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The Pareto-based genetic algorithm is an effective way to solve complex optimization design problems in engineering. In this
study, first, the principles of Pareto optimal solutions and multiobjective genetic algorithm were presented. Second, to investigate
the influence of the mold temperature on the products” performances, a multicavity experiment injection mold was designed
whose temperature could be controlled by the heating rods. To obtain a homogeneous temperature distribution across the
multicavity surfaces after the heating stage, multiobjective optimization models for the heating rods layout were established based
on the heat transfer process of the mold. Finally, the Pareto-based genetic algorithm and finite element method were combined to
solve the optimized models to obtain the optimal solution. After a finite element analysis and experimental injection, it is proved
that the optimized distribution of the heating rods in the mold is necessary for the experiment and production.

1. Introduction

Injection products quality mainly depends on the history of
plastic melt experienced in the mold cavity. Mold temper-
ature, cavity pressure, and other injection molding process
parameters all play an important role in the quality of
products. Especially, the mold temperature could greatly
affect the melt flow process, solidification process, and the
final shape and dimensional precision of the products. At
suitable mold temperature, the plastic melt fills the mold
cavity easily, the shrinkage and warpage of the molded part
are very small, and the surface quality and mechanical
properties are also relatively high. Therefore, studying and
analysing the influences of the mold temperature on the
product quality attaches great importance to the researchers.
Lin et al. [1] investigated the effect of mold temperature field
on the injection molding process of polypropylene (PP)
parts. The warpage of the relevant parts due to the asym-
metry of the mold temperature was examined. It was found
that the part warpage decreased with the increasing mold

temperature. Zhao et al. [2, 3] analysed the effect of rapid
changing mold temperature on improving microscopic
feature replication and molded part appearance. The results
showed that the rapid heating of the cavity helped the
polymer melt to replicate the surface topography of the
mold. Li et al. [4] discussed the impact of cavity surface
temperature on the surface topography and texture of
molded reinforced plastic parts, and it was shown that the
increase of cavity surface temperature can improve the
surface appearance of the injected parts. Recently, literatures
[5-8] focusing on the influences of mold temperature and
other parameters on the weldline properties are also
attracting more attention. However, concerning the rela-
tionship between the mold temperature and the part per-
formances, there are still many problems that are not clear.
For example, the effects of the same mold temperature on
different plastic materials’ performances, the effects of dif-
ferent mold temperature on the same material perfor-
mances, and especially, the formation and disappearing
processes of the weldline on the injection part are still
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ambiguous. Thus, it is still very necessary to do further
studies on the relationship between the mold temperature
and the part performances.

For this purpose, according to the American Society for
Testing and Materials (ASTM) standard, an experimental
injection mold with multiple cavities including tensile
specimen cavity, impact specimen cavity, and bend speci-
men cavity was designed. Several heating rods were installed
in the mold to control the mold temperature by controlling
the heating time of the rods. To study different properties of
the specimens in a same mold temperature, the temperature
of each cavity surface must be the same and distributes
uniformly before the melt injected. It is required that the
installed location of the heating rods in the mold must be
properly optimized. According to the characteristics of the
design mold and the heat transfer process, a multiobjective
model indicating the uniformity of temperature distribution
and efficiency of heating mold was established by combining
the finite element analysis (FEA) with Pareto’s genetic al-
gorithm (GA). Finally, the effectiveness of the proposed
optimization method is proved by practical experiment.

2. Multiobjective Optimization Algorithms

2.1. Pareto Optimal Solutions. In engineering applications,
conflicts often occur when it comes to optimization prob-
lems with multiobjective functions. It is foreseeable that no
optimal design point can achieve optimal results for all
objective functions at the same time. If an objective function
is optimized with only one variable, the other parameters
may be opposite to the target function value. Therefore, the
traditional method of converting multiple targets into a
single target by mathematical operations is greatly limited.
Unlike the traditional optimization method, the weight is
difficult to be clear, and the Pareto-based multiobjective
optimization algorithm pays more attention to obtaining
several better solutions. Designers can choose the best so-
lution from the Pareto optimal solutions obtained according
to different situations. Therefore, the Pareto optimal solution
is only a compromise solution for the feasible solution
domain and has been used in many engineering applications
in recent years. [9-13].

2.2. Multiobjective Genetic Algorithm. The Genetic Algo-
rithm (GA) develops on the basis of population. Every time
you perform a GA operation, more than one solution can be
obtained. It eliminates replacement inferior solutions by
comparing them to each other in all solutions. Then, in each
iteration operation, the optimal solution of the previous
operation is used instead of the new variable to approximate
the optimal solution. Therefore, a solution that meets certain
accuracy can be considered the best solution. Therefore, GA
is the same with solving multiobjective problems in engi-
neering applications, especially the Pareto optimal solution.
Poirijer et al. [14] applied GA for the multiobjective opti-
mization of steel sandwich panels under prescribed quasi-
static loads. The results demonstrated that the proposed
methodology could be applied to the design of light-weight
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laser-welded steel sandwich panels with outstanding
structural performance.

Chattaraj and Ganguli [15] used GA for multiobjective
optimization. Analysis shows that for thick flexible exten-
sions, the extended length provides a Pareto optimal solu-
tion for multiobjective optimization. Guo et al. [16]
considered the differences between plants, production de-
partments, and processes for multiobjective order sched-
uling in production planning in complex environments. The
Pareto optimization model and the NSGA II optimization
process are used to address this issue. Experiments based on
industry data verify the effectiveness of the optimization
model. Bandyopadhyay et al. [17] used a multiobjective
genetic algorithm to simultaneously minimize the yield
stress and R value to obtain the anisotropic yield function
coefficients. Results showed that the yield function coeffi-
cients optimized were commendably calculating the de-
formation behaviour of various anisotropic metal plates.
According to the literature, the GA and Pareto-based op-
timization are very efficient to deal with multiobjective
problems. Following is an optimization process based on
Pareto’s multiobjective genetic algorithm. Firstly, bring
design variables into the operation in the form of autosomal,
which contain the information concern solutions. Secondly,
the initial population composed of individuals is given
default values. Next, the objective function value is used to
evaluate the results of individual adaptability. By replication,
crossover, and mutation, all individuals with high fitness can
be passed on to the next generation to ensure genetic di-
versity, so as to obtain new individuals with better opti-
mization results and finally to form a new population.
Finally, the algorithm terminates when the maximum al-
gebra is generated or the level of suitability is satisfactory.
Otherwise, the process will continue to loop through the
second subsequent steps until the termination condition is
met. The problem presented in the current article and the
details of the optimization process are described in the
following text.

3. Establishment of the Optimization Model

3.1. Structure of the Experimental Injection Mold. To inves-
tigate the mold temperature influences on surface appear-
ance, mechanical properties, and weldline formation, and
disappearing process of the part, a multicavity mold in-
cluding tensile, impact, and bend strength specimen is
designed by the authors. Specimens with both single and
double injection gates are designed for the convenience of
comparing the performance of the injected part with
weldline and nonweldline. Several heating rods are installed
in the mold to control the mold temperature. Figure 1 shows
the internal structure of the cavity.

3.2. Establishment of Multiobjective Optimization Models.
For studying properties of different injection specimen with
the same injection parameters, the temperature of the inner
surface of the cavity should be basically the same and dis-
tributes uniformly after heating stage. For considering the
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Ficure 1: Structure of the designed mold and the standard
specimen. (1, 1'): Standard tensile specimens with single gate and
double gates, (2, 2'): standard bending specimens with single gate
and double gates, (3, 3'): standard impact specimens with by single
gate and double gates, and (4): heating rods.

experiment cost and the mold structure, two heating rods are
installed under each cavity surface to heat the mold. If the
interval between the two rods on the cavity does not reach an
optimum distance, the temperature on the surface of the
mold cavity will be inhomogeneous and the temperature
difference will be large in general. Therefore, the optimi-
zation of the arrangement or position of the heaters in the
cavity plate is of great significance, which can ensure the
temperature distribution as well as the heating efficiency.
Since the heating rods are symmetrical about the center line
of the cavity plate, only half of the cavity plate cross section is
set as the simplified model for studying the heat transfer
process and temperature distribution analysis. The tem-
perature distribution analysis model is shown in Figure 2.

3.2.1. Design Variables. Assuming that the interval from the
heater to the surface of the cavity is the same and set to
7.5 mm, the interval from the left side to the center of each
heater is set as variables to optimize the heat transfer process.
Then, the lower left corner of the geometric model is set as
the reference coordinate system origin. Therefore, the
horizontal ordinate of the horizontal heating rod is deter-
mined as a design variable and is represented by x;, where
i=1-6.

Design variables should have certain limitation before
performing the optimization process. As presented in Fig-
ure 2, the boundary conditions of variables must be limited
as

a,<x,<b,a,<x,<b,,a;<x;<b;,

(1)

a,<x,<by,a5<x5<bs,a5<x<bg,

where a;, b; (i=1-5) are the lower and upper limits of the
design variables, and they are defined based on the following
regulations.

(1) Based on the previous optimization results, the
position of the heating rods was redefined, and the
FEA model of the cavity was supplemented by the
analysis of meshing and recalculation. So, the design
variables should satisfy the expressions:

FIGURE 2: Optimization model for the designed mold (Unit: mm).
1: Cavity plate. 2: Temperature tracking points. 3: Cavity surface. 4:
Heating rods.

b,+D<a,,b, + D<as, by + D<a,, b, + D<as,b; + D<ag,

(2)

where D represents the diameter of the heating rods.
In this case, the adjacent rods will not intersect with
each other in the optimization process

(2) The two heating rods under each corresponding
cavity should not be very far away from the cavity in
the interest of heating efficiency

Based on the abovementioned rules and mold design
experience, the boundary conditions for the design variables
are defined in Table 1.

3.2.2. Objective Functions

(1) Objective Function of Heating Efficiency. To conveniently
measure the temperature on the cavity surface, three suitable
equidistant points are used for tracking the temperature of
the cavity surface. The average value of the tracking points in
determined heating time is used to define the heating effi-
ciency. Meanwhile, the average temperature is proportional
to heating time. According to the next objective function of
temperature uniformity distribution, the reciprocal of av-
erage temperature can be considered as the minimum ob-
jective function. Therefore, the following function can be
used to represent the objective function of heating efficiency.

1
min F; (X) = min == min (OBJ,, (x;, X5, X3, X4, X5, X))

(3)

where (T') indicates the average value of the temperature
tracking points. X = x,, x,, X3, X4, X5, X¢ is a coordinate
vector, and X, X, X3, X4, Xs, X are design variables of vector
X.

(2) Objective Function of Temperature Distribution Unifor-
mity. In this study, the difference between the tracking point
temperature and the average temperature is applied for
characterizing whether the temperature distribution is
uniform. The smaller the variance, the more uniform the
temperature distribution. Therefore, the objective function
of uniformity of temperature distribution can be expressed
by the following functions:
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TaBLE 1: Boundary conditions of the design variables (mm).
Variables X X, X3 Xy X5 Xe
Lower limits 60 77 92 112 132 146

Upper limits 70 85 105 125 139 155

1

(4)

min F, (X) = min<i (T, - T)2>

= min(OBJ ; (%, Xy, X3, %45 X5, Xg) )

where, T; is the tracking point temperature at the end of the
heating stage, i=1, 2, ... and n is used to identify the lo-
cation of each temperature tracking point. Fi(X) or OBJ,
(%15 X2, X3, X45 X5, Xg) and F5(X) or OBJy (x1, x3, X3, X4, X5, Xg)
are used to represent the subobjective functions, respec-
tively. According to the correlation characteristics of the
abovementioned objective functions, it is known that, when
the objective functions take a smaller value, the heating
efficiency is relatively higher and the temperature distri-
bution is much more uniform. Therefore, the parameters of
the design variables should be such that the two objective
functions are simultaneously minimized in order to achieve
the desired value.

4. Optimization Procedure and
Discussion of Results

In the present work, the optimization procedure is separated
into three parts, i.e., establishing and analysing the model,
simplifying the operation with clear information, and FEA
simulation and Pareto-based GA optimization. Firstly, an
analytical model is built by using computer-aided design
software under the constraints, including initial and
boundary values for design variable. Secondly, the tem-
perature distribution on the surface of the cavity is simulated
by the finite element method. For the sake of facilitating the
calculation of the objective function, the corresponding
subroutines are compiled and the results of temperature
distribution are rearranged. Finally, the Pareto and GA-
based optimization algorithms can be used to optimize the
results, and the optimal values are obtained.

Considering the experiment cost and quality, P20 steel is
used to manufacture the injection mold. The material
properties are shown in Table 2. It is considered that these
properties are invariable in the process of FEM simulation.
The heating rods, which are fabricated by MISUMI coop-
eration, are installed in the mold, and their power is 15w/
cm”,

By far, we have known all the constraints and initial
variables needed before optimization beginning. Each op-
timization iteration is accompanied by multiple simulation
operations to get better results. When optimization starts,
few Pareto solutions are available to solve the problem. But,
as the number of iteration increases, more and more Pareto
solutions are produced. Meanwhile, much better solutions
are gradually used to eliminate or replace the inferior so-
lutions until the optimal solution of the problem is obtained.
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It is easy to observe from Figure 3 that the optimal
solutions of heating efficiency and uniformity of tempera-
ture distribution are obtained when the iteration operation is
carried out to the 50th generation. Each point in the graph
represents a Pareto optimal solution. From the figure, we can
also know that the smaller the value of OBJ,, the higher the
heating efficiency, and OBJ; is inversely related to OBJ,,.
There isn’t a same variable value to make both of the ob-
jective functions to be optimal at the same time. Therefore,
the designer is required to select a compromise scheme to
satisfy the user’s requirements based on the two objective
function values. Finally, FEA and experimental application
verify that the optimal solution obtained in this paper meets
the application requirements. The discussion is carried out
in Section 5.

5. Finite Element Analysis and
Experimental Application

5.1. Finite Element Analysis. From the function diagram, it is
impossible to achieve optimal values for both objective
functions at the same time. However, to meet the design
requirement, only a compromise solution can be adopted. It
was finally found that the optimized average temperature
varied between 81.3°C and 90.1°C, while the OBJ; which
represents the temperature distribution uniformity varied
from 67.2 to 648.2. Considering the experimental purpose,
the quality of the obtained samples plays a very important
role for the subsequent performance tests, and the quality of
the samples mainly depends on the temperature uniformity
of the mold. Besides, it is easy to improve the average
temperature of the cavity surface by increasing the heating
time. Therefore, it can be confirmed that the OBJ; function
plays a much more important role than the heating efficiency
function. Accordingly, in the actual mold design, the vari-
able values resulting in an optimal temperature distribution
uniformity are empolyed. Based on the optimal design
variables determined in Table 3, the optimized cavity average
temperature is reduced from 84.4 (1/1.185x107%)°C to 81.1
(1/1.233 x107)°C. The optimized value representing tem-
perature distribution uniformity also decreases from 561.4 to
62.8, proving that the presented optimized process is very
effective. Although the uniformity of temperature distri-
bution after optimization has been greatly improved, it
inevitably leads to a slight reduction in heating efficiency,
which does not affect the experimental efficiency.

Finally, FEA simulation software was used for calcu-
lating the heat transfer process of the cavity surface under
different conditions. Figure 4 is a schematic diagram of
simulated results by using the initial and optimized variable
values, respectively. It is found that the optimized mold
temperature distribution is much more uniform than the
initial temperature distribution.

The temperature of the twelve tracking points before and
after optimization is illustrated in Figure 5. According to the
figure, the temperature of the cavity surface varies from
71.5°C to 94.7°C with the initial design variable values, and
the maximum temperature difference is 23.2°C. However,
after optimization, the temperature is between 78.5°C and
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TABLE 2: Material properties.

Density (g~cm'3) Specific heat, |

Thermal conductivity, W

(kg0 (m-O)*!

Modulus of elasticity (MPa)

Coefficient of thermal expansion (*C™")

7.78 4.60 x 10° 30

2.05x10°

1.16 x107°
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FIGURE 3: Pareto optimal solutions.

TaBLE 3: Values of the initial and optimal design variables.

Design variables/objective

Initial values Optimal values

x; (mm) 70.4 67.2
X, (mm) 84.5 78.4
x3 (mm) 100.5 99.3
x, (mm) 114.5 116.2
x5 (mm) 135.5 138.9
Xg (mm) 149.5 153.4
OBJ; ('C%) 561.4 62.8
(0BJ,)' ((C™ 1.185x1072 1.233x1072
93.56 85.76
86.66 79.65
{7976 7335
&M 72.86 E M 67.44
£ 6596 £l 6133
£ M 59.06 S 55.22
§ 52.17 § 49.11
Tl 527 =W 13.00
38.37 36.90
31.47 30.79
24.57 24.68

()

FIGURE 4: Temperature distribution of the designed mold. (a) Initial temperature distribution. (b) Optimal temperature distribution.

84.8°C, and the maximum difference in temperature is only
6.3°C. The optimized structure reduced the maximum
temperature difference by 16.9°C. It can be known that the
temperature value of the tracking point after optimization

is much more stable and distributed much more uniform
than that of the initial mold design. Therefore, we can
conclude that the optimized design is very necessary and
effective.
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FIGURE 5: Temperature distribution curves. 1: Initial temperature distribution curve. 2: Optimal temperature distribution curve.
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FIGURE 6: Injection experiment in the laboratory. (a) Experiment mold installed in an injection machine. (b) Produced samples.

5.2. Experiment Applications. According to the optimized
results, this paper designs an experiment mold to study the
influence of the mold temperature on the part performances.
The layout of heating rods in the mold is designed and
manufactured according to the optimized parameters. The
mold temperature could be controlled by the rods, and
sound samples could be successfully produced at different
mold temperatures. Figure 6(a) gives the photograph of the
fabricated mold in opening state installed in the injection
machine in our laboratory, and Figure 6(b) shows the
samples injected with a mold temperature of 85°C.

6. Conclusions

A Pareto-based multioptimization method can be used to
obtain a couple of optimal feasible domain compromise
solutions. According to different requirements, users can
choose the most efficient solution from Pareto optimal
solutions. The sidedness of traditional optimization methods
is avoided. By determining proper coordinates for the
established model in this paper, a multiobjective model
including uniform temperature distribution and the heating

efficiency of cavity surface was established. In the simulation
process, an FEA method and Pareto-based GA are used to
obtain optimal values of design variables. As a result, the
objective function of the uniform temperature distribution
reduced from 648.2 to 67.2, and the maximum temperature
difference of the cavity surface is reduced from 23.2°C to
6.3°C. There is obvious improvement for the uniformity of
temperature distribution. Accordingly, an experimental
injection mold is designed and manufactured. Very good
injection products are produced with the optimal values. The
presented optimization method can also be used to solve
other multiobjective problems.
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