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Residual wall thickness is an important indicator for water-assisted injection molding (WAIM) parts, especially the maximization
of hollowed core ratio and minimization of wall thickness difference which are significant optimization objectives. Residual wall
thickness was calculated by the computational fluid dynamics (CFD) method. The response surface methodology (RSM) model,
radial basis function (RBF) neural network, and Kriging model were employed to map the relationship between process
parameters and hollowed core ratio, and wall thickness difference. Based on the comparison assessments of the three surrogate
models, multiobjective optimization of hollowed core ratio and wall thickness difference for cooling water pipe by integrating
design of experiment (DOE) of optimized Latin hypercubes (Opt LHS), RBF neural network, and particle swarm optimization
(PSO) algorithm was studied. The research results showed that short shot size, water pressure, and melt temperature were the
most important process parameters affecting hollowed core ratio, while the effects of delay time and mold temperature were
little. By the confirmation experiments for the best solution resulted from the Pareto frontier, the relative errors of hollowed
core ratio and wall thickness are 2.2% and 3.0%, respectively. It demonstrated that the proposed hybrid optimization
methodology could increase hollowed core ratio and decrease wall thickness difference during the WAIM process.

1. Introduction

WAIM, one of the innovations of plastic injection molding
technology, is the newest way to mold hollow parts. The
development of this molding technique is a variant of gas-
assisted injection molding, which has the main strength of
reducing part costs and improving part characteristics. How-
ever, because of water instead of gas as a molding medium,
there are some unique advantages in WAIM: thin residual
wall thickness, smooth inner surface, and short cycle. By
far, some automotive plastic products, such as foot pedals,
handrails, and engine cooling water pipes, are made by
WAIM.

Residual wall thickness is one of the most important
indexes of part quality, which significantly affects the
strength. Some scholars have conducted studies on how to

improve the residual wall thickness from the aspects of water
needle structure, process parameters, auxiliary media, and
cavity cross-sectional shape. Park et al. [1] used numerical
simulation and experimental methods to study the effect of
process parameters on the residual wall thickness of product
and found that an important reason for the uneven residual
wall thickness was the unstable flow caused by the boiling
of water in the mold cavity. Kuang et al. [2] studied the influ-
ence of cavity cross-sectional shape on water penetration,
and the results showed that residual wall thickness distribu-
tion of circular pipe was relatively uniform, while for noncir-
cular pipe, there was the largest residual wall thickness at the
position far away from the center of the section. Park
et al. [3, 4] separately used water and silicone oil for
assisted injection molding, analyzed the generation mecha-
nism of wall thickness difference, and effectively controlled
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the void of product and concentricity of wall thickness distri-
bution. Sannen et al. [5] studied wall thickness defects of
product and improved quality through the adjustment of
process parameters. Kuang et al. [6] used an improved war-
head device to study the effect of process parameters on
residual wall thickness. These studies were based on the
effect between different molding parameters and residual
wall thickness, which have laid a solid foundation for the
improvement of residual wall thickness.

However, the relationship between molding parameters
and residual wall thickness is highly complex. In particular,
the optimization of process parameters can be more feasible
and reasonable to meet the requirement of product quality
with the advantages of saving on materials and energy [7].
In recent years, there are widespread attentions for plastic
injection molding optimization based on optimal design
theory; more details on optimization theory and application
can be found in an early study [8]. While compared with
the many optimization techniques used in traditional injec-
tion molding, the optimization studies related to WAIM are
few. Liu and Chen [9] and Huang and Deng [10] used the
orthogonal experiment method to study the effect of process
parameters on water penetration length and optimized pro-
cess parameters to determine the largest water penetration
length. Yang et al. [11] put forward a combined optimization
strategy that integrated orthogonal experimental design,
surrogate model, and optimization algorithm. Through the
optimization of process parameters, the maximum water
penetration length was obtained, which was obviously supe-
rior than orthogonal optimization. Zhou et al. [12] mapped
the relationship between process parameters and standard
deviation depicting residual wall thickness uniformity with
surrogate model optimized by a genetic algorithm and found
the best performance for predicting standard deviation.
However, the evaluation of product quality is multifaceted,
and single-objective optimization is difficult to meet the
actual product quality requirements. Most of the researches
are based on hypothetical polymer products. Therefore, in
this paper, the research object is an engine cooling water pipe
made of polymer material, which will provide a reference for
the similar work, especially for the selection of polymer mate-
rials. In addition, the two indicators of hollowed core ratio
and wall thickness difference, comprehensively evaluating
residual wall thickness, are used as multiobjective optimiza-
tion applications. To the best knowledge of authors, multiob-
jective optimization for WAIM has not ever been studied.

In this paper, the main research was devoted to present
an integrated optimization strategy, DOE of Opt LHS, surro-
gate model, and PSO algorithm, to find the optimal process
parameters resulting in maximizing hollowed core ratio and
minimizing wall thickness difference. This paper studied
the following: (1) the DOE of Opt LHS, and calculating of
residual wall thickness by CFD; (2) the building of RSM,
RBF, and Kriging models, and cross-validation; (3) the effects
of process parameters on hollowed core ratio; and (4) the
multiobjective optimization for maximizing hollowed core
ratio and minimizing wall thickness difference, and verifica-
tion. Now, we are working together with Xunyu Mould Co.
Ltd of Ningbo to develop WAIM technology. For engine

cooling water pipe, we have set up experimental equipment
of WAIM including an injection-molding machine, a mold,
and water auxiliary injection devices. The integrated optimi-
zation strategy that aims for better molding quality of plastic
product is helpful to accelerate the development of optimiza-
tion technology in WAIM and will lay a good foundation for
future industrial applications.

2. Model and Method

The basic process of WAIM is shown in Figure 1, which goes
as follows: firstly, the high-temperature melt is injected into
the mold cavity; then, water is injected after a certain delay
time, which pushes high-temperature melt forward; finally,
the hollow part is formed.

2.1. Mathematical Model. In WAIM, the filling process is
non-Newtonian laminar of polymer melt and turbulence of
water with high Reynolds number. What makes WAIM dif-
ferent from traditional injection molding is that the injection
of water is turbulence, and the interchange of heat between
water and melt is obvious. Based on the generalized Hele-
Shaw model, the improved Reynolds time-averaged motion
equation including Reynolds stresses is
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where the last item is Reynolds stresses.
According to Boussinesq eddy viscosity assumption,

Reynolds stresses is solved by the following equation:
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where μt is the turbulent viscosity; κ is the turbulent kinetic
energy.

Simulated by the standard k − ε model, the solving
method for μt is

μt = ρCμ

κ2

ε
, ð3Þ

where Cμ is the empirical constant and ε is the dissipation
rate.

More details on the mathematical model of WAIM can
be found in the author’s early study [13].

2.2. Surrogate Model. The surrogate model is based on exper-
imental design and statistical analysis and is an alternative
model method for reflecting real problems. There are some

Melt injection Water injection Hollow part formed

Figure 1: WAIM process.

2 Advances in Polymer Technology



advantages for the surrogate model, such as small calculation
amount, and high accuracy, which can ensure that the opti-
mization algorithm searches for the optimal solution in the
continuous space of design variables. At present, in the field
of plastic injection molding, RSM, RBF, and Kriging models
are frequently used [8].

2.2.1. RSMModel. The basic idea of the RSM model is to fit a
response surface through a series of deterministic experi-
ments, thereby expressing the complex relationship between
multifactor input and output in a system. The model is essen-
tially a polynomial function, which can be fitted by four
orders. In general, the higher the polynomial order is, the
more accurate the fitted response surface model will be.
Moreover, it combines experiment design and mathematical
modeling with the advantages of less test times and good
predictive performance and can fit some complex response
relationship in plastic injection molding [14, 15].

The usual first-order and second-order polynomial
equations are expressed by

~y xð Þ = β0 + 〠
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where β0 denotes the intercept constant; βi, βii, and βij

denote the coefficients of the first, second, and cross terms,
respectively; xi and xj denote design variables; M denotes
the numbers of design variables.

The term selection method can be used to choose some
important polynomial terms and discard some less impor-
tant polynomial terms for improving the reliability of the
model. It includes sequential replacement, stepwise, two-at-
a-time replacement, and exhaustive search, which take the
smallest residual sum of squares (RSS) as the goal to select
the best item. The formula for RSS is as follows:

RSS = 〠
n

i=1
yi − y∧ið Þ2, ð5Þ

where n is the number of sample points that construct the
RSM model; i is the ith sample; yi is the actual value of the
sample; ŷi is the predicted value of the RSM model.

2.2.2. RBF Model. RBF neural network is an effective fitting
model, which is widely used in fitting highly complex nonlin-
ear problems. Li et al. [16] introduced a modified global opti-
mization method based on the RBF surrogate model and its
application in packing profile optimization of injection
molding process; Kitayama et al. [17] presented sequential
approximate optimization using the RBF network for mini-
mizing weldlines and clamping force; Heidari et al. [18] used
RBF coupled with a cross-validation technique to minimize
volumetric shrinkage and warpage. The RBF neural network
includes a three-layer forward network, namely, input layer,

hidden layer, and output layer. The relationship between
the three layers is as follows: the input layer is converted to
the hidden layer through a fixed nonlinear transformation;
the hidden layer space is mapped to the output layer through
linear transformation.

The basis function of the RBF model is a radial function,
and the construction method is linear superposition. Assum-
ing input X and output Y, RBF is expressed as follows:

f xð Þ = 〠
n

i=1
ωiϕ ri
� �

= 〠
n

i=1
ωiϕ x − xi

�� ��� �
, ð6Þ

where ωi is the weight coefficient; ri is the Euclidean distance;
ϕðriÞ is the nonlinear radial basis function.

According to the interpolation f ðxjÞ = yj, the following
equations can be obtained:

Φ xi − xj
�� ��� �

⋅ ω = Y : ð7Þ

When ϕðriÞ is a positive definite function and the sample
points do not coincide, the above formula has a unique
solution:

ω =Φ xi − xj
�� ��� �−1 ⋅ Y : ð8Þ

There are many basis functions, of which the Gaussian
function is the most common one, namely,

ϕ rð Þ = e−r2/c2 , ð9Þ

where c is a constant greater than 0.

2.2.3. Kriging Model. Geologist Krige first proposes the
Kriging model, which is based on structural analysis and
variation function theory and can unbiasedly optimize the
design of regionalized variables [19]. In the early period,
the Kriging method was mainly used to estimate the reserve
distribution of mineral deposits, and gradually, it was applied
to the multiscientific optimized design. The input variables
and response values of the Kriging model can be determined
by the following formula:

y xð Þ = f xð Þ + μ xð Þ, ð10Þ

where f ðxÞ is a fixed item of the known polynomial function
x; μðxÞ is an approximate random function reflecting the
local difference; the mean is 0; σ2μ is variance, and the covari-
ance matrix is

Cov μ vð Þ, μ wð Þ½ � = σ2
μ R θ, V ,Wð Þ½ �, ð11Þ

where Rðθ, V ,WÞ is the correlation function of the sampling
points V and W with the parameter θ.

Under the condition of small samples, a certain fitting
accuracy can be ensured by the Kriging model, which has
been well applied to the part stiffness predictions [20], and
the reducing of part residual stress and warpage [21].
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Through the effect of the correlation function, the character-
istic of optimization design is a local estimation.

2.3. PSO Algorithm. PSO is an evolutionary optimization
algorithm developed by Kennedy and Eberhart, which has
been successfully applied in the optimization design of plastic
injection molding, including the optimization studies of vol-
umetric shrinkage of biaspheric lens [22], product design
time forecast [23], and product weight control [24].

The PSO algorithm is based on a group of particles.
Assuming that a group of m particles flies in the D-dimen-
sional space, the position of the ith particle is expressed as
follows:

Xi = xi1, xi2,⋯,xiDð Þ: ð12Þ

The velocity of the ith particle is represented as

Vi = vi1, vi2,⋯,viDð Þ: ð13Þ

During each iteration of the particle swarm, each particle
must not only find its own historical best point (pbest) but
also search for the best historical point of other particles
(gbest). The individual extreme of pbest is expressed as

Pi = pi1, pi2,⋯,piDð Þ: ð14Þ

The global extreme of gbest is expressed as

Pg = pg1, pg2,⋯,pgD
� �

: ð15Þ

After determining Xi, Vi, pbest, and gbest, the particle’s
D-dimensional position (xid) and velocity (vid) are updated
according to the following formula:

xid = xid + vid ,

vid = ωvid + c1r1 pid − xidð Þ + c2r2 pgd − xid
� �

,
ð16Þ

where the first term gives particles a tendency to expand the
search space, which is an inertial term; the second term
represents the particle’s own direction of improvement,
which is a cognitive term; the third term represents the infor-
mation that is optimally shared between particles and is a
social term; ω is the inertial weight; c1 and c2 are positive
acceleration constants; r1 and r2 are random numbers dis-
tributed between 0 and 1.

2.4. Optimization Flow. By the hybrid DOE, surrogate model,
and optimization technique, the optimization design process
of this problem is shown in Figure 2. The main steps are as
follows:

2.4.1. Determine the Experimental DesignMethod. The exper-
imental product is a brand of automobile cooling water pipe,
of which the cross-section is round and precise, the outer
diameter is 29mm, the average wall thickness is 2mm, and
the length is about 400mm, as shown in Figure 3. The origi-

nal product is a metal pipe fitting, which is processed by mul-
tiple processes such as bending, necking, extrusion, and
bracket welding. The process steps are numerous and com-
plicated, which results in low efficiency and high cost.

Because the cooling water pipe is connected to the
automobile engine, the material of product must meet the
requirements of high temperature, shock, and fatigue resis-
tance. Through the contrast of engineering plastic properties,
the material is selected as PA66+30% GF. It is a rare material
that can meet the stringent requirements of automotive
engine parts.

Considering the simplification of the model and calcula-
tion efficiency, the two brackets of product are removed. At
first, Gambit is used to divide the tetrahedral mesh unit,

Identifying process
parameters and

optimization object

DOE OF Opt LHS

Running CAE for samples

Building surrogate models

No
Is the model

adequate?

Yes

Optimized by PSO algorithm

No Convergence?

Yes

Outputting optimal solution

Result verification

Figure 2: Flow chart of hybrid optimization design.
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and then, the 3D mesh model is imported into Fluent for
simulation calculation. For CAE simulation, the multifluid
volume of fluid is adopted. Boundary conditions are spec-
ified as follows: the pressure and temperature of the inlet
derive from the values of water injection; the pressure of
the outlet is atmospheric pressure; no-slip boundary con-
dition is used at the wall, and fixed temperature boundary
condition is employed for the method of heat exchange;
no-slip condition is applied at the solid-melt interface;
Dirichlet boundary condition is specified at the water-
melt interface. In addition, the numerical calculation of
the flow field is the PISO algorithm, the underrelaxation
factors are set to 0.2, and the time step of the iterative cal-
culation is set to 10-5 s.

The molding method is short shot, and the main process
parameters are short shot size As, melt temperature Tme,
water pressure Pw, delay time td, and mold temperature
Tmo, the value ranges of which are as follows: As [60, 68]
(%); Tme [543, 593] (K); Pw [6, 10] (MPa); td [0, 4] (s);
Tmo [313, 353] (K). Using the above process parameters
for simulation calculations, hollowed core ratio H and wall
thickness difference D at three different locations of the
product are first obtained, and then, the average value is
taken.

In this paper, DOE of Opt LHS is applied to get the train-
ing samples, the process of which is as follows. First, the
numbers of design varies n are determined, and the sample
numbers m are defined, respectively. Then, every coordinate
space is divided into m intervals in n dimensions equally, of
which every interval is named ½xi−1k , xik�. Finally, DOE of
Opt LHS with varies n and sample numbers m are consti-
tuted by choosing m points randomly in interval according
to the principle of every level studied only one [25]. For
DOE of Opt LHS, the grade of horizontal value is loose,
and the experimental numbers can be controlled artifi-
cially. Considering the time cost of calculation and accu-
racy of modeling comprehensively, the training samples
of DOE of Opt LHS for cooling water pipe are 22, as
shown in Table 1.

2.4.2. Build a Surrogate Model. Training samples were used to
construct RSM, RBF, and Kriging surrogate models, so as to
establish the nonlinear relationship between the process
parameters and hollowed core ratio and wall thickness differ-
ence. For the RSM model, the order of the polynomial
depends mainly on the number of design variables and sam-

ple points. In this study, there are five design variables and
twenty-two sample points. Therefore, second-order polyno-
mial functions are selected. In order to improve the precision
and quality of the model, the term selection method is an
exhaustive search. Although it requires the highest compu-
tational amount, the quality is the best. For the RBF
model, the nonlinear radial basis function is selected as
the Gauss function, of which the prediction curve is
smooth. The smoothing filter is 0, and the maximum iter-
ations to fit is 50. Furthermore, for the Kriging model, the
fit type is anisotropic, the correlation function is Gaussian,
and the maximum iterations to fit is 1000. Cross-
validation is used to test the accuracy of the three models
to determine whether the fitted surrogate model meets the
accuracy requirements (see Section 3.2).

2.4.3. Optimize by the PSO Algorithm. In order to ensure that
the flow rate of water is sufficiently large, the hollowed core
ratio should be as large as possible. In addition, the residual
wall thickness distribution is also needed to be uniform,
and the wall thickness difference should be controlled as
small as possible. Therefore, the essence of this optimization
problem is to find the process parameter combination with
the largest hollowed core ratio and the smallest wall thickness
difference in the feasible process space. This is a multiobjec-
tive optimization problem, and the mathematical model is
as follows:

P1

P2
P3

Figure 3: Model of cooling water pipe.

Table 1: DOE of Opt LHS.

Sample
As
(%)

Tme
(K)

Pw
(MPa)

td
(s)

Tmo
(K)

H
(%)

D
(%)

1 61.9 593.0 8.5 2.3 318.7 55.9 27.9

2 66.1 578.7 10.0 2.9 332.1 55.3 23.3

3 67.6 574.0 7.9 2.5 351.1 52.4 26.1

4 61.1 576.3 7.5 0.0 330.1 55.8 26.6

5 65.7 552.5 6.4 3.2 334.0 49.2 26.5

6 60.8 571.6 6.2 2.7 322.5 52.0 26.7

7 63.1 590.6 9.1 1.3 349.2 56.9 32.3

8 63.8 569.2 9.8 0.8 314.9 56.1 28.7

9 65.3 564.4 6.8 1.0 313.0 50.0 27.6

10 64.2 547.8 9.2 3.1 347.3 54.7 22.6

11 66.5 554.9 6.6 0.4 341.6 48.6 33.0

12 67.2 585.9 8.3 0.6 328.2 54.7 25.8

13 62.3 543.0 8.1 1.1 326.3 53.3 25.8

14 65.0 559.7 9.4 0.2 345.4 54.9 20.8

15 61.5 562.1 7.0 1.7 353.0 52.8 24.5

16 60.0 566.8 9.6 2.1 335.9 58.3 23.0

17 64.6 588.2 6.0 1.5 339.7 57.9 21.2

18 66.9 583.5 7.1 3.4 320.6 50.7 20.5

19 60.4 545.4 7.3 3.8 337.8 55.9 26.3

20 68.0 550.1 8.9 1.9 324.4 52.8 21.7

21 63.4 557.3 8.7 3.6 316.8 55.8 18.8

22 62.7 581.1 7.7 4.0 343.5 51.7 18.7
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Find:

X = As, Tme, Pw, td, Tmo½ �T ,
Maximize : hollowed core ratioH,

Minimize : wall thickness differenceD,

Subjected to constraint : waterpenetrationlength ≥ 409:3mm:

ð17Þ

Within ranges:

52:4 ≤H,

60 ≤ As ≤ 68,

543K ≤ Tme ≤ 593K,

6MPa ≤ Pw ≤ 10MPa,

0s ≤ td ≤ 4s,

313K ≤ Tmo ≤ 353K:

ð18Þ

The PSO algorithm flow is shown in Figure 4. Further-
more, the optimization parameters are set as follows: the
maximum iterations, 50; the number of particles, 50; the
inertia, 0.9; the global increment, 0.9; the particle increment,
0.9; and the maximum velocity, 0.1.

2.4.4. Result Verification. The optimization process is a
combination strategy including the DOE, surrogate model,
and optimization algorithm, and errors are inevitable in the
calculation process. Therefore, it is necessary to verify the
final optimization results and analyze the accuracy of the
optimization method.

3. Results and Discussion

3.1. Effects of Process Parameters on Hollowed Core Ratio. In
WAIM, high-pressure water is injected into the mold cavity
after the melt filling stage. As the rapid cooling effect of water
on melt, a highly viscous membrane will be formed at the
leading edge of the water. As shown in Figure 5, it demon-
strates that the water penetrates into the core of the melt
along the path of the least resistance, for which the hollow
part is formed.

As shown in Figure 6, the hollowed core ratio decreases
significantly with short shot size rising. This can be explained
that rising short shot size will leave less space of water pene-
tration, which increases residual wall thickness, or rather,
hollowed core ratio decreases.

It can be seen from Figure 7 that the hollowed core ratio
increases slightly as delay time increases. This is because
increasing delay time will make melt’s solidified layer thicker;
on the other hand, the longer cooling time makes water pen-
etration difficult.

As shown in Figure 8, the hollowed core ratio increases
with melt temperature rising. This is caused by that rising

melt temperature leads to reduce the viscosity of melt, which
makes water penetration easier and more water penetrates to
mold wall direction.

Figure 9 shows that the hollowed core ratio increases with
water pressure rising, which is very obvious. This is due to the
fact that rising water pressure will lead water to squeeze the
mold wall stronger, which makes residual wall thickness
tend to decrease. Accordingly, the hollowed core ratio will
increase.

As shown in Figure 10, the hollowed core ratio increases
very little with mold temperature rising. This may be due to
the fact that two contradictory phenomena occur when rising
mold temperature: one is that the solidified layer of melt
becomes thicker, which is likely to make residual wall thick-
ness decrease; the other is that higher mold temperature
makes water penetration easily, which increases residual wall
thickness.

3.2. Cross-Validation of Surrogate Models. In this paper,
cross-validation is adopted, which is an effective test method
widely used in metamodeling techniques in support of engi-
neering design optimization [8, 26]. The testing samples con-
sist of 10 groups, and the accuracy of the three surrogate
models is tested using two evaluation indicators: relative
error (RE) and relative precision (RP). The smaller RE is,
the littler the deviation degree between the predicted and
actual values is. Meanwhile, the larger RP is, the higher the
fitting degree is. RE and RP are calculated as follows:

RE = ŷi − yi
yi

����

���� × 100%,

RP = 1 − ŷi − yi
yi

����

���� × 100%:
ð19Þ

RE and RP of hollowed core ratio for the three models are
shown in Table 2. The results indicate that for 10 testing sam-
ples, the RP of the RSM model for predicting hollowed core

Initializing particle swarm

Calculating particle fitness

Updating pbest, gbest,
velocity, and position

Meet
constraints?

No

Yes

Finish

Figure 4: PSO algorithm flow.
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ratio are all above 96%, with the maximum value of 99.6%,
the minimum value of 96.8%, and the mean value of 98.5%.
The RP of the RBF model are all above 97%, with the maxi-
mum value being 99.6%, the minimum value being 97.0%,
and the mean value being 98.8%. Furthermore, the RP of
the Kriging model are all above 95%, of which the maximum
value is 98.7%, the minimum value is 95.3%, and the
mean value is 97.2%. Overall, the prediction accuracy of
the three models for hollowed core ratio is high, among
which the RBF model has the strongest prediction ability,
the RSM model is the second, and the Kriging model is
the worst.

Table 3 is the RE and RP of wall thickness difference for
the three models. It shows that the maximum RP of RSM,
RBF, and Kriging models for wall thickness difference is
98.0%, 98.4%, and 98.5%, respectively; the minimum RP is
87.8%, 83.6%, and 81.0%; and the mean RP is 92.9%,
92.4%, and 90.5%. The predictive ability of RSM and RBF
models is similar, while the Kriging model is the worst. Obvi-
ously, the prediction ability of the three models for wall

thickness difference is weaker than that for the hollowed core
ratio.

The comprehensive RP of RSM, RBF, and Kriging models
for hollowed core ratio and wall thickness difference are
95.7%, 95.6%, and 93.9%, respectively, among which the pre-
diction capabilities of RSM and RBF models are high and
very close. Nevertheless, the Kriging model is significantly
worse. The main reason is that the correlation function used
in the Kriging model is a Gaussian, which is characterized by
local interpolation. Compared with wall thickness difference,
the hollowed core ratio of the cooling water pipe is a more
important optimization object. Therefore, the RBF neural
network with a stronger prediction ability of hollowed core
ratio is used to couple the PSO algorithm for the multiobjec-
tive optimization problem.

3.3. Multiobjective Optimization. For this problem, the opti-
mal design requires the hollowed core ratio as large as possi-
ble, and wall thickness difference as small as possible.
However, in actual WAIM optimization, the two objects are
difficult to meet at the same time. Namely, as the hollowed
core ratio increases, wall thickness difference also increases.
Considering that the improvement of any one object is at
the expense of other objects, the optimal design of this prob-
lem is actually a Pareto solution that compromises hollowed
core ratio and wall thickness difference. With the above com-
bined optimization strategy of DOE of Opt LHS, RBF model,
and PSO algorithm, multiobjective optimization on hollowed
core ratio and wall thickness difference is performed. For the
problems of traditional multiobjective optimization, multi-
objective is usually transformed into a single objective.
Nevertheless, there is no need to set the weights and propor-
tionality coefficients of each target artificially with multiob-
jective PSO, which will automatically calculate Pareto
optimal solutions. The number of simulations is confined
in a predetermined value of 511 runs for this case study due
to the computing cost of each simulation and the budget of
time. Based on the results of 511 runs, the Pareto frontier
for hollowed core ratio and wall thickness difference is shown
in Figure 11.

After determining the Pareto frontier, the next step is to
select the appropriate trade-off solution according to the
actual engineering problem. In this problem, the hollowed
core ratio of engine cooling water pipe needs to be large
enough to provide more flow rate for cooling, and wall thick-
ness difference should not be too large. According to the
Pareto frontier, the hollowed core ratio of 58.4% at point P

Figure 5: Simulation result of water filling.
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Figure 6: Effect of short shot size on hollowed core ratio.
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is very large in the whole Pareto solution set, and the wall
thickness difference of 22.9% is also suitable. Therefore, point
P is selected as the best solution, of which the corresponding
process parameters are as follows: delay time, 2.4 s; melt tem-
perature, 563K; mold temperature, 330K; short shot size,
60%; and water pressure, 10MPa.

To verify the best solution of the hollowed core ratio and
wall thickness difference obtained by hybrid optimization

strategy, a confirmation experiment is absolutely necessary.
As shown in Table 4, the comparison between the best solu-
tion and verification value demonstrates that the RE for the
hollowed core ratio is 2.2%. In addition, the RE for wall thick-
ness difference is slightly larger, 3%. The REs of hollowed
core ratio and wall thickness difference are both small, which
fully meet the accuracy requirements. As a result, it is easy to
conclude that the hybrid optimization strategy has good
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Figure 7: Effect of delay time on hollowed core ratio.
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Table 2: The actual value, predicted value, RE, and RP of hollowed core ratio of the three models.

Sample 1 2 3 4 5 6 7 8 9 10 Mean

Actual value (%) 53.8 54.0 54.6 54.3 55.7 54.0 51.9 54.6 53.1 54.0 54.0

RSM predicted value (%) 54.2 54.7 55.3 55.1 56.7 54.2 52.8 55.1 54.8 54.9 54.9

RBF predicted value (%) 54.5 54.6 54.7 53.9 56.5 53.8 52.9 53.9 54.7 54.4 54.4

Kriging predicted value (%) 55.1 56.0 56.1 55.6 57.7 55.2 51.2 55.6 55.6 55.6 55.4

RSM

RE (%) 0.7 1.3 1.3 1.5 1.8 0.4 1.7 0.9 3.2 1.7 1.5

RP (%) 99.3 98.7 98.7 98.5 98.2 99.6 98.3 99.1 96.8 98.3 98.5

RBF

RE (%) 1.3 1.1 0.2 0.7 1.4 0.4 1.9 1.3 3.0 0.7 1.2

RP (%) 98.7 98.9 99.8 99.3 98.6 99.6 98.1 98.7 97.0 99.3 98.8

Kriging

RE (%) 2.4 3.7 2.7 2.4 3.6 2.2 1.3 1.8 4.7 3.0 2.8

RP (%) 97.6 96.3 97.3 97.6 96.4 97.8 98.7 98.2 95.3 97.0 97.2

Table 3: The actual value, predicted value, RE, and RP of wall thickness difference of the three models.

Sample 1 2 3 4 5 6 7 8 9 10 Mean

Actual value (%) 25.7 23.4 24.6 25.0 25.8 27.1 26.7 20.3 23.1 20.3 24.2

RSM predicted value (%) 24.0 24.1 24.1 22.6 27.5 23.8 25.2 22.6 22.5 22.6 24.1

RBF predicted value (%) 23.0 22.8 23.3 20.9 26.2 23.4 23.4 20.9 21.3 20.9 22.6

Kriging predicted value (%) 20.8 20.5 25.5 23.8 28.5 25.5 26.3 23.8 23.8 23.8 24.2

RSM

RE (%) 6.6 3.0 2.0 9.6 6.9 12.2 5.6 11.3 2.6 11.3 7.1

RP (%) 93.4 97.0 98.0 90.4 93.1 87.8 94.4 88.7 97.4 88.7 92.9

RBF

RE (%) 10.5 2.6 5.3 16.4 1.6 13.7 12.4 3.0 7.8 3.0 7.6

RP (%) 89.5 97.4 94.7 83.6 98.4 86.3 87.6 97.0 92.2 97.0 92.4

Kriging

RE (%) 19.0 12.4 3.6 4.8 10.5 5.9 1.5 17.2 3.0 17.2 9.5

RP (%) 81.0 87.6 96.4 95.2 89.5 94.1 98.5 82.8 97.0 82.8 90.5
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Figure 11: Pareto frontier.
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adaptability to multiobjective optimization on hollowed core
ratio and wall thickness difference.

4. Conclusions

In this paper, the residual wall thickness of the cooling water
pipe was simulated by the CFD method. It was concluded
that water pressure, short shot, and melt temperature were
the most critical process parameters influencing residual wall
thickness. Rising water pressure and short shot both would
obviously decrease residual wall thickness, or rather, hol-
lowed core ratio increased. On the contrary, the hollowed
core ratio increased with melt temperature rising. Further-
more, delay time and mold temperature had little influence
on the hollowed core ratio.

DOE of Opt LHS improved balance and spatial filling of
sample points, and it was suitable for sample acquisition in
plastic injection molding. As for the RP comparison of
RSM, RBF, and Kriging models, the RBF model has the high-
est RP for hollowed core ratio. The comprehensive RP for
hollowed core ratio and wall thickness difference of RSM
and RBF models is very close and very high, while the RP
of the Kriging model is relatively low. As a result, RBF was
an effective model to fit the relationship between process
parameters and residual wall thickness.

An efficient optimization methodology coupled with
DOE of Opt LHS, RBF neural networks, and multiobjective
PSO algorithm was adopted in maximizing hollowed core
ratio and minimizing wall thickness difference. The optimi-
zation design requires that the hollowed core ratio is as large
as possible, and the wall thickness difference is as small as
possible. Through the confirmation experiment for the best
solution, it shows that the RE for hollowed core ratio is
2.2%, and the RE for wall thickness difference is 3%. In con-
clusion, the combined optimization strategy can find the
optimal solution of hollowed core ratio and wall thickness
difference in the entire design space, and the accuracy also
meets the requirements for WAIM.
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