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Objective. Long noncoding RNAs (lncRNAs) have emerged as critical molecular regulators in various diseases. However, the
potential regulatory role of lncRNAs in the pathogenesis of abdominal aortic aneurysm (AAA) remains elusive. The aim of this
study was to identify crucial lncRNAs associated with human AAA by comparing the lncRNA and mRNA expression profiles of
patients with AAA with those of control individuals. Materials and Methods. The expression profiles of lncRNAs and mRNAs
were analyzed in five dilated aortic samples from AAA patients and three normal aortic samples from control individuals using
microarray technology. Functional annotation of the screened lncRNAs based on the differentially expressed genes was
performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results. Microarray
results revealed 2046 lncRNAs and 1363 mRNAs. Functional enrichment analysis showed that the mRNAs significantly
associated with AAA were enriched in the NOD-like receptor (NLR) and nuclear factor kappa-B (NF-κB) signaling pathways
and in cell adhesion molecules (CAMs), which are closely associated with pathophysiological changes in AAA. The lncRNAs
identified using microarray analysis were further validated using quantitative real-time polymerase chain reaction (qRT-PCR)
analysis with 12 versus 11 aortic samples. Finally, three key lncRNAs (ENST00000566954, ENST00000580897, and T181556)
were confirmed using strict validation. A coding-noncoding coexpression (CNC) network and a competing endogenous RNA
(ceRNA) network were constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the
confirmed lncRNAs. Conclusions. Our microarray profiling analysis and validation of significantly expressed lncRNAs between
patients with AAA and control group individuals may provide new diagnostic biomarkers for AAA. The underlying regulatory
mechanisms of the confirmed lncRNAs in AAA pathogenesis need to be determined using in vitro and in vivo experiments.

1. Introduction

Abdominal aortic aneurysm (AAA) is a common, potentially
fatal cardiovascular disease characterized by weakening of
the local aortic wall, followed by progressive expansion and
eventually rupture of the dilated aortic segment [1]. AAA is
generally asymptomatic and occurs in up to 8% of men over
the age of 65 years and 1.53% of women over the age of 60
years [2]. The approximately 13000 deaths annually attrib-

uted to AAA rupture in the United States are underestimated
[3]. Currently, the only available treatment option remains
open or endovascular surgery [4]. To date, there are no
effective drugs that can limit the growth of aneurysms and
consequently prevent aortic rupture. However, the detailed
mechanisms of AAA progression and the nature of aortic
rupture are not fully understood [5]. The hallmark patholog-
ical features that lead to AAA formation are complex, includ-
ing phenotype switching of vascular smooth muscle cells
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(VSMCs), VSMC apoptosis, extensive infiltration of inflam-
matory cells, extracellular matrix (ECM) remodeling, intense
oxidative stress, endothelial cell (EC) dysfunction, intralum-
inal thrombus formation, and progressive deterioration of
the aortic wall [6].

Long noncoding RNAs (lncRNAs) are the largest class of
ncRNAs and are defined as transcribed RNAmolecules > 200
nucleotides in length and without significant protein-coding
potential [7]. lncRNAs have the potential to regulate the
expression of genes at the epigenetic, transcriptional, and
posttranscriptional levels and play an important role in phys-
iological processes [8]. lncRNA expression and regulation
can be highly tissue-, cell-, and disease context-specific,
which makes them promising therapeutic intervention and
biomarker candidates [9, 10]. lncRNA microarray technol-
ogy is a new tool that can be used to explore the crucial genes
involved in several diseases, reveal diagnostic biomarkers,
and the underlying molecular mechanisms [11].

Several studies have shown that lncRNAs play an impor-
tant role in the pathogenesis of cardiovascular disease and
that they could function as disease biomarkers. This was
demonstrated in previous studies, such as that of Kumars-
wamy et al. [12], which revealed that long noncoding RNA
uc022bqs.1 (LIPCAR) was downregulated in the early stages
after myocardial infarction but upregulated during the later
stages, which indicated that LIPCAR is a novel biomarker
of cardiac remodeling and that it can predict future death
in patients with heart failure. Xu et al. [13] reported that
lnc-TNFSF14 is a potential target regulating matrix degrada-
tion in type B aortic dissection development. Numerous pre-
vious microarray analyses have been performed to screen
AAA-related lncRNAs in mouse tissue, and microarray-
based methods have identified lncRNAs without validating
them in large sample sizes. However, little is known about
lncRNA-related biomarkers and their regulatory role in
AAA progression.

In this study, we identified differentially expressed
lncRNAs between the AAA and control groups. Moreover,
the initially identified lncRNAs were validated using q-
PCR in a large number of samples. Finally, functional
annotation was performed and related pathways were
predicted based on the differentially expressed genes. A
regulatory network was constructed based on these
confirmed lncRNAs. Our newly discovered lncRNAs may
provide new biomarker candidates and therapeutic targets
for AAA studies in the future.

2. Materials and Methods

2.1. Patients and Sample Collection. The diagnostic criteria
of AAA were based on the Society for Vascular Surgery
practice guidelines on the care of patients with an abdom-
inal aortic aneurysm [14]. Five dilated abdominal aortic
samples from patients with AAA and three normal aortic
samples from control subjects obtained during the opera-
tion were used in the lncRNA microarray analysis. The
results were validated in the same original samples using
PCR. The hub genes (lncRNAs) were further confirmed
in 11 dilated aortic samples from patients with AAA and

12 normal aortic samples from control individuals using
PCR. Full-thickness aortic wall samples were collected
from the anterior wall of the infrarenal AAA (aneurysmal
area) of patients who underwent elective open AAA repair.
Meanwhile, normal aortic samples from the ascending
aorta without visible atherosclerotic changes were collected
from patients undergoing aortic valve replacement surgery.
AAA and normal aorta tissues were snap-frozen in liquid
nitrogen immediately after resection and then transferred
to -80°C until use. This study was approved by the ethical
committee of the People’s Hospital of Xinjiang Uygur

Table 1: Clinical characteristics of AAA patients and controls in
screening stage.

Characteristics AAA (n = 5) Controls (n = 3) P value

Age (years) 68:80 ± 10:33 43:33 ± 21:94 0.062

Gender (male) 5 (5) 3 (1) 0.107

BMI 26:06 ± 4:19 25:69 ± 1:88 0.89

Smoking habit 5 (3) 3 (1) 0.465

Comorbidities 0.781

Hypertension 4 1

Diabetes mellitus 0 0

Dyslipidemia 1 1

CAD 2 1

COPD 1 0

SBP (mmHg) 150 ± 11:40 119 ± 15:59 0.017

DBP (mmHg) 90:20 ± 8:67 63:67 ± 8:39 0.005

Those clinical data are presented as the mean ± standard deviation. P < 0:05
showed difference was statistically significant between the AAA and control
groups. CAD: Coronary artery disease; COPD: Chronic obstructive
pulmonary Disease; SBP: Systolic blood pressure; DBP: Diastolic blood
pressure.

Table 2: Clinical characteristics of AAA patients and controls in
validation stage.

Characteristics AAA (n = 11) Controls (n = 12) P value

Age (years) 60:64 ± 10:51 52:83 ± 8:97 0.081

Gender (male) 11 (10) 12 (9) 0.315

BMI 24:19 ± 3:71 25:88 ± 4:17 0.275

Smoking habit 11 (5) 12 (2) 0.855

Comorbidities 0.165

Hypertension 9 3

Diabetes mellitus 2 1

Dyslipidemia 0 1

CAD 2 5

COPD 0 1

SBP (mmHg) 143:73 ± 15:64 133:33 ± 11:17 0.079

DBP (mmHg) 90:36 ± 14:62 74:75 ± 7:24 0.003

P < 0:05 showed difference was statistically significant between the AAA and
control groups. BMI: Body mass index; CAD: Coronary artery disease;
COPD: Chronic obstructive pulmonary disease; SBP: Systolic blood
pressure; DBP: Diastolic blood pressure.
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Figure 1: Continued.
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Autonomous Region. All the patients who participated in
the study provided written informed consent before enter-
ing the study. This study was performed in accordance
with the World Medical Association Declaration of
Helsinki.

2.2. RNA Extraction and Quality Control. The TRIzol®
reagent (Invitrogen, Carlsbad, CA, USA) was used to extract
total RNA according to the manufacturer’s instructions. In
brief, approximately 20mg of prefrozen aortic wall tissue
was homogenized using the Mini-Bead-Beater-16. RNA
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Figure 1: Hierarchical cluster of heatmaps for the differential expression of lncRNAs and mRNAs between the AAA and control groups. (a)
Hierarchical cluster of heatmaps for the lncRNAs. (b) Hierarchical cluster of heatmaps for the mRNAs. Each column represents one sample
and each row represents one mRNA or lncRNA. The relative expression levels of mRNAs and lncRNAs are depicted according to the color
scale. Red indicates upregulation and green indicates downregulation. The three columns on the left represent the control samples and the five
columns on the right represent the AAA samples. The differentially expressed mRNAs and lncRNAs are clearly self-segregated into clusters.
AAA: abdominal aortic aneurysm; lncRNAs: long noncoding RNAs.
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phase separation and precipitation were performed using
chloroform and isopropyl alcohol, respectively. Then, RNA
was washed with 75% ethanol and dissolved in RNase-free
water. A NanoDrop ND-1000 (Thermo Fisher Scientific)
was used to evaluate the concentration and purity of total
RNA. The integrity of the RNA was assessed using standard
denaturing agarose gel electrophoresis.

2.3. lncRNA and mRNA Microarray Analysis. The Arraystar
Human LncRNA Microarray V4.0 is designed for the
global profiling of human lncRNAs and protein-coding
transcripts, and approximately 40173 lncRNAs and 20730
coding transcripts can be detected using a third-
generation lncRNA microarray. We used the Arraystar
Human LncRNA Microarray V4.0, which was designed
to detect the differential expression of lncRNAs and
mRNAs between the AAA and control groups. Sample

labeling and array hybridization were performed according
to the Agilent One-Color Microarray-Based Gene Expres-
sion Analysis protocol (Agilent Technology) with minor
modifications. Briefly, mRNA was purified from total
RNA after removal of rRNA (mRNA-ONLY™ Eukaryotic
mRNA Isolation Kit, Epicentre). Then, each sample was
amplified and transcribed into fluorescent cRNA along
the entire length of the transcripts without 3′ bias using
a random priming method (Arraystar Flash RNA Labeling
Kit, Arraystar). The labeled cRNAs were purified using the
RNeasy Mini Kit (Qiagen). The concentration and specific
activity of the labeled cRNAs (pmol Cy3/μg cRNA) were
measured using the NanoDrop ND-1000. One microgram
of each labeled cRNA was fragmented by adding 5μL
10× blocking agent and 1μL of 25× fragmentation buffer
and heating the mixture at 60°C for 30min. Finally,
25μL 2× GE hybridization buffer was added to dilute the
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Figure 2: Volcano plots of all the lncRNAs andmRNAs detected in the AAA and control groups. The vertical dotted line at the x-axis delimits
upregulation and downregulation. The red and green plots represent the significantly upregulated and downregulated genes, respectively
(fold change > 2 and P < 0:05). The black plots represent no significant changes. (a) Volcano plots of the total 35298 lncRNAs. Of them,
425 are upregulated, 1621 are downregulated, and 33252 show no differential expression. (b) Volcano plots of the total 19959 mRNAs. Of
them, 599 are upregulated, 764 are downregulated, and 18596 show no differential expression. AAA: abdominal aortic aneurysm;
lncRNAs: long noncoding RNAs.
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labeled cRNA. A total of 50μL of hybridization solution
was dispensed into the gasket slide and assembled onto
the lncRNA expression microarray slide. The slides were
incubated for 17 h at 65°C in an Agilent Hybridization
Oven. The hybridized arrays were washed, fixed, and
scanned using the Agilent DNA Microarray Scanner (part
number G2505C).

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Pathway Analyses. GO and KEGG
pathway analyses were used to investigate the functions of
differentially expressed mRNAs. GO analysis contained bio-
logical processes (BP), molecular functions (MF), and cellu-
lar components (CC). Differentially expressed mRNAs were
classified into different GO terms that described gene func-
tions and attributes based on the GO database (http://www
.geneontology.org/). A biological pathway analysis based on
the KEGG database (http://www.genome.jp/kegg/) was per-
formed to determine the biological pathways for the enrich-
ment of expressed mRNAs associated with differently
expressed lncRNAs. Statistically significant GO terms and
pathways were identified using Fisher’s exact and chi-
square tests. The threshold of significance was defined as a
P of <0.05, and the false discovery rate (FDR) was calculated
to correct the P value.

2.5. qRT-PCR Validation Assay. To confirm the reliability of
the microarray data, the expression levels of the lncRNAs
selected in the microarray and preliminary PCR screening
stages were further validated in a large number of samples.
Total RNA isolated from aortic samples was extracted using
the TRIzol reagent. Reverse transcription was performed
after RNA quantification, using a reverse transcription PCR
kit following the manufacturer’s instructions (Takara,
Kusatsu, Japan). Real-time PCR was performed using the
SYBR quantitative real-time PCR kit (Takara) on an ABI
Prism 7500HT instrument (Applied Biosystems, Foster City,
CA). Each sample was measured in triplicate, and the mean
value was used for comparative analysis. The relative expres-
sion of lncRNAs was calculated using the 2-ΔΔCt method and
normalized to the expression of β-actin.

2.6. Construction of the lncRNA-mRNA Coding-Noncoding
Coexpression (CNC) Network. A lncRNA-mRNA CNC was
used to determine the interactions between the differentially
expressed lncRNA and mRNA groups. The relevance of each
lncRNA-mRNA pair was calculated using Pearson’s correla-
tion coefficient (PCC) with coefficients not less than 0.97, P
value ≤ 0.05, and FDR ≤ 1 between the mRNAs and the
lncRNAs. lncRNA-mRNA pairs that met these criteria were
chosen to construct this network using the Cytoscape

Table 3: The top 20 differentially upregulated lncRNAs.

lncRNA seqname Probe name P value FC Regulation Chr Strand

ENST00000489312 ASHGV40037100 1:45909E − 02 43.941 Up Chr4 −

NR_024376 ASHGV40052194 2:63232E − 02 43.94 Up Chr9 −

T070519 ASHGV40058117 1:61205E − 02 43.941 Up Chr11 −

NR_037938 ASHGV40044103 2:16161E − 02 43.941 Up Chr6 −

NR_121585 ASHGV40052592 9:31431E − 03 43.941 Up Chr9 +

TCONS_00016231 ASHGV40053646 2:94133E − 02 43.941 Up Chr9 +

ENST00000446590 ASHGV40001027 2:75747E − 03 43.941 Up Chr2 −

T049579 ASHGV40006291 1:05401E − 03 43.941 Up Chr10 +

T201134 ASHGV40027570 1:00830E − 02 43.941 Up Chr2 −

NR_126330 ASHGV40004795 1:02576E − 02 43.941 Up Chr16 −

ENST00000558101 ASHGV40002158 2:07440E − 02 43.941 Up Chr15 +

T285383 ASHGV40042013 4:13377E − 02 43.941 Up Chr5 +

T308480 ASHGV40045426 4:03730E − 02 43.941 Up Chr6 +

T089165 ASHGV40058187 1:76097E − 05 43.941 Up Chr12 +

ENST00000568457 ASHGV40046457 7:71652E − 04 43.941 Up Chr17 −

T060416 ASHGV40007110 3:69880E − 03 38.929 Up Chr11 −

T198099 ASHGV40029430 1:53891E − 02 21.088 Up Chr2 +

ENST00000544089 ASHGV40011648 2:87345E − 03 20.943 Up Chr12 +

NR_002812 ASHGV40044859 3:72950E − 02 20.943 Up Chr6 +

T164886 ASHGV40023628 8:90619E − 03 20.943 Up Chr18 +

Note: seqname: the name of lncRNAs; P value: P values were calculated by the unpaired t-test; fold change (FC): the absolute ratio of normalized intensities
between the AAA and control groups; regulation: it depicts which group has greater or lower intensity values than another group; Chr: chromosome
number from which the lncRNAs were transcribed; strand: “+” represented the sense strand of the chromosome, and “−” represented the antisense strand
of the chromosome.
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software (version 3.7.1, The Cytoscape Consortium, San
Diego, CA). In this network, the nodes were lncRNAs or
mRNAs, and when two nodes were connected by an edge,
this indicated that they were coexpressed. The green and pink
nodes in this network represented lncRNAs and mRNAs,
respectively, whereas the solid lines and dotted lines showed
positive and negative correlations, respectively.

2.7. Construction of the lncRNA-miRNA-mRNA Competing
Endogenous RNA (ceRNA) Regulatory Network. The ceRNA
hypothesizes that RNA transcripts can crosstalk by compet-
ing for common microRNAs (miRNAs), with miRNA
response elements (MREs) being the foundation of this inter-
action [15]. These RNA transcripts have been termed ceR-
NAs and include pseudogene transcripts, lncRNAs,
circRNAs, and mRNAs. Any RNA transcript with MREs
can act as a ceRNA. These transcripts can compete for the
regulation of the same MREs. To identify potential miRNA
targets, a home-made miRNA target prediction software
based on TargetScan and miRanda was used. By merging
the common targeted miRNAs, we constructed a ceRNA net-
work. Three conditions must exist for the ceRNA network to
occur. First, the relative concentration of the ceRNAs and
their miRNAs is clearly important; second, the effectiveness
of a ceRNA depends on the number of miRNAs that it can
“sponge”; third, not all of the MREs on ceRNAs are equal.
Thus, we only selected the ceRNA-pair relations that passed
this filtering.

In addition to measuring the number of common miR-
NAs, a hypergeometric test is executed for each ceRNA pair
separately, which is defined by four parameters: (i) N is the
total number of miRNAs used to predict targets, (ii) K is
the number of miRNAs that interact with the chosen gene
of interest, (iii) n is the number of miRNAs that interact with
the candidate ceRNA of the chosen gene, and (iv) is the
common miRNA number between the two genes [16]. The
test calculates the P value using the following formula:

P = 〠
min K ,nð Þ

i=c

K

i

 !
N − K

n − i

 !

N

n

 ! : ð1Þ

Red nodes represent miRNAs, light blue nodes represent
mRNAs, and light green nodes represent lncRNAs. Edges
with a T-shaped arrow represent directed relationships, and
edges without arrows represent undirected relationships
(ceRNA relationship).

2.8. Statistical Analysis. Statistical analyses were performed
using SPSS 19.0. Fisher’s exact test, Pearson correlation,
and independent sample t-tests were used to identify signifi-
cant differences, and a P of <0.05 was considered statistically
significant. The false discovery rate (FDR) was calculated to

Table 4: The top 20 differentially downregulated lncRNAs.

lncRNA seqname Probe name P value FC Regulation Chr Strand

T280062 ASHGV40040040 1:04530E − 03 19.868 Down Chr5 −

ENST00000597337 ASHGV40056562 4:73312E − 03 19.790 Down Chr19 −

T379563 ASHGV40059212 7:12996E − 03 19.690 Down ChrX −

ENST00000445280 ASHGV40057551 2:33336E − 03 19.034 Down Chr6 −

T041698 ASHGV40005622 4:68507E − 04 18.200 Down Chr10 +

NR_110838 ASHGV40037966 4:72916E − 03 17.751 Down Chr4 −

TCONS_00019584 ASHGV40006697 2:71932E − 03 17.404 Down Chr11 −

ENST00000428188 ASHGV40027175 6:46729E − 03 15.067 Down Chr2 −

T256902 ASHGV40035410 5:69074E − 03 14.540 Down Chr3 −

NR_027143 ASHGV40056682 3:20755E − 02 14.117 Down Chr2 −

TCONS_00014675 ASHGV40059042 4:76868E − 03 13.605 Down Chr8 +

T343400 ASHGV40049251 1:59113E − 03 12.591 Down Chr8 −

T181556 ASHGV40024838 3:22298E − 03 11.865 Down Chr19 −

uc.243+ ASHGV40060161 6:61118E − 03 11.667 Down Chr8 +

ENST00000559321 ASHGV40017346 4:78557E − 02 11.389 Down Chr15 +

NR_027142 ASHGV40027253 3:73950E − 02 10.946 Down Chr2 −

T314169 ASHGV40045879 4:16561E − 04 10.386 Down Chr6 +

T380669 ASHGV40054465 3:31702E − 03 9.681 Down ChrX −

ENST00000590513 ASHGV40056388 3:33256E − 02 9.592 Down Chr17 −

ENST00000561471 ASHGV40002223 4:97655E − 02 9.577 Down Chr16 −

Note: FC: fold change.
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correct the P value. A fold change > 2 and P < 0:05were set as
the threshold values to designate up- and downregulated
lncRNAs and mRNAs.

3. Results

3.1. Demographic Characteristics. Detailed demographic
data, smoking habits, comorbidities, and mean blood pres-
sure levels of the five patients in the AAA group and the three
patients in the control group in the screening stage are sum-
marized in Table 1, whereas those of the 11 patients in the
AAA group and the 12 patients in the control group in the
validation stage are summarized in Table 2. Regarding the
patients in the screening stage, the age (mean ± SD) of those
in the AAA and control groups was 68:80 ± 10:33 and
43:33 ± 21:94 years, respectively (P > 0:05). The most com-
mon comorbidities among the enrolled patients are hyper-
tension and coronary artery disease (CAD). The average
blood pressure was higher in the AAA group than that in
the control group (P < 0:05). No differences were noted in
age, sex, BMI, smoking habit, and comorbidities between
the two groups (P > 0:05). Regarding the patients in the val-
idation stage, the age (mean ± SD) was 60:64 ± 10:51 and
52:83 ± 8:97 in the AAA and control groups, respectively.
Of the patients in the AAA group, 90.90% were male,
whereas of those in the control group, 75% were male
(P > 0:05). There were no differences between the two groups
in terms of age, sex, BMI, and smoking habit ( P > 0:05).

Hypertension was the most frequent comorbidity in the
AAA group, while the most common comorbidity in the con-
trol group was CAD. However, the difference between the
two groups was not statistically significant (P > 0:05). Fur-
thermore, higher blood pressure levels (diastolic blood pres-
sure) were observed in the AAA group than in the control
group (P < 0:05).

3.2. Expression Profiles of lncRNAs and mRNAs in the Two
Groups. In total, 2046 lncRNAs and 1363 mRNAs were
detected using the Arraystar lncRNA microarrays. Of these,
425 lncRNAs were upregulated and 1621 lncRNAs were
downregulated, while 599 mRNAs were upregulated and
764 mRNAs were downregulated with a fold change > 2 and
P < 0:05, when the AAA group was compared with the con-
trol group. Significantly differentially expressed lncRNAs
and mRNAs were presented with hierarchical clusters of
heatmaps (Figures 1(a) and 1(b)) and volcano plots
(Figures 2(a) and 2(b)). Among these differentially expressed
lncRNAs and mRNAs, the top 20 most significantly upregu-
lated and downregulated lncRNAs are listed in Tables 3 and
4, respectively. In addition, the top 20 most significantly
upregulated and downregulated mRNAs are shown in
Tables 5 and 6.

3.3. Microarray-Based GO and KEGG Analyses. The annota-
tion of GO terms showed that upregulated mRNAs were
involved in 1337 biological processes (BP), 154 cellular

Table 5: The top 20 differentially upregulated mRNAs.

mRNA seqname Probe name P value FC Regulation Chr Strand

NM_005623 ASHGV40021590 3:84884E − 02 37.689 Up Chr17 +

NM_020198 ASHGV40020691 4:27559E − 02 23.178 Up Chr17 −

NM_019029 ASHGV40046319 3:63187E − 03 22.732 Up Chr7 −

NM_003816 ASHGV40050544 4:25717E − 02 20.735 Up Chr8 +

NM_001912 ASHGV40053068 1:18592E − 02 19.413 Up Chr9 +

NM_014391 ASHGV40055816 6:25422E − 03 17.168 Up Chr10 −

NM_022154 ASHGV40037821 4:69229E − 04 16.922 Up Chr4 −

NM_006927 ASHGV40018205 4:84306E − 03 16.432 Up Chr16 −

NM_004388 ASHGV40009210 1:67921E − 02 16.176 Up Chr1 −

NM_001278795 ASHGV40005594 1:01539E − 02 15.887 Up Chr10 +

NM_001165 ASHGV40009065 2:60247E − 03 14.665 Up Chr11 +

NM_130899 ASHGV40041056 4:92976E − 03 14.449 Up Chr5 −

NM_080596 ASHGV40044765 2:97741E − 02 14.285 Up Chr6 +

NM_033129 ASHGV40030434 1:16722E − 03 14.186 Up Chr20 −

NM_002950 ASHGV40034879 4:63507E − 02 14.073 Up Chr3 −

NM_138610 ASHGV40040832 1:78745E − 02 13.837 Up Chr5 −

NM_005522 ASHGV40046294 1:50570E − 02 13.241 Up Chr7 −

NM_006936 ASHGV40032377 2:34477E − 02 13.176 Up Chr21 −

NM_018184 ASHGV40035555 2:37979E − 02 12.629 Up Chr3 +

NM_174899 ASHGV40030233 1:35807E − 02 12.512 Up Chr2 +

Note: FC: fold change.
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components (CC), and 142 molecular functions (MF)
(Figures 3(a), 3(b), and 3(c)). The downregulated mRNAs
were involved in 388 BP, 34 CC, and 58 MF (Figures 3(d),
3(e), and 3(f)). In the BP category, the highest enrichment
scores of the GO term for upregulated mRNAs were immune
response, while the highest for downregulated mRNAs were
SMAD protein signal transduction. In the CC category, the
most significant terms for upregulated mRNAs appeared in
vesicles, and downregulated mRNAs appeared in the intrin-
sic component of the membrane. In the MF category, the
most represented term for upregulated mRNAs was protein
binding, and for downregulated mRNAs was 5′-nucleotid-
ase activity.

KEGG pathway analysis revealed that the upregulated
mRNAs were involved in 56 pathways, while the downregu-
lated genes were involved in eight pathways. The highest
enrichment score of pathways in upregulated mRNAs
included the phagosome pathway and lysosome pathway
(Figure 4(a)). For the downregulated mRNAs, the drug
metabolism-cytochrome P450 pathway was the most
enriched pathway (Figure 4(b)). Among all pathways, the
NOD-like receptor (NLR) and NF-kappa B signaling path-
ways, cell adhesion molecules (CAMs), and the HIF-1 signal-
ing pathway were closely related to the pathogenesis of AAA
development. In addition, the top 10 upregulated pathways
and the top eight downregulated pathways were compared
with those in the control group.

3.4. Classification of Identified Genes. The association
between lncRNAs andmRNAs was analyzed to identify puta-
tive functional relationships. The relationship between
lncRNAs and mRNAs was categorized as intergenic, natural
antisense, intronic antisense, exon sense-overlapping, bidi-
rectional, and intron sense-overlapping. Among the differen-
tially expressed lncRNAs, 1412 intergenic, 217 intronic
antisense, 205 natural antisense, 100 bidirectional, 79 intron
sense-overlapping, and 33 exon sense-overlapping lncRNAs
were identified as shown in Figure 5.

3.5. Three Validated lncRNAs Were Downregulated in AAA
Tissue. To validate the significantly expressed lncRNAs
detected using microarray analysis, 15 upregulated lncRNAs
and 15 downregulated lncRNAs were selected for qRT-PCR
validation in five AAA tissues and three normal aorta tissues.
These lncRNAs were further validated in 11 versus 12 aortic
samples. After strict validation, three novel lncRNAs
(ENST00000566954, ENST00000580897, and T181556) were
confirmed using qRT-PCR with three biological replicates
between the AAA and control groups. The expression levels
of ENST00000566954, ENST00000580897, and T181556
were downregulated in the AAA group compared with those
in the control group, and the difference was statistically sig-
nificant (Figure 6). The primer sequences were as follows:
ENST00000566954, forward 5′-GCCCTCTTCTTCAAGG
ATGC-3′, reverse 5′-GCGGGCACATTTCACAGAT-3′;

Table 6: The top 20 differentially downregulated mRNAs.

mRNA seqname Probe name P value FC Regulation Chr Strand

NM_019005 ASHGV40047513 1:44230E − 02 26.542 Down Chr7 +

NM_005934 ASHGV40023784 4:05184E − 02 15.973 Down Chr19 −

NM_145252 ASHGV40018598 3:24925E − 02 14.266 Down Chr16 +

ENST00000399910 ASHGV40014780 1:18588E − 02 9.253 Down Chr14 +

NM_004877 ASHGV40024375 1:06567E − 02 9.247 Down Chr19 −

NM_001205 ASHGV40042738 1:80411E − 02 9.229 Down Chr5 +

NM_007203 ASHGV40053297 2:45544E − 02 8.944 Down Chr9 +

NM_198564 ASHGV40034459 1:66168E − 02 8.906 Down chr13 −

NM_001242901 ASHGV40025050 1:51714E − 03 8.703 Down Chr19 +

NM_052874 ASHGV40017864 1:32087E − 02 8.700 Down chr16 −

uc011dig.1 ASHGV40000054 7:13034E − 03 8.678 Down Chr6 −

NM_006414 ASHGV40005351 4:85080E − 02 8.566 Down Chr10 +

NM_003215 ASHGV40037479 1:41224E − 03 8.432 Down Chr4 −

NM_005361 ASHGV40057658 2:77734E − 02 8.305 Down ChrX +

NM_016619 ASHGV40037718 1:95059E − 02 8.267 Down Chr4 −

NM_007081 ASHGV40056879 4:42568E − 03 8.185 Down Chr22 −

NM_005500 ASHGV40025840 2:18217E − 02 7.965 Down Chr19 +

NM_001145204 ASHGV40018716 1:22095E − 02 7.895 Down Chr16 +

NM_176820 ASHGV40024835 9:32347E − 03 7.789 Down Chr19 −

NM_001310219 ASHGV40019854 4:61601E − 03 7.787 Down Chr17 −

Note: FC: fold change.
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GO:0036230 granulocyte activation [66]

GO:0002252 immune effector process [105]

GO:0042119 neutrophil activation [66]

GO:0002274 myeloid leukocyte activation [76]

GO:0002263 cell activation involved in immune response [80]

GO:0002366 leukocyte activation involved in immune response [80]

GO:0045321 leukocyte activation [116]

GO:0001775 cell activation [126]

GO:0002376 immune system process [209]

GO:0006955 immune response [174]
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Figure 3: Continued.
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GO:0030141 secretory granule [70]

GO:0000323 lytic vacuole [62]

GO:0005764 lysosome [62]

GO:0044433 cytoplasmic vesicle part [102]

GO:0070062 extracellular exosome [158]

GO:0043230 extracellular organelle [159]

GO:1903561 extracellular vesicle [159]

GO:0097708 intracellular vesicle [140]

GO:0031410 cytoplasmic vesicle [140]

GO:0031982 vesicle [226]
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Figure 3: Continued.
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GO:0008009 chemokine activity [8]

GO:0061134 peptidase regulator activity [18]

GO:0050664 oxidoreductase activity, acting on NAD(P)H, oxygen as
acceptor [5]

GO:0005488 binding [466]

GO:0030234 enzyme regulator activity [53]

GO:0004869 cysteine−type endopeptidase inhibitor activity [9]

GO:0043028 cysteine−type endopeptidase regulator activity
involved in apoptotic process [8]

GO:0042605 peptide antigen binding [7]

GO:0042802 identical protein binding [80]

GO:0005515 protein binding [397]
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Figure 3: Continued.

12 BioMed Research International



GO:0044241 lipid digestion [4]

GO:0040007 growth [49]

GO:0098856 intestinal lipid absorption [4]

GO:0022600 digestive system process [10]

GO:0048468 cell development [93]

GO:0048745 smooth muscle tissue development [5]

GO:0007586 digestion [13]

GO:0016042 lipid catabolic process [23]

GO:0032332 positive regulation of chondrocyte differentiation [5]

GO:0060395 SMAD protein signal transduction [9]
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Figure 3: Continued.
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GO:0031463 Cul3−RING ubiquitin ligase complex [7]

GO:0043235 receptor complex [22]

GO:1990351 transporter complex [20]

GO:0005614 interstitial matrix [3]

GO:1902495 transmembrane transporter complex [20]

GO:0031461 Cullin−RING ubiquitin ligase complex [14]

GO:0016021 integral component of membrane [211]

GO:0098802 plasma membrane receptor complex [14]

GO:0034702 ion channel complex [20]

GO:0031224 intrinsic component of membrane [218]
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Figure 3: Continued.
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ENST00000580897, forward 5′-CCATCCAGGGTATTTC
ACAA-3′, reverse 5′-CTCCCATCTGTCTGCATCAA-3′;
T181556, forward 5′-GAAAAGTATTTCCTTCCCTAC
AG-3′, reverse 5′-TTTAGATCCCAAAAATATGTGAG-3′
; and β-actin, forward 5′-GTGGCCGAGGACTTTGATTG-
3′, reverse 5′-CCTGTAACAACGCATCTCATATT-3′.

3.6. lncRNA-mRNA CNC. To determine the relationship and
the potential modulating mechanism between the aberrantly
expressed mRNAs and lncRNAs, a lncRNA-mRNA CNC
was constructed. Three strictly validated lncRNAs were used
to build the network. Based on the criteria including a PCC
not less than 0.97, P value ≤ 0.05, and FDR ≤ 1 between
mRNAs and lncRNAs, the network containing the three
aberrantly expressed lncRNAs and the 165 most highly rele-
vant dysregulated mRNAs is shown in Figure 7. This CNC
was composed of 120 positive and 109 negative interactions.
These genes were suggested to play critical roles in the CNC.
Further details about the lncRNA-mRNA network analysis
are shown in Table 7.

3.7. Construction of the lncRNA-miRNA-mRNA ceRNA
Regulatory Network. To better understand the regulatory
mechanism of validated lncRNAs in AAA development, a
ceRNA network was constructed. It is helpful to elucidate
the interaction between these differentially expressed
lncRNAs and differentially expressed miRNAs, in addition
to determining the interaction between miRNAs and
mRNAs, as shown in Figure 8.

4. Discussion

AAA, characterized by chronic degenerative processes of the
abdominal aorta, is one of the leading causes of cardiovascu-
lar death [17]. AAA patients who are below the currently
accepted threshold for surgical intervention have a risk of
spontaneous rupture during follow-up owing to the absence
of effective drugs to limit the growth of small AAAs [18].
One of the main reasons is that the specific molecular mech-
anism involved in AAA formation is still unclear.
Microarray-based screening approaches are useful for identi-
fying novel diagnostic and therapeutic targets. For instance,

GO:0005160 transforming growth factor beta receptor binding [6]

GO:0043121 neurotrophin binding [3]

GO:0016709 oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and

incorporation of one atom of oxygen [6]

GO:0004745 retinol dehydrogenase activity [4]

GO:0035591 signaling adaptor activity [9]

GO:0016879 ligase activity, forming carbon-nitrogen bonds [7]

GO:0005372 water transmembrane transporter activity [4]

GO:0008252 nucleotidase activity [4]

GO:0015250 water channel activity [4]

GO:0008253 5'-nucleotidase activity [4]
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Figure 3: Gene Ontology analysis of differentially expressed mRNAs between the AAA and control groups. The top 10 GO terms from the
upregulated mRNAs and the top 10 GO terms from the downregulated mRNAs between two groups. In upregulated mRNAs: (a) biological
process, (b) cellular component, and (c) molecular function. In downregulated mRNAs: (d) biological process, (e) cellular component, and (f)
molecular function. AAA: abdominal aortic aneurysm; GO: Gene Ontology.
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Yang et al. [19] reported that lnc-ARG was identified in sam-
ples from three AAA patients and three control subjects
using microarray analysis, revealing that new lncRNA candi-
dates are related to the pathogenesis of AAA. Moreover,
numerous lncRNAs have been proved to have important reg-
ulatory roles in cardiovascular diseases [20]. Therefore, we
used lncRNA microarray technology to analyze the lncRNA
expression profile of the AAA and control samples.

Our results showed that 2046 lncRNAs (425 upregulated
and 1621 downregulated lncRNAs) and 1363 mRNAs (599
upregulated and 764 downregulated mRNAs) were identified
between the AAA and control groups with a fold change cut-
off of 2 (P < 0:05) using the Arraystar lncRNA microarrays.
Interestingly, annotation of GO terms revealed that the most
differentially expressed genes from the two groups were
mostly associated with SMAD protein signal transduction
and immune response. Tan et al. [21] documented that
SMAD3 deficiency resulted in defective aortic biomechanics
and physiological functions, which caused weakening of the
aortic wall. Li et al. [22] reported that the immune system
participates in the regulation of the AAA pathological pro-
cess and that it has a significant effect on AAA-related
inflammatory reactions. Our annotation of GO terms was
in accordance with previous reports.

Chemical carcinogenesis

Drug metabolism–cytochrome P450

Fat digestion and absorption

Metabolism of xenobiotics by cytochrome P450

Oxytocin signaling pathway

Pancreatic secretion

Retinol metabolism

SNARE interactions in vesicular transport
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Figure 4: The top 18 pathways identified using KEGG pathway analysis of differently expressed mRNAs. KEGG analysis of the differentially
expressed lncRNAs and mRNAs between the AAA and control groups. The top 18 significantly enriched KEGG pathway terms that
correlated with the upregulated (a) and downregulated (b) genes between the two groups. AAA: abdominal aortic aneurysm; KEEG: Kyoto
Encyclopedia of Genes and Genomes; lncRNAs: long noncoding RNAs.

Intergenic (1412)
Intronic antisense (217)
Natural antisense (205)
Bidirectional (100)
Intron sense-overlapping (79)
Exon sense-overlapping (33)

Figure 5: The classification of lncRNAs according to their
correlations with protein-coding genes. All lncRNAs were
classified to six categories including intergenic, intronic antisense,
natural antisense, bidirectional, intron sense-overlapping, and
exon sense-overlapping. The pie chart represents the numbers and
distributions of the lncRNAs detected using the microarray.
lncRNAs: long noncoding RNAs.
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Figure 6: Validation of confirmed lncRNAs using qRT-PCR. The results showed that the relative expression levels of ENST00000566954,
ENST00000580897, and T181556 were downregulated in the AAA group (n = 11) compared with those in the control group (n = 12). All
reactions were repeated three times for each lncRNA. β-Actin was used as an internal control. ∗P < 0:05 AAAs vs. control. lncRNAs: long
noncoding RNAs; AAA: abdominal aortic aneurysm.
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KEGG pathway analysis showed that phagosomes are the
most enriched pathways in upregulated genes, and drug
metabolism-cytochrome P450 is the most enriched pathway
in downregulated genes. Among the significantly enriched
pathways, the NOD-like receptor (NLR) pathway, cell adhe-
sion molecule (CAM), and the NF-kappa B (NF-κB) signal-
ing pathway are potentially closely related to AAA
pathogenesis [23–25]. It was considered that these lncRNAs
might participate in the biological process of SMAD protein

signal transduction and immune response in AAA progres-
sion via mediating the above significantly enriched pathways.

The lncRNAs identified using microarray analysis were
validated in a large number of samples to improve the reli-
ability of the microarray data. To determine the potential
downstream targets of lncRNAs, a CNC and a ceRNA net-
work were constructed. CNC analysis predicted that SOCS3
may bind with ENST00000580897, the downstream target
with the highest correlation (PCC = 0:999). A relevant study

Table 7: lncRNA-mRNA coexpression network analysis between the confirmed lncRNAs and mRNAs.

lncRNA seqname Target mRNA gene symbol Correlation P value FDR

ENST00000566954

WIPF1 0.994 4:94602E − 07 8:08971E − 05
GP6 0.995 3:76023E − 07 6:68503E − 05

POLRMT -0.995 3:48896E − 07 6:68503E − 05
LRRN4CL -0.992 1:12833E − 06 1:39810E − 04
PLA2G2F -0.997 7:90082E − 08 2:30760E − 05
RBM10 -0.993 9:00992E − 07 1:15130E − 05
C11orf16 -0.995 3:63929E − 07 6:68503E − 05

ENST00000580897

C2CD3 -0.995 2:52021E − 07 6:06185E − 05
SDHAF3 0.996 1:51514E − 07 3:87212E − 05
NT5C1A 0.995 2:81966E − 07 6:40533E − 05
DGCR14 0.997 6:94397E − 08 2:18415E − 05

F12 0.999 6:96601E − 09 4:74734E − 06
SH2B1 0.997 5:74742E − 08 2:13647E − 05
PGA5 0.994 6:64443E − 07 9:70324E − 05
GJB4 0.999 6:28164E − 13 2:56856E − 09

DNAH1 0.998 1:46018E − 08 7:46336E − 06
MAP3K10 0.993 7:86261E − 07 1:10216E − 04
HAUS7 0.999 1:16229E − 10 2:376297E − 07
TSPAN32 0.997 4:71800E − 08 1:92919E − 05
SOCS3 0.999 5:24868E − 09 4:29236E − 06
ESAM 0.993 8:35582E − 07 1:10216E − 04
STK11IP 0.994 5:76505E − 07 8:80655E − 05
DLEU7 0.995 3:26488E − 07 6:68503E − 05
C17orf89 0.994 5:81504E − 07 8:80655E − 05
RBM10 0.995 3:69676E − 07 6:68503E − 05
NPIPA8 0.997 6:81732E − 08 2:18415E − 05
TAOK2 0.999 9:00736E − 10 1:22770E − 06

AC079210.1 0.993 8:29330E − 07 1:10216E − 04
NEUROG1 0.997 9:99007E − 08 2:72329E − 05
AQP12A 0.999 1:80042E − 09 1:84048E − 06
C11orf16 0.995 3:97800E − 07 6:77752E − 05
FJX1 0.998 9:83848E − 09 5:74708E − 06

T181556 DPP9-AS1 0.992 1:28236E − 06 1:54223E − 04
Note: lncRNA-mRNA network was constructed based on PCC ≧ 0:8; P value ≤ 0.05 and FDR ≤ 1 between the three validated lncRNAs and 165 most highly
relevant dysregulated mRNAs. FDR: false discovery rate.
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showed that overexpression of SOCS3 in bone marrow-
derived cells significantly increased aneurysm severity
(P = 0:04) demonstrating that STAT3/SOCS3 signaling in
bone marrow-derived cells contributes to AAA development
[26]. This indicates that the results of CNC analysis are reli-
able. The ceRNA network predicted that T181556 could
directly bind to miR-212-5p and miR-145. Tian et al. [27]
reported that LINC00473 participates in AAA development
by regulating the miR-212-5p/BASP1 pathway, suggesting
that LINC00473 is a promising target for AAA therapy. Lin
et al. [28] revealed that downregulation of lncRNA Sox2ot
suppressed the expression of Egr1 by regulating miR-145,

highlighting a theoretical basis for AAA treatment. Further-
more, this result indicates that lncRNAs can regulate the
biological impact of miRNAs within disease onset and
progression by functioning as miRNA sponges.

Emerging evidence has demonstrated the important role
of lncRNAs in AAA formation, including VSMC prolifera-
tion, VSMC apoptosis, and phenotypic switching, such as
that of lncRNA-p21, and that lncRNAs mediate SMC sur-
vival and macrophage activity in the atherosclerotic process
[29]. lncRNA NEAT1 regulates the phenotypic switching of
VSMCs by repressing smooth muscle-contractile gene
expression through an epigenetic regulatory mechanism
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Figure 8: The lncRNA-miRNA-mRNA ceRNA regulatory network constructed based on three confirmed lncRNAs in the AAA and control
groups. The nodes highlighted in red represent microRNAs, the nodes highlighted in light blue represent protein-coding RNAs, and those
highlighted in light green represent lncRNAs. Edges with a T-shaped arrow represent directed relationships, while those without an arrow
represent undirected relationships (ceRNA relationships). lncRNAs: long noncoding RNAs; miRNA: microRNA; ceRNA: competing
endogenous RNA; AAA: abdominal aortic aneurysm.

20 BioMed Research International



[30]. In addition, H19 is one of the widely studied lncRNAs
in various diseases. Li et al. [31] reported that a mouse
lncRNA microarray analysis using two murine AAA models
identified a high upregulation of lncRNA H19, indicating
that it is a novel regulator of SMC survival in AAA develop-
ment. Thus, inhibition of H19 expression might be a novel
molecular targeted therapeutic strategy against AAA devel-
opment. lncRNA GAS5 overexpression in SMCs induced
apoptosis and repressed proliferation. Furthermore, GAS5
acted as an miR-21 sponge releasing phosphatase and tensin
homolog from repression, thereby promoting AAA forma-
tion in two murine AAA models [32].

Interestingly, as lncRNAs have high tissue specificity,
they have the potential to become favorable diagnostic
and prognostic biomarkers for cardiovascular diseases.
lncRNA XLOC_009167 was identified using lncRNA
microarray and confirmed to be a circulating biomarker
using qRT-PCR in the whole blood of lung cancer
patients. XLOC_009167 serves as a diagnostic biomarker
that distinguishes lung cancer from benign lung disease
[33]. Li et al. [34] reported that two novel lncRNA bio-
markers, ENST00000444488.1 and uc010yfd.1, were identi-
fied using microarray analysis of transcriptome-wide
lncRNA and mRNA expression profiles of peripheral
blood mononuclear cells (PBMCs) of 93 CAD patients
and 48 healthy controls, indicating that those lncRNAs
had the best value for distinguishing CAD patients from
healthy controls. Our PCR validation assay showed that
the expression levels of three validated lncRNAs were sig-
nificantly lower in the AAA group than in the control
group, indicating that these lncRNAs may serve as diag-
nostic biomarkers to predict the growth rate of aneurysms
and risk of rupture. However, a large blood sample size is
needed to confirm their diagnostic and prognostic value in
clinical applications.

Some limitations of our study merit consideration. Frist,
since all the patients enrolled in this study were recruited
from a single medical center, an enlarged multicenter sample
cohort study is needed to further confirm the accuracy of our
microarray results and diagnostic value of candidate
lncRNAs. Second, the underlying molecular mechanism of
how these lncRNAs regulate AAA progression needs to be
investigated in future in vitro and in vivo studies.

5. Conclusions

In conclusion, we revealed the lncRNA and mRNA expres-
sion profiles of AAA patients and control individuals using
microarray analysis. Three novel lncRNAs were successfully
identified as diagnostic biomarkers. Moreover, our
lncRNA-mRNA and ceRNA network analyses provide
potential therapeutic targets for AAA.
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