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*e purpose of this paper is twofold. *e first is to numerically investigate and reveal the effect of polymer viscoelasticity on the
retraction of a deformed drop using the lattice Boltzmann (LB) method and polymer kinetic theory. More importantly, the second
is to propose a novel method to evaluate the interfacial tension between polymer melts based on the numerical study. Compared
with the conventional deformed drop retraction method (DDRM), the present method is designed to greatly reduce the impact of
polymer viscoelasticity onmeasuring interfacial tension. To verify, the interfacial tension betweenmolten PP and POE is evaluated
using the proposed method and obviously closer result to the true value is shown.

1. Introduction

By blending two or more polymers, it is an inexpensive and
convenient way of obtaining new excellent materials that are
complementary in performance. In recent years, polymer
blends have been increasingly ubiquitous in the plastics
industry, i.e., semiconductors [1], nanofiltration [2], fibers
[3], and printing [4], and thus have become a very active area
of research in materials science. *e final properties of the
polymer blends depend on not only that of each polymer
component but also its internal microstructure, which is the
result of the processing conditions as well as the interfacial
tension [5, 6]. *erefore, it is of nontrivial science and
engineering significance to measure the interfacial tension
between polymers accurately for predicting and controlling
the structure and properties of polymer blends.

Although the measurement technology for polymer has
developed at increasingly faster pace in recent years [7–12], it
still has been a challenging problem to obtain the interfacial
tension experimentally due to the intrinsic viscoelasticity of

polymers [13–15]. *ese measuring technologies can be
divided into two categories: the equilibrium methods and
the dynamic methods [14]. *e equilibrium methods, in-
cluding the pendant drop method [16–18], the sessile drop
method [5, 6, 19], and the spinning drop method [20–22],
establish the equation of the drop shape in a mechanically
balanced state and the extrapolate the interfacial tension
between the polymers. Although they are applicable for both
purely viscous and viscoelastic fluids with very good ac-
curacy, it requires the matrix transparency, comparatively
low viscosity of the polymer, and long time to reach equi-
librium, with increased risk of thermal degeneration of the
polymers. On the contrary, the dynamic methods, including
the breaking thread method [23–25], imbedded fiber
method [26–29], and deformed drop retraction method
[30–34], obtain the interfacial through the morphology
evolution equation. For example, the deformed drop re-
traction method establishes an equation that describes the
shape variation of a deformed drop during retraction. *e
dynamic methods are comparatively more straightforward
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and fit for very viscous polymers. Nonetheless, the under-
lying theory of the existing dynamic methods is only valid
for purely viscous fluids. If applied to polymers, the dynamic
method will inevitably produce an error that is difficult to
estimate. Some research studies on characterization tech-
nology are reported to be an inspiration for this problem, but
the effect is not clear yet [35].

*erefore, prior to proposing an improved dynamic
method for polymers, the effect of viscoelasticity on the drop
dynamics, i.e., deformed drop retraction, should be un-
derstood first, and then, attempt is made to reduce the effect.

To the author’s knowledge, many simulation research
studies have focused on the dynamics of viscoelastic drop.
Yu and Zhou integrated the Boussinesq–Scriven viscoelastic
interfacial constitutive equation in the perturbation analysis
on the flow field inside and outside the drop [36]. Mukherjee
et al. simulated the shape relaxation of a sheared drop in the
case that either or both phases are Oldroyd-B fluids by the
finite difference method and front tracking algorithm [37].
Yue et al. used the 2D diffuse-interface method to simulate
retraction of a Oldroyd-B drop in quiescent matrix [38]. Yue
et al. incorporated the Oldroyd-B viscoelasticity constitutive
equation into the phase-field framework of Cahn–Hilliard
equation with the adaptive meshing scheme and studied the
interfacial dynamics of the drop dynamics [39]. Yu et al.
extended Batchelor’s approach to viscoelastic fluids and
calculated the creeping flow around the drop [40]. *e
common idea of these studies is the combination of the
Navier–Stokes equations, interface tracking algorithm, and
the viscoelasticity constitutive model of polymer, i.e., the
Maxwell model [41], the Voigt–Kelvin model [42, 43], the
transient network model [44, 45], the Oldroyd-Bmodel [46],
the upper convected Maxwell model [46], and the FENE-P
model [46, 47]. *e above review highlights the complex
dynamics of viscoelastic drops and the difficulties in
modeling. However, most studies are restricted to low
viscosity cases and fail to simulate high Debora number
(viscoelasticity), due to the limitation of their numerical
model and the constitutive model.

In this paper, the effect of viscoelasticity on drop re-
traction is studied by the LB method and polymer kinetic
theory, and then, a novel method for measuring the inter-
facial tension between polymer melts is proposed. *e LB
method is a special version of the Boltzmann equation that
describes evolution of particles interacting on fixed lattices
[48]. It has a kinetic, microscopic origin with a characteristic
scale between nanometer and millimeter. On the contrary,
the LB method can be Chapman–Enskog expanded to re-
cover the full time-dependent incompressible and com-
pressible Navier–Stokes equations. *e LB method models
the fluid by an ensemble of particles, so the macroscopic
properties such as density and velocity can be easily con-
structed once an LB solution is obtained. *e advantages of
the LB method include the ease in dealing with arbitrary
geometries and intricate multiphase flows, while its intrinsic
parallel algorithm can be solved efficiently and affordably in
massively parallel computers. During the past few decades,
the LB method has been proved to be a promising tool for
the simulation of complex fluid flow [49], i.e., microfluidics

[50–52], flow through porous media [53–55], capillary flow
[56–58], non-Newtonian flow [59–61], and more impor-
tantly, the multiphase flow [62–64]. *e automatic-phase
separation mechanism and straightforward interface
tracking technology are both attractive characteristics of the
LB method for simulating drop morphology evolution and
has been successfully applied in research [65–68]. Different
from the constitutive model of polymer viscoelasticity, the
polymer kinetic theory explains the origin of viscoelasticity
in a microscopic way, as the net effect of the dynamics of a
large collection of constituent molecules with internal de-
grees of freedom. Interestingly, the macroscopic constitutive
models, such as the upper-convectedMaxwell (UCM)model
and Oldroyd-B, can be derived based on the kinetic theory
[46]. For the microscopic nature of both, Onishi et al. for the
first time integrated the LB method and kinetic theory and
succeeded in modeling the polymeric fluids [69, 70].
Osmanlic and Körner applied the LB-kinetic theory
framework to the simulation of Oldroyd-B fluids [71]. *is
paper combines the LB method and polymer kinetic theory
to simulate the retraction of the deformed drop and analyze
the effect of viscoelasticity.

*e rest of the paper is organized as follows. In Section 2,
the retraction process of a deformed drop is simulated using
a coupled model of the pseudo-potential multiphase LB
scheme and a dumb-bell model of polymer molecule. *e
effect of viscoelasticity on drop dynamics is analyzed and a
novel evaluation method of the interfacial tension is devised.
*en, in Section 3, the interfacial tension between molten
polypropylene (PP) and polyolefin elastomer (POE) is
measured by the proposed method and the original de-
formed drop retraction method, respectively. *rough
comparison the better accuracy of the proposed method is
verified. Finally, a conclusion is drawn in Section 4.

2. Numerical Investigation

In essence, the LBmethod is a pseudoparticle method, which
streams and collides on the lattice sites over discretized time
and space. By tracking the evolution of the distribution
function of the pseudoparticles, the fluid flow and drop
morphology evolution is captured. On the contrary, the
kinetic theory of polymer chains is rewritten in the lattice
scheme. So the LB method-based computational framework
consists of three ingredients: the pseudopotential multiphase
model [72] for drop morphology evolution, the FENE
dumbbell model for the polymer viscoelasticity [70, 71], and
an appropriate coupling strategy. *e outline of the three-
dimensional numerical method is briefed in this section,
while the details are presented in Appendix. Using the
established model, several simulation cases of the deformed
drop retraction is implemented and the effect of the vis-
coelasticity on the retraction process is analyzed. Finally, a
novel evaluation method of interfacial tension is proposed.

2.1. Modeling. Among all the multiphase models of the LB
method, the pseudopotential approach first proposed by
Shan and Chen [72] and improved by Shan and Doolen [73]
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is the most widely used by virtue of its simplicity and ver-
satility and thus employed in this paper. *e distribution
functions of the two components, fd,i(x, t) and fm,i(x, t),
which interact through pseudopotential force, describe the
multiphase flow and result in the dropmorphology evolution.
*e governing equation of the distribution functions is
elaborated in Appendix, as equation (A.2). *e term Fi

′ de-
notes the interaction between different components and gives
rise to spontaneous phase separation (shown in Figure 1).

*is automatic mechanism of phase separation is an
attractive feature of the pseudopotential model because the
two-phase interface is no longer a mathematic boundary, but
a postprocessing variable that can be characterized by
monitoring the density change of the fluid components so
that any specific interface tracking or interface capturing
technology is not required as in conventional CFDmethods.

From the microscopic point of view, the multiphase
phenomenon and polymer viscoelasticity are a result of the
intermolecular forces and the stretch and relaxation of
polymer chain [74], and thus, it is feasible to model the
macroscopic dynamics of viscoelastic polymer blends
through the mesoscale polymer kinetics. *e viscoelasticity
of polymer is modeled based on the polymer kinetics theory;
herein, the finitely extensible nonlinear elastic (FENE)
dumbbell model is chosen, where two beads are connected
by a string, as illustrated in Figure 2.

*e conformation of the dumbbell can be defined by the
tensor q that contains the length and orientation of polymer
chain. Similar to the idea of the LB method, the function
ψ(q, x, t) is defined to indicate the probability distribution of
given polymer dumbbell conformation q at position x and
time t. By solving the governing equation of the evolution of
ψ(q, x, t), equation (A.15), namely, the Fokker–Planck
equation [75], the conformations of the polymer dumbbells
are updated all over the space with time. *en, the visco-
elastic stress is calculated according to the conformation
according to equation (A.20).

*e evolution of the drop morphology and the polymer
chain conformation is simulated simultaneously and sepa-
rately and are coupled through rewriting the equilibrium
function feq ((A.24)). *at is, the elastic stress originating
from the dumbbell conformation act as a forcing term in
Guo’s scheme [76].

2.2. Simulation. Before implementing the simulation, it is
noteworthy that the simulation of the drop retraction
process is based on two fundamental assumptions about the
initial condition and the drop shape. Firstly, in terms of
initial conditions, there is no residual stress in the drop/
matrix sample before the drop is set to retract. *is is be-
cause in common practice of experiments, the drop is always
heated after preparation in order to eliminate the residual
stress. Secondly, the drop maintains an axisymmetric el-
lipsoid during the retraction process with two minor axes B
and W of equal length, as illustrated in Figure 3. *is
seemingly ideal situation can be achieved as long as the
sample is well fabricated and the density difference between
the drop and matrix is negligible.

*e primary aim of the simulation is to study the effect of
polymer viscoelasticity on retraction of the deformed drop.
For this purpose, all the physical parameters but viscoelas-
ticity strength of the polymers are equal in each simulation
case so as to exclude the influence of other factors. *e
viscosities of both the drop and matrix components, μd and
μm, are set to be 1000 Pa s, the density, ρd and ρm, 1000 kg/m

3,
and the interfacial tension between the drop and thematrix, σ,
0.116mN/m.

*e pseudopotential parameter gσσ of LB is related to σ
according to the Laplace law and decided through trials and
error. *e spring constant H is set to be 1.

*ese parameters are kept constant during the drop
retraction process. Since the drop retracts very slowly during
the process, and the ambient temperature is maintained
unchanged somehow, the influence of temperature could be
neglected in the simulation.

*e strength of the polymer viscoelasticity is charac-
terized by the Deborah number, as expressed below:

De ≔
λH

tc

, (1)

which defines the ratio of relaxation time λH and the
characteristic time tc. It is obvious that the larger the De, the
stronger the viscoelasticity, and a zero De indicates purely
viscous polymer.

*e shape of the ellipsoid drop is defined by two pa-
rameters, equivalent radius R and the deformability D:

R ≔
1
2

����
LB23

√
,

D ≔
L2 − B2

L2 + B2.

(2)

Of all the simulation cases, the initial values of R and D

are set to be 0.12mm and 0.14, respectively. In addition, for
the sake of characterization of the extent to which the el-
lipsoid drop retracts to sphere, a new parameter, the de-
formation recovery degree φ(t), is defined:

φ(t) ≔ ln
L2(t) − B2(t)

L2 − B2( )t�0
. (3)

In terms of the boundary conditions, periodic bound-
aries are applied on all the outer boundaries of the simu-
lation domain.

*ree numerical cases that only differ in viscoelasticity
strength, De� 0, De� 1, and De� 5, are carried out. As
expected, in all cases, the drop shape gradually changes from
ellipsoid to sphere under the force of interfacial tension.
Take the purely viscous case (De� 0) as an instance, and the
shape evolution of the drop is shown in Figure 4.

*e major and minor axis length of the ellipsoid drop is
calculated according to the component distribution of the
drop by the eigenvalue method [77]. In all cases, the drop
gradually retracts from an ellipsoid to a sphere, while φ
continuously decreases from 0 to − ∞ overtime, as plotted in
Figure 5.
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From the above simulation results, it can be seen that
when the polymer is purely viscous (De� 0), the deforma-
tion recovery degree φ is in good linearity with the time,
consistent with the small deformation theory (equation (4)).
It means that, in this condition, the original DDRM is valid:

φ(t) � −
40(λ + 1)

(2λ + 3)(19λ + 6)

σ
ηmR0

t � −
t

tc

. (4)

When the drop is viscoelastic (De� 1 and De� 5), the
larger the De, the more curved the φ-t results. With the
purely viscous case as a reference, the retraction process of
the viscoelastic case can be divided into two distinct stages.
In the first stage, t< 3000 s, the drop retracts at a compar-
atively faster rate, and φ decreases rapidly, but when the time
elapses after about 3000 s∼3500 s (1.856∼2.165 tc), the re-
traction rate of the drop gradually slows down. *is is be-
cause the viscoelasticity of the polymer has a certain
inhibitory effect on the retraction process. At the initial
moment, the polymer chains do not elastically deform, so
this resistance is relatively small. As the drop continues to
retract, the elastic stress keeps growing due to the extension
and compression of the dumbbells. In the second stage, the
stress has grown to a considerable level so that its inhibitory
effect obviously reduces the retraction rate of the drop.
Using the data of different stages to implement parameter
fitting with equation (4), the values of the obtained inter-
facial tension are as shown in Figure 6.

In Figure 6, label “t< 3500” indicates that the interface
tension is obtained by fitting with data from before 3500 s
“t> 3500,” after 3500 s, and “whole stage” all the data. It
should be noted that when De� 0, the DDRM is correct and
the obtained value of the interfacial tension represents the
true two-phase interfacial tension set in the simulation.
When De≠ 0, the viscoelasticity of the matrix affects the
shape of the curve and the interfacial tension obtained using
different stages of the simulation data has apparent dis-
crepancy with the true value. Specifically, using the data of
t< 3500 produces the fitted interfacial tension much closer
to the true one, and the gap is nearly insignificant.

From the above simulations and analysis, it is obvious
that, in case of viscoelastic polymers, the original DDRM
faces inherent error caused by polymer viscoelasticity which
will be augmented with the strengthening of viscoelasticity,
whereas at the initial retraction stage, its effect is very weak
in comparison to that of the second stage. If only picking the
data of the first stage of the drop retraction for fitting with
equation (4), then the deviation between the measurement
and the true value can be greatly reduced so that a credible
result can be obtained.

Matrix

Drop

Interface

∑Fi

Figure 1:*e principle of the pseudopotential model: (a) the schematic of the drop-interface-matrix structure; (b) the pseudopotential force
between particles at interface.
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Figure 2: Polymer molecules modeled as an ensemble of bead-
spring-spring chains.
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Figure 3: Ellipsoid drop with the major axis of length L and two
minor axes of lengths B and W.
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Figure 4: Drop shapes during the retraction process in case of De� 0 with various deformability: (a) 0.15; (b) 0.12; (c) 0.06; (d) 0.
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Herein, a novel method to evaluate the interfacial ten-
sion is proposed according to the deformed drop retraction.
Other than fitting the data of the whole process with
equation (4) during which the drop retracts from an ellipsoid
to a sphere, only the data from the onset of retraction t0 to
the time φ(tu) � φu are utilized.*e duration between t0 and
tu is the first stage of the drop retraction, and empirically, the
value φu is more appropriate to set − 1.5.

It should be noted that this treatment also agrees with the
dumbbell model. *e dumbbell model of polymer molecules
suggests that only the terminal polymer relaxation dynamics
is relevant. It is just the elasticity that makes the original
DDRM invalid. *erefore, the neglect of polymer dynamics
at intermediate time scales and thereafter (which actually
gives rise to the elastic component of viscoelasticity) will
alleviate the effect of elasticity on drop retraction.

3. Experimental Study

3.1. Materials and Set-Up. Polypropylene (PP) is a widely
produced, versatile, commodity polymer with a series of
desirable properties, and it is often blended with polyolefin
elastomer (POE) (see Figure 7) to improve its toughness and
impact strength, alleviating notch sensitivity and low-tem-
perature brittleness. In this section, the interfacial tension
between PP and POE melt is measured using the proposed
method in an optical microscope equipped with a heating
stage. PP, with the trademark T36 F, supplied by Chevron
(Zhangjiagang) Chemical Co., Ltd, composes the drop. POE,
with the trademark 8150, supplied by Dow DuPont (USA)
Co., Ltd, composes the matrix. POE is a typical kind of
viscoelastic polymer, while the viscoelasticity of PP is neg-
ligible compared to POE, so PP is considered purely viscous.

Before the experiment, necessary major properties of the
two polymers are measured and shown in Table 1.

*e experiment consists of three steps, that is, the prep-
aration of experimental samples, getting PP and POE in full
contact, and observing the drop retraction process sequentially.

3.1.1. Preparation of Experimental Samples. First, the PP
fiber is drawn in molten state on a melt indexer instrument.
Since the melting temperature of the PP is about 170°C, the
heating temperature of the apparatus is set to 230°C. By
adding different weights to the melt indexer to apply dif-
ferent drawing forces, PP fibers of different diameters,
0.2mm, 0.3mm, and 0.4mm, are obtained and then cut
them into short fibers with the aspect ratio of roughly 3∼4.

*en, the POE sheet is molded out on a compression
molding press. *e temperature of the upper and lower
boards of the machine is set to be 180°C to make two POE
sheets with the thickness of about 0.5∼0.6mm.

Finally, one piece of PP short fiber is embedded between
two POE sheets to make a sample by stepwise heating and
packing, and the parameters are shown in Table 2.

*rough the above treatment, the air bubbles trapped
between the POE sheets are pressed out, and the sample is
compact enough, the structure of which is similar to the hot
dog bread, as illustrated in Figure 8.

On the contrary, in order to relieve the stress generated
in the preparation of the sample, the sample is subsequently
placed in a vacuum drier, annealed at 100°C for 3 hours, and
then cooled in air.

3.1.2. Getting PP Short Fiber and POE Sheet in Full Contact.
After the above preparations, there may be still small
amount of air remaining in the vicinity of the contact surface
of the fiber and sheets. If not eliminated, bubbles will
generate and aggregate when the sample melts, causing
interference to the observation. In order to remove the air
totally, the sample is put into the vacuum dryer again and
heated at 200°C under vacuum condition for 10min. In this
process, the air largely escapes out of the sample when the
POE sheets soften and warps the PP short fiber.

3.1.3. Experimental Observation and Data Processing.
*e test sample is placed on a slide of the hot table, and the
temperature is raised to 120°C at the rate of 40°C/min by
program setting and kept for 10min to further eliminate the
residual stress in the sample. Next, the heating temperature
of the sample is increased to 220°C, at which the PP and POE
are melted, and the shape evolution of PP short fibers with
diameters of 0.2mm, 0.3mm, and 0.4mm, is observed,
respectively, while a camera takes consecutive shots of the
process.

When all the cases have finished, the software Scion
image is used to measure the length of the major and minor
axes of the ellipsoid drop, L and B, at each shot time and the
radius R when the spherical drops are restored.

4. Results and Discussion

*e retraction process of the 0.2mm diameter PP fiber in
POE sheets is shown in Figure 9. From the figure, it is clear
that the retraction process of the drop can be divided into
two phases: at the first phase, shape of the fiber changes from
a rod to an ellipsoid and at the second phase, from the
ellipsoid to a sphere.

Likewise, the PP short fiber with the diameter of 0.3mm
and 0.4mm has the similar morphology evolution process.

From the recorded images, the length of the major and
minor axes of the ellipsoid drop, L and B, at different times is
measured by the software Scion image and then the variation
in the deformation recovery degree φ(t) over time is cal-
culated, as shown in Figure 10. A common first-fast-then-
slow retraction process is observed, and from the simulation
results, it could be inferred that even if the experiments were
performed much longer, a second stage with slower re-
traction will probably not occur.

*ere are twofold reasons for using a set of three PP
short fiber of different diameters. Easy to see, measuring
several times and averaging the results are good for im-
proving accuracy. More important, it is reported that the
influence of polymer viscoelasticity on drop dynamics de-
creases with the increase in the drop size [78, 79], so trying
experiments with different drop sizes from small to large will
gradually approach the true value of the interfacial tension.
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In the following, it is demonstrated that, using the proposed
evaluation method of interfacial tension, even with the
comparative small-sized drop, a desirable accuracy is
attained.

*e principal difference between the proposed method
and the original DDRM lies in the way of deriving the
interfacial tension from the shape evolution of drop re-
traction. *eir measurement results are shown in Table 3.
*e label “DDRM” indicates that the interfacial tension is
obtained by fitting with all the experimental data, while the
label “I-DDRM” indicates that only the data spanning from
the beginning of the drop retraction to the time when φ
reduces to φu is used to fit equation (4).

At the bottom of Table 3, the results fluctuation fluc(A)

characterizes the impact of drop size on the measurement
results:

fluc(A) ≔
max(A) − min(A)

ave(A)
× 100%, (5)

where A is the set of all the measured data, max(A) is the
minimum value in A, and ave(A) is the average of A. From
Table 3, it is noteworthy that using the conventional DDRM,
the measurement result is apparently dependent on the drop
size and the fluctuation is as high as 28.66%. *e reason

behind this phenomenon is the effect of polymer visco-
elasticity. By contrast, when using the proposed evaluation
method, the measurement results are very stable with
whatever size drop and the fluctuation of the measurement
results is strikingly reduced to 3.98%. On the contrary, the
interfacial tension obtained by the conventional DDRMwith
the smallest drop (0.4mm diameter) is thought to be the
closest to the true value. *is measurement value is ap-
proximately the one obtained by the proposed method in all
the three cases of different drop sizes. *e experimental
comparison and analysis agree well with the revelation in
Section 2 and validate the interfacial tension evaluation
method proposed by this paper.

To supplement, the proposed method has another im-
plication. *ere is no need to try a beforehand unknown
number of experiments with different drop sizes to dampen
the effect of polymer viscoelasticity and approximate the true
value step by step, as is done now in the conventional
DDRM. By employing the novel evaluation method pro-
posed in this paper, the value of the interfacial tension
between viscoelastic polymers can be evaluated close to the
true value reliably and once for all.

Finally, the effects of temperature and polymer molecular
weights on the drop retraction process and interfacial tension
should be mentioned. Kamal et al. [80] and Biresaw et al. [81]
showed that higher molecular weight systems showed a
weaker dependence of interfacial tension on temperature than
lower molecular weight systems. So, the interfacial tension

(a) (b)

Figure 7: Blend components: (a) polypropylene (PP); (b) polyolefin elastomer (POE).

Table 1: Mechanical, thermal, and rheological properties of PP and
POE.

Property parameter PP POE
Melt density (g/cm3) 0.738 0.776
*ermal conductivity J/(kg·°C) 2755 2380
Specific heat capacityW/(m·°C) 0.173 0.236
Zero shear viscosity at 220°C (Pa·s) 7766.894 4972.087

Table 2: Stepwise heating and mold pressing of the sample.

Molding pressure
(MPa)

Heating time
(min)

Heating temperature
(°C)

5 5 180
10 5 180
15 5 180

PP short fiber

POE f lakes

Top view Front view

Figure 8: Illustration of the experimental sample prepared for
interfacial tension measurement.
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between the same polymers of different molecular weights is
not the same and needs measuring separately.

5. Conclusion

In this paper, the deformed drop retraction process is
simulated taking account of the fluid viscoelasticity and its
effect on the shape evolution of the drop is revealed.
Compared with the case of purely viscous blend, the drop
retraction process follows the “first fast then slow” law.*en,
a novel evaluation method of the interfacial tension is put
forward that only takes advantage of the first stage of the
experimental data. *e evaluation method is successfully
validated by measuring the interfacial tension between PP
and POE. Compared to the original DDRM, the obtained
interfacial tension is close to the true value, but the ex-
perimental times are reduced to only once. Due to the
complexity of polymer viscoelasticity, the dumbbell chain
model is a simplified model and has its own limitations. It
cannot describe more complicated spatial configurations of
the polymer molecule, let alone the entanglement phe-
nomenon of polymer chain in the melt. *erefore, to ad-
vance the measuring for interfacial tension between
polymers, making more thorough insights into polymer
dynamics is desired.

Appendix

A. Pseudopotential Lattice Boltzmann Model

In this paper, three-dimensional LB method is implemented
on the D3Q19 lattice, which is one of the most commonly
used lattice types nowadays (Figure 11).

As illustrated in Figure 11, in D3Q19, the velocity space
is discretized into a set of 19 discrete velocities:

1
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Figure 9: SEM image of the retraction process of PP short fiber in POE matrix.

–3.0

–2.5

–2.0

–1.5

–0.5

–1.0

0.0

0.5

1.0

φ

500

0.2mm
0.3mm
0.4mm

0.2mm
0.3mm
0.4mm

1000 1500 20000
t (s)

Figure 10: *e retraction of PP fibers with a diameter of 0.2mm,
0.3mm, and 0.4mm in the POE sheets. *e symbols denote the
experimental data, and the lines are obtained by data fitting.

Table 3: *e interfacial tension between PP and POE obtained by
DDRM and I-DDRM.

PP fiber diameter (mm)
Interfacial tension between

PP and POE (mN/m)
DDRM I-DDRM

0.2 12.255 9.093
0.3 11.638 9.060
0.4 9.102 9.132
Result fluctuation 28.66% 3.98%
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c �

0 1 − 1 0 0 0 0 1 − 1 1 1 − 1 1 − 1 0 0 0 0 0

0 0 0 1 − 1 0 0 1 1 − 1 0 0 0 0 1 1 − 1 1 − 1

0 0 0 0 0 1 − 1 0 0 0 1 1 − 1 − 1 1 1 1 − 1 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦c, (A.1)

where c � δx/δt is the lattice speed, δx is the lattice spacing,
and δt is the time step.

Using the multirelaxation time collision operator MRT,
the governing equation of fi can be written as

fi x + ciδt, t + δt( 􏼁 − fi(x, t) � Ωi + δtFi
′, (A.2)

where Ωi is the collision operator and defined by

Ωi � − M− 1SM􏼐 􏼑
ij

fi(x, t) − f
eq
j (x, t)􏽨 􏽩. (A.3)

ft is the density distribution function associated with
velocity ci at position x and time t, and their moments satisfy

ρ � 􏽘
i

fi,

ρu � 􏽘
i

eifi +
1
2
δtF,

(A.4)

where F represents the interaction force between compo-
nents. Fi

′ is the discrete forcing term accounting for the
interaction force F:

F′ � M− 1 I −
S
2

􏼒 􏼓M􏽥F, (A.5)

where I is the unit matrix, while 􏽥F is defined by

􏽥Fi � wi

ci · F
c2s

+
(uF + Fu) : cici − I( 􏼁

2c4s
􏼢 􏼣. (A.6)

In the collision operator, M is the constant transfor-
mation matrix and S is a diagonal nonnegative relaxation
time matrix that is decided by fluid properties.

For multicomponent flow, f
eq
σ,i is the corresponding

equilibrium distribution of component σ and is determined
by

f
eq
σ,i � wiρσ(x, t) 1 +

ei · ueq

c2s
+

ei · ueq( 􏼁
2

2c4s
−

ueq( )2

2c2s
􏼢 􏼣,

(A.7)

where wi is the weight associated with the velocity ei:

wi �

1
3
, ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 0

1
18

, ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 1

1
36

, ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

� 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.8)

ueq
σ is the equilibrium macroscopic velocity in consid-

eration of the component interaction:

ueqσ � u′ + τσδt
F
ρσ

, (A.9)

where u′ satisfies the momentum equation without the
external force:

u′ �
􏽐σρσuσ/τσ
􏽐σρσ/τσ

, (A.10)

in which ρσ and μσ are the macroscopic density and velocity
of component.

F is the interaction between the particles of different
components, when only considering the nearest neighbor, it
can be written as

Fσσ(x) � − gσσρσ(x)c2s 􏽘

N

i

w ei

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼐 􏼑ρ x + ei( 􏼁ei, (A.11)
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Figure 11: *e structure of the D3Q19 lattice with lattice vectors.
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where gσσ denotes the interaction strength between com-
ponents σ and σ. When gσσ is positive, the repulsive force is
generated between the particles, and when the gσσ is neg-
ative, the attraction between the particles is generated.

With the modified equilibrium distribution and pseu-
dopotential forcing term, the Navier–Stokes equations can
be recovered from the lattice Boltzmann equation in the
limit of small Mach number by the Chapman–Enskog
analysis and Taylor expansion:

zρσ
zt

+ ∇ · ρσu( 􏼁 � − ∇ · jσ ,

zρ
zt

+ ∇ · (ρu) � 0,

(A.12)

as well as the momentum equation of the blend flow:
z

zt
(ρu) + ∇ · (ρuu) � − ∇p + υ∇ · (∇pu), (A.13)

where υ is the kinematic viscosity of the blend:

υ �
1

D + 2
􏽘
σ

ρσ
ρ
τσ −

1
2

⎛⎝ ⎞⎠. (A.14)

B. FENE Dumbbell Model

Likewise, the conformation distribution function ψj(x, t)

follows the discrete Fokker–Planck equation on D3Q19
lattice:

ψj(x, t + 1) − ψj(x, t) � −
1

τψ + 1/2
ψj(x, t) − ψeq

j (x, t)􏽨 􏽩

+
τψ

τψ + 1/2
Mj(x, t) + Δψj(x, t).

(A.15)

As the polymer melt is thought isotropic at equilibrium,
the equilibrium conformation distribution function ψeq

j is
equal to wj:

ψeq
j �

1
3
, qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 0

1
18

, qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 1

1
36

, qj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

� 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.16)

τψ is the single relaxation time of ψj(x, t) towards ψeq
j ·

Mj accounts for the elongation and rotation of the
dumbbell:

Mj � ωj

H

kBTm

qjqj −
kBTm

H
I􏼢 􏼣 : (∇u)

T
·

H

kBTm

〈qjqj〉.

(A.17)

Δψj(x, t) is the convection of dumbbells between lattice
sites due to the flow and can be written as

δmi � fi x + ceαΔt, t( 􏼁 − f(x, t), (A.18)

Δψj(x, t) � 􏽘
k

δmk

ρ x + ceαΔt, t( 􏼁
ψj x + ceαΔt, t( 􏼁, δmi > 0,

δmk

ρ(x, t)
ψj(x, t), δmi < 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.19)

Solving the equation (A.2) and equation (A.15) simul-
taneously, the conformations of the dumbbells can be
updated during the flow simulation. *en, the macroscopic
elastic stress is linked with the dumbbell conformation
through the Kramers formula:

τp � ρ􏽘
j

qjF
C
j ψj + ρ􏽘

j

qjF
C
j ψ

eq
j , (A.20)

where Fc
j is the spring force acted on the dumbbell beads:

FC
j �

H

1 − q2j/q2b􏼐 􏼑
qj. (A.21)

When applied the Chapman–Enskog expansion, the
equation (A.15) results in the macroscopic Oldroyd-B
constitutive model:

λHτ
∇

p + τp � − μp ∇u +(∇u)
T

􏼐 􏼑. (A.22)

*emodel parameters λH and up are linked to that of the
lattice Fokker–Planck equation by the following relations:

λH � τψ ,

μp �
1
3
npHτψ .

(A.23)

As mentioned above, the flow field changes the con-
formation of the dumbbells; in turn, the conformation of the
dumbbells contributes to the local stress and thus alters the
flow field. In the modeling, they are coupled through the
rewriting of feq:

f
eq

σ,i � ωiρσ(x, t) 1 +
ei · ueq

c2s
+

ei · ueq( 􏼁
2

2c4s
−

ueq( )2

2c2s
􏼢 􏼣

+
9
2
ωi

eiei

c2
−
1
3
I􏼒 􏼓 :

τp

kBTm

.

(A.24)

It is noticeable that the modified expression reflects the
effect of polymer viscoelasticity through the introduction of
9/2ωi(eiei/c2 − (1/3)I) : τp/kBTm into feq. After the mod-
ification, the second-order moment of the distribution
function contains both viscous and elastic stress:

τ � 􏽘 fi(x, t)eiei � τN + τp, (A.25)

where τN is the viscous stress, τN � μ(∇u + (∇u)T), so that
viscoelastic Navier–Stokes equation can be recovered from
equation (A.2).

10 Advances in Polymer Technology



*e numerical procedure for each time step at each
lattice site reads as follows:

(1) Stream the component distribution functions fσ,i

between the adjacent lattice sites (left-hand side of
equation (A.2)) and calculate the velocity u and
density ρ (equation (A.3))

(2) Calculate the convection of the dumbbell confor-
mation Δψj(x, t) (equation (A.20)) and the elon-
gation and rotation of the dumbbells Mj due to the
polymer flow (equation (A.18))

(3) Update the new conformation functions ψj(x, t)

(equation (A.15)
(4) Sum the viscous and elastic stress to calculate the

total local stress τ (equation (A.25))
(5) Collide and update the new component distribution

functions fσ,α (right-hand side of equation (A.2))
(6) Repeat the procedures (1)∼(5) until the simulation

ends
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[7] J. Pavĺıček, G. Bogdanić, and I. Wichterle, “Simple apparatus
for the measurement of total pressure of polymer-solvent
mixtures,” Chemical Engineering & Technology, vol. 42, no. 8,
p. 1726, 2019.

[8] H. Naseem and H. Murthy, “A simple thermal diffusivity
measurement technique for polymers and particulate com-
posites,” International Journal of Heat and Mass Transfer,
vol. 137, pp. 968–978, 2019.

[9] H. R. Z. Moghadam, S. A. Faghidian, M. Jamal-Omidi, and
S. Rahmati, “Micro-residual stress measurement in nano-
composite reinforced polymers,” International Polymer Pro-
cessing, vol. 34, no. 3, pp. 356–366, 2019.

[10] B. H. Jang, S. Kwon, and J. H. Kang, “Measurement of the
magnetic susceptibility of subtle paramagnetic solutions using
the diamagnetic repulsion of polymer microparticles,” Lab on
a Chip, vol. 19, no. 14, pp. 2356–2361, 2019.

[11] I. Dolezal, L. Hes, and K. Bal, “A non-destructive single plate
method for measurement of thermal resistance of polymer
sheets and fabrics,” International Journal of Occupational
Safety and Ergonomics, vol. 25, no. 4, pp. 562–567, 2019.

[12] P. Zhao, Y. Zhao, H. Kharbas et al., “In-situ ultrasonic
characterization of microcellular injection molding,” Journal
of Materials Processing Technology, vol. 270, pp. 254–264,
2019.

[13] Y. Son, “Comparative measurement of interfacial tension by
transient dynamic methods,” Journal of Applied Polymer
Science, vol. 99, no. 4, pp. 1910–1918, 2006.

[14] N. R. Demarquette, “Evaluation of experimental techniques
for determining interfacial tension between molten poly-
mers,” International Materials Reviews, vol. 48, no. 4,
pp. 247–269, 2003.

[15] P. Xing, M. Bousmina, D. Rodrigue, and M. R. Kamal,
“Critical experimental comparison between five techniques
for the determination of interfacial tension in polymer blends:
model system of polystyrene/polyamide-6,” Macromolecules,
vol. 33, no. 21, pp. 8020–8034, 2000.

[16] D.Morais, T. S. Valera, andN. R. Demarquette, “Evaluation of
the surface tension of poly (vinyl butyral) using the pendant
drop method,”Macromolecular Symposia, vol. 245-246, no. 1,
pp. 208–214, 2006.

[17] A. Morita, D. Carastan, and N. Demarquette, “Influence of
drop volume on surface tension evaluated using the pendant
drop method,” Colloid & Polymer Science, vol. 280, no. 9,
pp. 857–864, 2002.

[18] S. Wan, Z. Wei, X. Chen, and J. Gao, “Pendant drop method
for interfacial tension measurement based on edge detection,”
in Proceedings of the 2009 2nd International Congress on
Image and Signal Processing, Tianjin, China, October 2009.

[19] F. K. Hansen and J. Hveem, “*e interfacial tension between
acrylic monomers and polymers and non-ionic surfactants
investigated by the automatic sessile drop method,” Journal of
Colloid and Interface Science, vol. 210, no. 1, pp. 144–151, 1999.

[20] N. R. Demarquette and M. R. Kamal, “Comparação entre o
método da gota pendente e o método da gota girante para
medida da tensão interfacial entre poĺımeros,” Poĺımeros,
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