]pyridine-6-carboxylate 7. Yield: 83%;
recrystallized from ethyl alcohol; m.p.: 90°C; IR (υmax/cm

-1):
1710 (C=O); 1H-NMR (DMSO-d6): δ, 1.2 (t, J=6.8, 3H,
-CH2-CH3), 1.7, (m, 2H, CH2-3), 2.1 (s, 3H, CH3, pyridine),
2.6 (t, J = 5.6, 2H, CH2-2), 2.7 (t, J=5.3, 2H, CH2-4), 3.8 (s,
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3H, OCH3), 4.1 (m, 2H, -CH2-CH3), 6.7 (s, 1H, Ar, H-5), 6.8
(d, J=9.3, 1H, Ar, H-7), 7.3-7.7 (m, 5H, Ar), 8.0 (d, J=9.3,
1H, Ar, CH-8); 13C-NMR (DMSO-d6): δ, 14.5 (CH2CH3),
18.4 (CH3- pyridine), 22.2 (CH2-3), 27.1 (CH2-2), 29.9
(CH2-4), 55.6 (OCH3), 61.01 (CH2CH3), 112.9, 113.0,
113.07, 115.5, 115.9, 123.1, 124.9, 125.4, 127.1, 130.7, 130.8,
132.3, 140.4, 148.6, 155.6, 162.5, 163.5, 170.3 (Ar-C, CN
and C=O); MS: m/z (%): 564, 565.7, (M+, 54, 53) consistent
with the molecular formula C27H25Br N4O3S. Anal. Calcd.
C, 57.35; H, 4.46; N, 9.91; Found C, 57.10; H, 4.27; N, 9.86%.

2.1.22. 2-((4-Bromophenyl)imino)-3-((6-methoxy-3,4-dihy-
dronaphthalen-1(2H)-ylidene)amino)-5-methyl-2,3-dihydro-
thiazolo [4,5-b]pyridin-6-yl) ethanone 8. Yield: 80%; Crystal-
lized from n-hexane; m.p.: 128°C; IR (υmax/cm

-1): 1714
(C=O); 1H-NMR (DMSO-d6): δ, 1.7 (m, 2H, CH2-3), 2.1 (s,
3H, CH3, pyridine), 2.3 (s, 3H, COCH3), 2.7 (m, 2H, CH2-
2), 2.9 (t, J=5.9, 2H, CH2-4), 3.8 (s, 3H, OCH3), 6.7 (s, 1H,
Ar, CH-5), 7.3-7.8 (m, 6H, Ar), 8.0 (d, J=9, 1H, Ar, CH-8)
13C-NMR (DMSO-d6): δ, 18.2 (CH3, pyridine), 22.2 (CH2-
3), 27.3 (CH2-2), 29.7 (CH2-4), 30.1 (COCH3), 55.7
(OCH3), 102.07, 103.1, 113.07,113.7, 121.9, 124.9, 126.9,
129.1, 130.7, 132.3, 134.9, 143.4, 147.6, 155.6, 161.1, 162.5,
163.5 (Ar-C and CN), 196.5 (C=O); MS: m/z (%): 535, 537
(M+, 37, 36) consistent with the molecular formula C26 H23
Br N4O2 S. Anal. Calcd. C, 58.32; H, 4.33; N, 10.46; Found
C, 58.06; H, 3.97; N, 10.12%.

2.1.23. 2-((4-Bromophenyl)imino)-3-((6-methoxy-3,4-dihy-
dronaphthalen-1(2H)-ylidene)amino)-5-(oxo/thioxo)-2,3,4,5-
tetrahydrothiazolo [4,5-b]pyridine-6-carbonitrile 9 and 10.
To a solution of compound 6 (0.005mol) in ethanolic
sodium hydroxide solution (0.12gm sodium metal in 20mL
absolute ethanol), malononitrile or cyanothioacetamide
(0.005mol) was added. The mixture was refluxed for 3 h,
the excess solvent was evaporated under reduced pressure,
and the solid product was collected by filtration, washed with
water, dried, and recrystallized from ethanol to give the prod-
ucts 9 and 10, respectively.

2.1.24. 2-((4-Bromophenyl)imino)-3-((6-methoxy-3,4-dihy-
dronaphthalen-1(2H)-ylidene)amino)-5-oxo-2,3,4,5-tetrahy-
drothiazolo [4,5-b]pyridine-6-carbonitrile 9. Yield: 83%; m.p.:
224°C; IR (υmax/cm

-1): 3330 (NH), 2212 (CN), 1660 (C=O);
1H-NMR (DMSO-d6): δ, 1.7 (m, 2H, CH2-3), 2.6 (t, J=6.2,
2H, CH2-2), 2.73 (t, J=5.7, 2H, CH2-4), 3.7 (s, 3H, OCH3),
6.7 (s, 1H, Ar, CH-5), 6.8 (d, J=8.8, 1H, Ar, H-7), 7.3 (m,
2H, Ar,), 7.5 (s, 1H, CH-4, pyridine), 7.6 (m, 2H, Ar), 8.0
(d, J=8.8, 1H, Ar, CH-8), 8.5 (s, 1H, NH). 13C-NMR
(DMSO-d6): δ, 22.2 (CH2-3), 27.2 (CH2-2), 29.9 (CH2-4),
55.6 (OCH3), 87.8 (C-5b pyridine), 112.9, 113.7, 116.2,
121.1, 125.4, 126.8, 130.7, 131.7, 132.1, 135.4, 142.8, 144.8,
159.0, 159.02, 160.8, 166.9, 167.1 (Ar-C, CN and C=O);
MS: m/z (%):518, 520 (M+, 45, 44) consistent with the molec-
ular formula C24H18BrN5O2S. Anal. Calcd. C, 55.39; H, 3.49;
N, 13.46; Found C, 55.09; H, 3.12; N, 13.18%.

2.1.25. 2-((4-Bromophenyl)imino)-3-((6-methoxy-3,4-dihy-
dronaphthalen-1(2H)-ylidene)amino)-5-thioxo -2,3,4,5-te-
trahydrothiazolo [4,5-b]pyridine-6-carbonitrile 10. Yield:

81%; m.p.: 286°C; IR (υmax/cm
-1): 3380 (NH), 2220 (CN);

1H-NMR (DMSO-d6): δ, 1.7 (m, 2H, CH2-3), 2.58 (t,
J=6.3, 2H, CH2-2), 2.7 (t, J=5.4, 2H, CH2-4), 3.77 (s, 3H,
OCH3), 6.7 (s, 1H, Ar, CH-5), 6.8 (d, J=8.7, 1H, Ar, CH-
7), 7.4 (d, J=8.6, 2H, Ar), 7.5 (s, 1H, pyridine), 7.6 (d,
J=8.6, 2H, Ar), 8.0 (d, J=8.7, 1H, Ar, CH-8), 8.5 (s, 1H,
NH); 13C-NMR (DMSO-d6): δ, 22.2 (CH2-3), 27.2 (CH2-2),
29.9 (CH2-4), 55.6 (OCH3), 85.3 (C-5b pyridine), 112.9,
113.7, 116.2, 121.1, 125.4, 126.8, 130.7, 131.7, 132.0, 135.4,
142.7, 144.8, 159.0, 159.9, 160.8, 166.8, 167.1 (Ar-C, CN
and C=S); MS: m/z (%): 535,537 (M+, 26, 25,) consistent with
the molecular formula C24H18BrN5OS2. Anal. Calcd. C,
53.73; H, 3.38; N, 13.05; Found C, 53.25; H, 3.13; N, 12.86%.

2.1.26. 5-((1H-Benzo [d]imidazol-2-ylamino)methylene)-2-(4-
bromophenylimino)-3-((6-methoxy-3,4 -dihydronaphtha-len-
1(2H)-ylidene)amino)thiazolidin-4-one 11 and 2-(4-bro-
mophenyl-imino)-3-((6-methoxy-3,4-dihydronaphthalen-1-
(2H)-ylidene)amino)-5-((thiazol-2-ylamino) methylene)thia-
zolidin-4-one 12. To a mixture of the enaminone 6 (0.005
mol) in glacial acetic acid (15mL), 2-aminobenz- imidazole
or 2-aminothiazole was added. The mixture was allowed to
react under reflux for 2h., and the excess solvent was evapo-
rated under vacuum. The solid was collected by filtration,
washed with water, dried, and recrystallized from the suitable
solvent to give the products 11and 12.

2.1.27. 5-((1H-Benzo [d]imidazol-2-ylamino)methylene)-2-
(4-bromophenylimino)-3-((6-methoxy-3,4 -dihydronaphtha-
len-1(2H)-ylidene)amino)thiazolidin-4-one 11. Yield: 78%;
crystallized from ethyl alcohol; m.p.: 220°C; IR (υmax/cm

-1):
3368, 3290 (2NH), 1665 (C=O); 1H-NMR (DMSO-d6): δ,
2.09 (m, 2H, CH2-3), 2.7 (t, J=6.3, 2H, CH2-2), 2.9 (t,
J=5.7, 2H, CH2-4), 3.7 (s, 3H, OCH3), 3.8 (s, 1H, NH), 6.6-
6.9 (m, 3H, Ar), 7.3-8.0 (m, 9H, Ar,), 8.4 (s,1H, NH); 13C-
NMR (DMSO-d6): δ, 22.0 (CH2-3), 23.3 (CH2-2), 29.7
(CH2-4), 55.6 (OCH3), 110.9, 112.9, 113.04, 113.7, 116.4
124.1, 126.9, 129.2, 130.6, 132.3, 133.5, 133.8, 133.8, 142.5,
148.2, 161.5, 161.7, 162.4, 163.6, 174.2.0 (Ar-C, CN and
C=O); MS: m/z (%):586,588 (M+, 100, 98) consistent with
the molecular formula C28H23BrN6O2S. Anal. Calcd. C,
57.24; H, 3.95; N, 14.31; Found C, 56.97; H, 3.74; N, 14.02%.

2.1.28. 2-(4-Bromophenylimino)-3-((6-methoxy-3,4-dihydro-
naphthalen-1(2H)-ylidene)amino)-5-((thiazol-2-ylamino)me-
thylene)thiazolidin-4-one 12. Yield: 79%; recrystallized from
isopropyl alcohol; m.p.: 152°C; IR (υmax/cm

-1): 3380 (NH),
1660 (C=O); 1H-NMR (DMSO-d6): δ, 2.08 (m, 2H, CH2-3),
2.4 (t, J=6.3, 2H, CH2-2), 2.7 (t, J=5.7, 2H, CH2-4), 3.5 (s,
1H, NH), 3.7 (s, 3H, OCH3), 6.7 (d, J=8.5, 1H, Ar), 6.8 (d,
1H, J=8.6, Ar), 7.1-7.4 (m, 7H, Ar,), 7.9 (d, J=8.9, 1H, Ar);
13C-NMR (DMSO-d6): δ, 22.0 (CH2-3), 23.3 (CH2-2), 29.0
(CH2-4), 55.6 (OCH3), 109, 112.9, 113.04, 113.7, 124.1,
126.1, 126.9, 129.2, 130.6, 132.3, 133.5, 133.8, 139.8, 148.2,
161.5, 161.7, 163.6, 170.1 (Ar-C and CN); MS: m/z (%):
553, 555 (M+, 50, 49) consistent with the molecular formula
C24H20BrN5O2S2, Anal. Calcd. C, 51.99; H, 3.64; N, 12.63;
Found C, 51.78; H, 3.46; N, 12.49%.
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2.2. Cell Lines and Cell Culture. Both MCF-7 and MCF10A
cells were purchased from American Type Culture Collec-
tion (ATCC). Cells were grown in DMEM culture medium
(Invitrogen/Life Technologies) supplemented with 10%
FBS (Hyclone, USA), 10μg/mL insulin (Sigma), and 1%
penicillin-streptomycin antibiotic solution. Chemicals used
were of cell culture grade and were purchased from Sigma
or Invitrogen. Prior to the assay, cells (cells density 1:2 – 1:8
× 10,000 cells/well) were plated in 96-well plate with
100μL medium and were allowed to grow for 24 h.

2.3. In Vitro Cytotoxicity Assay. In vitro cytotoxic activity of
the prepared compounds against breast (MCF-7) cancer cells
was assessed using MTT assay [24, 25]. The assay depends on
the mitochondrial reduction of the colorless 3-(4,5-methyl-2-
thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) within
viable cells into a dark blue formazan product. Cells were cul-
tured in DMEMmedium supplemented with 10% FBS at a final
concentration of 2 × 104 cells/mL in 96-well plates and incu-
bated in a 5% CO2 incubator at 37

°C. Twelve hours later, differ-
ent concentrations (0.39-100μM) of the tested compound
(2μL) were added to the cells (2 × 104) in 96-well plates and
cultured at 37°C for 3 days. Then, 20μL of MTT solution was
added to the cultured cells and incubated for four hours at
37°C. The supernatant was taken away from each well, and
100μL of DMSO was added to each well to dissolve the forma-
zan crystals. After mixing with a mechanical plate mixer, a
microplate reader was used to measure the absorbance of each
well at a wavelength of 570nm. Data were expressed as IC50
(μM), i.e., the concentration required to inhibit 50% of viable
cell growth. IC50 values were calculated from the linear regres-
sion of the corresponding calibration curves using the Origin®

6.1 software. Each experiment was carried out in triplicate with
good reproducibility and standard errors.

2.4. Statistical Analysis. Results were analyzed with the help
of SPSS 9.0 and were presented as mean ± SD of three repli-
cates. The mean comparison between different evaluated
groups was performed using ANOVA one-way analysis of
variance. Statistical significance was defined when p < 0:05.

3. Results and Discussion

3.1. Chemistry. Starting with 6-methoxy-1-tetralone 1, its
hydrazine derivative 2, was prepared as previously reported
method [23], reaction of the hydrazine derivative 2 with
different aryl isothiocyanates, namely, p-bromophanyl, p-
flourophanyl, p-phenoxybenzene, and ethyl isothiocyanates
produced the desired thiosemicarbazides 3a-d in 85-94%
yield. Thiosemicarbazides 3a-d was separately refluxed with
ethylchloroacetate in ethanol to give the thiazolidinone deriv-
atives 4a-d in 76-94% yields. Pyrano thiazole-carbonitrile
derivatives 5a-f were prepared in 55-81% yields, by heating
a mixture of compound 4a or 4c, different aryl aldehydes
namely, p-methoxy benzaldehyde, p-nitrobenzaldehyde,
and/or 2-furaldehyde at 50°C and malononitrile utilizing dis-
tilled water as a solvent and in the presence of catalytic
amount of potassium hydrogen phthalate (Scheme 1).

On the other hand, synthesis of the enaminone, 6 was
essential to construct biologically active heterocyclic products.
Reaction of the thiazolidinone 4a with dimethylformamide-
dimethylacetal (DMF-DMA), under solvent-free conditions,
produced the enaminone derivative 6 within 1 h., in 87%
yield. The enamine 6 was condensed with ethyl acetoacetate
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Scheme 1: Synthetic route of compounds 2-5a-f.
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or acetyl acetone in the presence of ammonium acetate and
glacial acetic acid, to afford the thiazolopyridine carboxalate
and thiazolo-pyridine ethanone derivatives 7and 8, respec-
tively, in 83 and 80% yields. While, reaction of compound 6
with cyanothioacetamide or malononitrile in ethanolic
sodium ethoxide gave thioxo-pyridine or oxo-pyridine car-
bonitrile derivatives 9 and 10, respectively, in 83 and 81%
yields (Scheme 2).

Finally, reaction of the enaminone 6 with 2-
aminoimidazol or 2-aminothiazol in the presence of glacial
acetic acid produced imidazol-thiazolidinone and thiazolo-
thiazolidinone derivatives 11 and 12 in 78 and 79% yields,
respectively (Scheme 3).

3.2. Cytotoxic Screening. Eleven compounds were investi-
gated in vitro for their activities against breast cancer cell line
MCF-7 using MTT assay. The effect of different concentra-
tions of the newly synthesized compounds was evaluated by
determining the percentages of viable cells after being
exposed to the applied concentrations, compared to Staur-
osporin as a reference drug. In this screening, all the tested
compounds showed potential cytotoxic activities against
MCF-7 cells in a dose-dependent manner (Figure 1). Fur-
thermore, it can be seen that the compounds affected cell
viability in different patterns. This can be attributed to
the differences of cellular response to each compound,
depending on the nature of its terminal and functional
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groups [26, 27]. Results demonstrated that five of the
tested compounds 5a, 5d, 5e, 10, and 3d showed potential
cytotoxic activities against breast cancer cell line MCF-7,
recording IC50 values of 0:93 ± 0:02, 1:76 ± 0:04, 2:36 ±
0:06, 2:83 ± 0:07, and 3:73 ± 0:09μM, respectively
(Table 1). Additionally, it can be seen that these potential
compounds had cytotoxic activities higher than the tested
positive control (Saturosporin, IC506:08 ± 0:15μM). Com-
paring these results with those obtained against normal
breast cell line (MCF10A) showed that the tested com-
pounds were less toxic toward normal cells. Compound
5a was the most effective against MCF-7 cells and was less
toxic than Saturosporin by about 18.45-folds towards
MCF01A normal cells. The acquired data revealed that
coupling the pyrano ring in this fused heterocyclic ring
system was critically influenced the cytotoxic activity. All
the tested pyrane containing compounds (5a, 5d, and 5e)
were the most effective cytotoxic agents and were more
potent than Staurosporin (IC50; 0.93, 1.76, and 2.36μM,
respectively, IC50 Staurosporin; 6.08μM). The size of N-
substitution in thiourea-imino-linked to hydronaphthaline
core directly affected the cytotoxic activity. Accordingly,
the N-ethyl thiourea derivative 3d had a very good cyto-
toxicity (IC50; 3.73μM). On the other hand, the N-4-
bromophenyl substitution of thiourea in analog 3a resulted
in more than 3 times decrease in cytotoxicity. Also, a
closer antiproliferative potency was exhibited in compound
10 (IC50; 2.83μM), in which our core was imino-linked to
5-thioxo-2,3,4,5-tetrahydrothiazole [4,5-b]pyridine-6-car-
bonitrile ring system. While, the methylation of C-5 and
acetylation of C-6 of the dihydrothiazolo [4,5-b] pyridinyl
ring system in compound 8 yielded a significantly weaker

cytotoxic activity than compound 10 (IC50; 20μM). This
highlighted the importance of 5-thioxo and 6-carbonitrile
functionality for MCF7 antiproliferative activity in this
fused heterocyclic ring system.

4. Conclusion

In the course of our research work, some new dihydro-
naphthalene derivatives were synthesized starting with 6-
methoxy-1-tetralone 1. Cytotoxic evaluation of eleven com-
pounds was estimated against MCF-7 human cancer cells
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Figure 1: Effect of different concentrations of each prepared compound on cell viability of breast cancer cell lines (MCF-7) and normal breast
cells (MCF10A).

Table 1: IC50 values of the prepared compounds against breast
cancer (MCF-7) and breast normal (MCF10A) cell lines.

Comp. No.
IC50 (μM)

MCF-7 MCF10A

3a 12:66 ± 0:33 35:42 ± 0:64
3d 3:73 ± 0:09 19:73 ± 0:51
4a 28:62 ± 0:74 67:95 ± 0:86
4b 10:22 ± 0:26 29:15 ± 0:36
4d 10:11 ± 0:26 30:74 ± 0:53
5a 0:93 ± 0:02 17:16 ± 0:44
5d 1:76 ± 0:04 16:33 ± 0:42
5e 2:36 ± 0:06 14:06 ± 0:36
6 7:48 ± 0:19 17:78 ± 0:16
8 20:01 ± 0:52 43:69 ± 0:59
10 2:83 ± 0:07 15:01 ± 0:39
Staurosporin 6:08 ± 0:15 9:35 ± 0:24
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(breast cancer) utilizing Staurosporin as a reference drug.
Results declared that compounds 5a, 5d, 5e, 10, and 3d
appeared to be the most active products of IC50 values; 0:93
± 0:02, 1:76 ± 0:04, 2:36 ± 0:06, 2:83 ± 0:07, and 3:73 ± 0:09
μM, respectively, which were more potent than the reference
used (Saturosporin, IC506:08 ± 0:15μM). These active prod-
ucts possessed selectivity and showed lower toxicity than
the reference drug. Compound 5a was the most effective
against MCF-7 cells and was less toxic than Saturosporin by
about 18.45-folds towards MCF01A normal cells. At the
same time, the tested products possessed selectivity and
showed lower toxicity than the standard drug used when
examined towards the breast normal cells.
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