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Early detection of angular contact bearings, one of the important subsets of rolling element bearings (REBs), is critical for applications
of high accuracy and high speed performance. In this study, acoustic emission (AE) method was applied to an experimental case with
defects on angular contact bearing. AE signals were collected by AE sensors in different operating conditions. Signal to noise ratio
(SNR) was calculated by kurtosis to entropy ratio (KER), then acquired signals were denoised by empirical mode decomposition
(EMD) method, and optimal intrinsic mode function (IMF) was selected by the proposed method. Finally, envelope spectrum was
applied to the denoised signals, and frequencies of defects were obtained in different rotating speeds, loadings, and defect sizes. For
the first time, a small defect with width of 0.3mm and loading of 475N was detected in early stage of 0.04KHz. Moreover, a
comparison between theoretical and extracted defect frequencies suggested that our method successfully detected localized defects in
both inner and outer race. Our results show promise in detecting small size defects in REBs.

1. Introduction

Rolling element bearings (REBs) are widely used in rotating
machines and in various industries such as steel, mining,
paper, and railways [1]. Specifically, angular contact bearings
(in this paper) have many applications such as vacuum
pumps, machine components for semiconductor industry,
high-speed rolling mills, high-precision machine tools,
printing machineries [2]. Since it can be used in very ac-
curate applications at high speeds (such as the shafts in
process pumps), it is critical case and necessary for early
detection of failure in the early stages. Failure of bearings is a
major cause of machinery breakdown, economic losses, and
even loss of human lives. Undesirable vibrations can be
caused by faulty installation, poor maintenance, or surface
spall that finally leads to development of REB failure [3].

'ere is enormous amount of research in the field of
diagnosis of REBs [4]. One of the important issues is how to

identify bearing fault before it reaches the final failure state.
Bearing failure is reported to account for almost 40%–50% of
motor failure cases in industries [5]. Several methods have
been applied in diagnosis of REBs such as vibration analysis,
thermographic inspection, and nondestructive testing
(NDT) techniques like acoustic emission (AE). AE tech-
nology is superior to other methods in detecting defects in
early stages. Another advantage of using of AE is the dis-
covery of defects in slow-speed and extremely slow-speed
bearings that cannot be detected through other methods
[6, 7].

Balderston used the AE method in the diagnosis of
bearings for the first time [8]. One of the methods for an-
alyzing the signal in diagnosis of REBs is the use of AE
parameters and indicators in discovering such cases as lo-
cation of defects, size, and defect growth, taking into account
the sensitivity of AE parameters to operating speeds and
loading. Examples of these parameters and indicators
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include counting parameter, peak amplitude, energy, rise
time, time, RMS, skewness, kurtosis, crest factor (CF).

Yoshioka and Fujiwara [9] did a research on fatigue of
rolling contact bearings and claimed that AE measurements
can make it possible to understand the entire failure process.
Rogers [10] inspected slowly rotating bearings for gas ex-
traction cranes using AE method and kurtosis indicator. He
used this method to detect defects in the early stages and
locate the fatigue cracks. By comparing the results of AE test
with vibration analysis, he showed that the vibration analysis
was difficult due to the low speed of the crane bearings and it
was not possible to detect defects in the early stages.

Tandon and Nakra [11] studied AE method in REBs by
making artificial defects on inner, outer, and rolling ele-
ments and concluded that the peak amplitude of frequency
of signals is higher than healthy bearing in various operating
conditions, but they could not detect faults in slow-speed
bearings. Tandon and Choudhury [12] reviewed the
methods of vibration and AE in diagnosis of REBs and stated
that the AE has typical frequency content in the range of
100 kHz to 1MHz, so AE is not influenced or distorted by
unbalancing or misalignment which are at low-frequency
ranges. 'e AE technique and AE parameters have a sig-
nificant advantage over vibration measurement methods
due to their high sensitivity to the detection of the incipient
bearing faults. Choudhury and Tandon [13] investigated
defects on inner race and rolling elements by AE method,
and they chose counting and peak amplitude parameters of
AE for detection of defects. 'ey argued that counting
parameters can detect and peak amplitude can show the size
of defects, but they did not investigate defects on outer race
of REBs.

Mba [14] studied the defects in the inner and outer race
of a radially roller bearing, considering two RMS and
counting parameters in different operating conditions by
changing rotational speed and load and considering two
types of defects, small and large. He chose an appropriate
threshold level for AE count and emphasized that selection
of an appropriate threshold depends on the experience of
investigator and type of system. His experiments showed
that upon increasing the speed, the load and also the small
and large defects of the outer race can cause an increase in
the RMS value. However, in the case of defects in the inner
race, the same trend was not observed. Mba and Rao [15]
reviewed AE applications for condition monitoring and
diagnosis of different rotating machines including bearings.

Rahman et al. [16] investigated the application of AE to
monitor rolling contact fatigue on a bearing. 'ey did tests
using a test rig consisting of just a ball instead of an entire
rolling bearing running; the tests were carried out under
constant load and speed for detecting the incipient damage
and damage location. 'ey concluded that AE counting
parameter is an important parameter for the detection of
incipient damage, but their system was simpler and the fault
detection complexity was reduced.

In real industrial environment due to high temperatures,
rotating speeds, and pressures, desired signals for diagnosis
by AEmethod are always masked by high levels of noise [17].
Hence, to enhance signal to noise ratio (SNR) of AE signals,

utilization of adaptive signal processing techniques is im-
portant. 'erefore, there are numerous denoising tech-
niques for noise reduction in the AE signal including
Hilbert–Huang transform, spectral kurtosis, morphological
filters, and wavelet transform (WT) [18–21]. One of the most
important and widely used tools for denoising and pro-
cessing of signals in the time-frequency domain is the
wavelet transform, which has been used successfully in many
studies, alone or in combination with other signal processing
techniques.

Antoni and Randall [22] suggested the use of spectral
kurtosis (SK) for detecting and characterizing transient
signals buried in additive noise. Discrete wavelet transform
(DWT) is widely used in signal denoising of REBs due to its
high resolution in time and frequency domains [23].
However, Amiri and Asadi [24] argued that, due to the fact
that only the approximated component at each level is
decomposed by using the dyadic filter bank, the results of
frequency resolution in higher-level DWT decomposition
are less accurate. 'erefore, the wavelet packet transform
(WPT), which is a generalization of wavelet transform (WT)
and DWT, offers better denoising ability in nonstationary
signals such as defected bearings.

Hao et al. [25] did reduce noises and process the AE
signals obtained from a roller bearing with various types of
defects, by means of continuous wavelet transform (CWT).
'ey applied this CWTto denoised signals and obtaining the
time-frequency spectrum (scalogram) and obtained domi-
nant frequencies that indicate the fault in the bearing.

Parizi et al. [26] studied the statistical parameters such as
kurtosis, crest factor (CF), energy, and counting, before and
after denoising of the signals with the help of WPT to detect
defects of bearings. 'ey reported that the calculation of the
statistical parameters after the removal of low frequency
noise by means of a WPT showed that the values of the
parameters for the defective bearing are more than normal,
and the kurtosis is the most appropriate parameter com-
pared to others for detection of defects in REBs. Selection of
the mother wavelet plays an important role in reducing the
noise of AE signals by means of WT; there are variety of
methods for this purpose such as correlation coefficient,
variance, and energy to entropy ratio. Rodrigues and
DaAZMello [27] used these methods to select optimal
mother wavelet for nonstationary signals like bearings.

Recently, there are new methods based on optimization
of denoising tool such as combination of WPT and kurtosis
to entropy ratio (KER) by Hemati et al. [28], WPT and SNR
of the output spectrum by Chacon et al. [29], empirical mode
decomposition (EMD) and fast kurtogram by Fu et al. [30],
and optimized kurtogram method by Lio et al. [31] which
combines kurtogram, Shannon entropy, and autocorrelation
function to identify defects in AE signals.

Besides the application of EMD in rotating machines,
many investigations emphasized the effectiveness of the
EMD method for denoising and obtaining desired features
from other signals. For example, EMD has an application in
biomedical signal processing. Bajaj and Pachori [32] used
intrinsic mode function (IMF) for extracting electroen-
cephalography (EEG) features and then classified seizure
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and nonseizure EEG signals by applying least squares
support vector machine (LS-SVM). Pryia et al. [33] used
EMD for the classification of alcoholic and normal EEG
signals. Jain et al. [34] used Riemann–Liouville fractional
integral and EMD for electrocardiograph (ECG) denoising.

In this paper, an experiment is conducted to fault di-
agnosis on angular contact bearings using acoustic emission
technology. An artificial line defect is considered in two
different sizes (small and large). At first, signals of the
bearing are extracted by AE sensors at different conditions,
and then denoising of the AE signals is investigated. In the
proposed method, after preprocessing, AE signal is
decomposed by empirical mode decomposition (EMD), and
to obtain better results, the best intrinsic mode function
(IMF) based on kurtosis to entropy ratio is selected. After
obtaining the desired signal, by using envelope spectrum,
frequency of faults is detected. 'e proposed method shows
good accuracy in the fault detection, and the results prove its
capability for practical applications.

2. Method

In defective rolling element bearings that are in operation,
contact of rolling element with defect in inner or outer race
produces AE signals (AE hits) [35]. Other reasons which lead
to producing AE signals in REBs are friction and wear
between components, shortage or lack of lubricant in the
bearings, and also contamination of lubricant [36–38]. In
this research, artificial faults caused on inner and outer race
of the bearing produce AE signals. 'e schematic of the
intended method in this paper is depicted in Figure 1.

3. Experimental Setup

A test rig for diagnosis of angular contact bearings is used as
shown in Figure 2. 'e schematic of test rig is also shown in
Figure 3. In this experiment, seven bearings have been tested,
and experiments on intact and faulty bearings have been
done. 'e conditions depend on speed, load, defect size, and
type of sensor. Rotating speed is 600, 900, 1200, or 1500 rpm.

'e type of bearing is 7202 BEP (SKF), which is angular
contact with single row, and it can carry combined loads
(radial and axial loads).

Artificial defects caused in two different sizes on inner
and outer race of bearings are shown in Figure 4; all defects
were caused by electrical discharge machining (EDM)
method. 'e specifications of defects are shown in Table 1;
four different load sizes were imposed on REBs, with load
types including constant axial and radial (Table 2). At each
load, four different rotating speeds were surveyed and data
collected. 'e bearings are mounted inside rigid housings
that can be preloaded using screws embedded in outer
surface of housing.

Data were acquired with two dual-channel cards (4
channels in total), and data rate of each channel is 2 million
dots per second. 'e card type is PAC : PCI-2 with 18 bit A/
D resolution, made by PAC company. Preamplifiers type is
PAC: 2/4/6 dB, and the data acquisition software, made by
AEwin company, has a complete and reliable connection to

the equipment. 'e setup with sensors and preamplifiers is
shown in Figure 5. 'e sensor, which is used for signal
acquisition, is wideband sensor, and it is shown in Figure 6.
Furthermore, preloading is done by tightening the left side
locking plate screws and torque wrench applying desirable
loads to the locking plate screws as shown in Figure 6.

4. SNR of Raw AE Signals

'e raw AE signals for different sizes of defects on outer race
of the bearing in different conditions have been extracted,
and some examples of them are plotted in Figure 7.

Acquisition
of AE signals

Preprocessing
Signal

decomposition
using EMD

Obtaining
desired signal
through KER

Envelope spectrumFault detection

Figure 1: Process of the method.

Inverter

Electromotor

Tested 
bearing

Coupling

Bearing 
housing

Bearing 1

Figure 2: Experimental setup.

Disk

Shaft

Tested 
bearing

Bearing 1

Figure 3: Schematic of test rig.
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As you can see, by increasing the load and speed, the AE
signal created by the defect is not visually detectable as the
signal to noise ratio (SNR) increased. To investigate the SNR,
a proper indicator called kurtosis to entropy ratio (KER) is
proposed. In the signals obtained from the defective bearing,
the lower the entropy of a signal, the higher and more
periodical the concentration of energy, and the higher the
SNR. 'e kurtosis also examines peaks of signal. It gives a
measurement of the degree of impulsiveness and peakiness
of the signal [10, 28]. 'erefore, the use of these two in-
dicators can be a good measure to examine the SNR in
received signals as follows:

KER �
Kurtosis
Entropy

. (1)

Kurtosis is described as follows [39]:

K �
N􏽘

N

i�1 xi − x( 􏼁
4

􏽘
N

i�1 xi − x( 􏼁
2

􏽨 􏽩
2, (2)

where xi is ith sample of signal, x is the mean of samples, and
N represents the number of samples.

In addition, entropy is Shannon entropy [40]:

entropy � − 􏽘
N

i�1
Pi × logPi,

􏽘

N

i�1
Pi � 1 ,

(3)

where Pi is the distribution of the energy probability:

Pi �
xi( 􏼁

2

􏽘
N

i�1 xi( 􏼁
2. (4)

'e results of KER for outer race defect at different
conditions are shown in Table 3.

Large defect on 
inner race

Large defect 
on outer race

Figure 4: Defects caused in outer race of the bearing.

Table 1: Specifications of defects.

Type of defects Line defect Line defect
Size of defect Small defect (SD) Large defect (LD)
Width of defect (mm) 0.3 0.6

Table 2: Different loads imposed on the bearing.

Type of loads Small
(SL)

Medium-
low (MLL)

Medium-
high (MHL)

High
(HL)

Imposed
momentum (N.M) 0.7 1.7 2.7 3.7

Axial load imposed
on bearing (N) 400 971 1543 2114

Radial load
imposed on
bearing (N)

475 1153 1832 2510

Three sensors on 
tested bearing

Pre-amplifiers

Tested 
bearing

Figure 5: 'e setup with sensors and preamplifiers.

The 
applied 
sensor

Screws for 
applying loads

Figure 6: 'e applied sensor and loading system and screws.
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Figure 7: (a) Small defect, small load, and 600 rpm. (b) Small defect, medium-low load, and 900 rpm. (c) Small defect, medium-high load,
and 1500 rpm. (d) Large defect, small load, and 600 rpm. (e) Large defect, medium-high load, and 600 rpm. (f ) Large defect, high load, and
1200 rpm.
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From both Figure 7 and Table 3, we can conclude that, by
increasing the load and speed, the KER as a measuring tool
of SNR is increased and defects can be detected easily, but in
low SNR signals it is difficult to detect defects in both the
time signal and the frequency spectrum. Hence, the
denoising of AE signals is necessary.

5. Signal Denoising

5.1. Denoising by Empirical Mode Decomposition (EMD).
EMD is designed to analyze nonlinear and nonstationary
time series by decomposing them into intrinsic mode
functions (IMFs) and residual [41]:

Table 3: Value of KER for outer race defect at different conditions.

KER Speed (rpm) Small defect Large defect

Small load

600 0.0126 0.0217
900 0.0114 0.0219
1200 0.0247 0.0661
1500 0.0825 0.2507

Medium-low load

600 0.0203 0.0273
900 0.0457 0.0636
1200 0.0947 0.2398
1500 0.1412 0.2474

Medium-high load

600 0.0506 0.0499
900 0.0441 0.2244
1200 0.0926 0.2426
1500 0.1190 0.2204

High load

600 0.0664 0.0804
900 0.0546 0.2495
1200 0.1006 0.2207
1500 0.1130 0.2337
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Figure 8: Decomposition of the signal into different IMFs.
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φ(t) � 􏽘
n

j�1
cj(t) + rn(t), (5)

where cj(t) and rn(t) are the ith IMF and the trend term
(residue) obtained by decomposition of the original signal
φ(t). For example, for a small defect with condition of small
load and speed of 600 rpm, the EMD results are shown in
Figure 8.

As you can see, the signal is decomposed into several
IMFs, but in this level the proper IMF should be chosen;
however, selecting the proper IMF, which shows the faulty
state, is not easy and some criteria should be investigated to
choose the proper IMF.

5.2..e ProposedMethod. One of the most effective ways in
diagnosis and fault detection of bearings is to monitor the
value of the kurtosis of the acquired signal [42]. Entropy is
also commonly used in signal processing and condition

monitoring [43, 44]. Adding a little noise to a signal will
cause a significant change in the value of entropy.'us, KER
can be appropriate for identifying the signal components
with the highest fault characteristics.

For selecting the denoised signal, in this paper, at first in
the preprocessing stage, smoothing based on moving av-
erage method has been carried out on the raw signal for
better results in signal decomposition especially for low
SNR signals. After that, the obtained signals were
decomposed by EMD, then KER values of all IMFs were
calculated, and the highest value was selected as a desired
signal. For the test with small defect with condition of small
load and speed of 600 rpm, the KER values of all IMFs are
shown in Figure 9.

As you can see, the IMF 7 has the highest KER, and it has
little noise and is good for the fault detection. Accordingly,
the denoised signal is depicted in Figure 10.

'is process has also been done for other signals, and the
results are shown in Figure 11.
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Figure 11: 'e denoised signals for other conditions. (a) Small defect, medium-low load, and 900 rpm. (b) Small defect, medium-high load,
and 1500 rpm. (c) Large defect, small load, and 600 rpm. (d) Large defect, medium-high load, and 600 rpm. (e) Large defect, high load, and
1200 rpm.
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As you can see, by the proposed method, signals are
improved, and noise is reduced.

6. Fault Detection

'ere are different methods for detecting the location of
fault in the components of the REBs by extracting the
characteristic defect frequency. 'e envelope spectra are a
common tool for this purpose. 'e characteristic defect

frequencies FBPFO and FBPFI are those of the outer race and
inner race, respectively. 'ey can be theoretically calculated
as follows [45]:

FBPFO �
nb

2
fs 1 −

db cos α
dp

􏼠 􏼡,

FBPFI �
nb

2
fs 1 +

db cos α
dp

􏼠 􏼡,

(6)

Table 4: Frequencies of the bearing in different speeds.

Shaft speed (rpm) 600 900 1200 1500
FBPFO (Hz) 40.272 60.408 80.543 100.679
FBPFI (Hz) 59.728 89.592 119.457 149.321
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Figure 12: Envelope spectrum of signals before denoising. (a) Small defect, small load, and 600 rpm. (b) Small defect, medium-low load, and
900 rpm. (c) Small defect, medium-high load, and 1500 rpm. (d) Large defect, small load, and 600 rpm. (e) Large defect, medium-high load,
and 600 rpm. (f ) Large defect, high load, and 1200 rpm.
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where fs is the frequency of the shaft, nb is the number of
rolling elements, db is the ball diameter, dp is the pitch
diameter, and α is the contact angle. Table 4 shows the
calculated characteristic frequencies of the bearing in dif-
ferent speeds.

In order to extract the characteristic defect frequency via
AE signals, the envelope spectrum of the signals before
applying the proposed method for denoising is depicted in
Figure 12, and then the denoised signals by the proposed
method are presented in Figure 13 for outer race at different
operational conditions.

As can be seen from the above figures and compared
with theoretically characteristic defect frequency (Table 4),
this method detects faults successfully. Even in conditions
with low SNR (Figures 7(a) and 7(d)) as shown in Figure 13,

it can detect faults on both inner and outer race with good
accuracy.

6.1. Faults on Inner Race. 'e process of detecting defects on
inner race, in a similar way to outer race, is done. For ex-
ample, for small defect with medium-low load and speed of
900 rpm, the process is depicted in Figure 14.

Envelope spectrum for other datasets, where faults are in
inner race, at different operating conditions before and after
applying the proposed method is depicted in Figures 15 and
16, respectively.

As can be seen from above figures and compared with
theoretically characteristic defect frequency (Table 4), this
method detects faults successfully.
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Figure 13: Envelope spectrum of signals after denoising. (a) Small defect, small load, and 600 rpm. (b) Small defect, medium-low load, and
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Figure 14: Fault detection on inner race. (a) Raw signal. (b) Denoised signal. (c) Envelope spectrum and fault detection.
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7. Conclusion

'is paper is intended to present an efficient and accurate
method, AE method, for fault detection of REBs. For this
purpose, an angular contact bearing was selected and an
experimental study was carried out.

In this work, AE signals were gathered and then denoised
by EMD, and appropriate IMF based on KER wass selected.
KER indicator was able to successfully choose optimized
IMF with the highest SNR. 'en, defect frequencies were
extracted by envelope spectrum of desired signal, and defects
were detected. 'e experiment was performed under dif-
ferent conditions such as defect size, loading, and rotational
speed.

'e results demonstrate the effectiveness and robustness
of the proposed method in detecting defects on both inner
and outer race even in the cases of small defects and low SNR
AE signals. 'e proposed method has been implemented
successfully for a defect size of 0.3mm (small defect) on the
outer race with a small load and speed of 600 rpm, and it
showed a fault frequency of 0.04 kHz. Furthermore, the
proposed method precisely detected the small defect on the
inner race with medium-low load and speed of 900 rpm.

Detection of small defects with a small load and small
speed could be one of the advantages of the proposed
method. However, the method still needs to be implemented
on different conditions and cases and for higher loads with
higher speeds. Moreover, there are some efforts to improve
the performance of diagnosing; for example, if the speed of
the machine is not constant, the current approach shall be
modified. In the future, the proposed method can be in-
vestigated in terms of the diagnosis of other rotating
components such as gears.
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