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Long time horizons, typical of forest management, make planning more difficult due to added exposure to climate uncertainty.
Current methods for stochastic programming limit the incorporation of climate uncertainty in forest management planning. To
account for climate uncertainty in forest harvest scheduling, we discretize the potential distribution of forest growth under
different climate scenarios and solve the resulting stochastic mixed integer program. Increasing the number of scenarios allows for
a better approximation of the entire probability space of future forest growth but at a computational expense. To address this
shortcoming, we propose a new heuristic algorithm designed to work well with multistage stochastic harvest-scheduling
problems. Starting from the root-node of the scenario tree that represents the discretized probability space, our progressive
hedging algorithm sequentially fixes the values of decision variables associated with scenarios that share the same path up to a
given node. Once all variables from a node are fixed, the problem can be decomposed into subproblems that can be solved
independently.We tested the algorithm performance on six forests considering different numbers of scenarios.(e results showed
that our algorithm performed well when the number of scenarios was large.

1. Introduction

Uncertainty is common in all disciplines that involve de-
cision making. In forestry, planners need to prescribe,
several decades in advance, actions that should be taken in a
forest in order to achieve a given management objective.
(ose actions include the segments of roads that should be
built in a given period to allow hauling, the forest units or
stands that should be treated to reduce the risk of fire, the
stands that should be logged in each time period to produce
timber and secure employment to the local community, etc.
(e most common objective is the maximization of the net
present value subject to environmental, budgetary, and lo-
gistic restrictions [39]. (e prescriptive models allowing to
assign forest units to different actions in different time
periods are known as harvest-scheduling models.

To build harvest-scheduling models, forest planners have
traditionally used expected growth and yield coefficients to
predict future merchantable timber volumes. However,
uncertainties in long-term temperature and precipitation
coupled with increasing wildfire, windstorms, or landslides
due to climate change may affect forest development. (e
traditional approach fails to account for uncertainty in forest
growth and leaves forest planners unprepared in case of
occurrence of any of these uncertainties. (e uncertainty in
forest planning can be addressed by a particular class of
mathematical programming known as stochastic pro-
gramming. One can distinguish between two-stage sto-
chastic programming and multistage stochastic
programming. In two-stage stochastic programming, a
decision is made, and then the uncertainty is revealed and a
recourse action that depends on the revealed uncertainty is
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taken. However, in the case of multistage stochastic pro-
gramming the sequence of decision and uncertainty re-
vealing itself occurs more than once giving therefore more
flexibility to the decision maker to take recourse actions as
uncertainty unfolds progressively.

Multistage stochastic programs are mainly composed of
scenarios and stages. Scenarios are the set of possible future
outcomes of the uncertain parameter, and stages represent
the level at which decisions can be made and/or recourse
actions can be taken. We call “period,” the time that sep-
arates two consecutive stages. Uncertainty unfolds pro-
gressively in each period. Since at the beginning of the
planning, we cannot anticipate which scenarios would un-
fold, we require that the decision made at the first stage must
be the same for all scenarios. (is requirement is known as
nonanticipativity constraints. Nonanticipativity constraints
(NACs) impose that if two scenarios cannot be distinguished
up to any given stage, then the decision made in the two
scenarios up to that stage must be the same. Multistage
stochastic programming has been commonly used to model
uncertainty in forest harvest scheduling because of the long
planning horizon that characterizes forest harvest sched-
uling and the presence of interdependent relationships
between periods such as the maximum contiguous area
harvested from one period to another should not exceed a
given limit. For instance, [41] solved a multistage stochastic
harvest-scheduling model with uncertainty in wood price,
wood demand, and productivity while Alonso-Ayuso et al.
[1] focused on the uncertainty in the price and risk aversion.
Finally, Álvarez-Miranda et al. [2] assessed how key eco-
system services change in forest management if there is
growth uncertainty stemming from climate change.

Although climate change might be one of the biggest
challenges of forest management, it has received little at-
tention in forest harvest planning in part because stochastic
programs, especially multistage stochastic programs, are
considered one of the most challenging classes of optimi-
zation problems to solve [5, 23, 40, 45]. For instance, the
number of scenarios in [2] was limited to 32 although cli-
mate scientists forecast at least four climate pathways [31]
which may translate into hundreds of possible forest
growths.

Real-life applications of multistage stochastic problems
lead to large models that are hard to solve directly [37]. (e
size of the models is directly related to the number of
scenarios used to represent the uncertainty. Although un-
certain parameters may be continuous, to make the problem
suitable for stochastic programming, the discrete realization
of the uncertainty is cast in a structure known as a scenario
tree. In the scenario tree, each node represents a state de-
cision and the branches of the tree represent the realization
of the uncertainty. As more scenarios are included in the
tree, the model will better approximate the entire probability
space of the uncertain parameter [26]. However, increasing
the number of scenarios makes the resulting stochastic
programming models hard to solve. It is therefore necessary
to develop some decomposition algorithms. (e two most
common decomposition methods are Benders decomposi-
tion [7] also known as stagewise decomposition or vertical

decomposition and progressive hedging [36] also called
scenario-wise decomposition or horizontal decomposition.
(e study [38] provided an overview of the algorithms for
stochastic programming decomposition. Additional sum-
mary of different solution methods for stochastic pro-
gramming is available in [16].

Benders decomposition (BD) is a delayed constraint
generation approach for solving mixed integer programs. It
has been mainly applied to two-stage stochastic program-
ming problems with some assumptions on the nature of the
first-stage and second-stage variables. (e authors in [27]
give a summary of conditions for application of BD to two-
stage stochastic programs. According to [15], BD is well
suitable when there is only a small set of constraints that
prevent the decomposition of the problem into blocks. (is
is not the case in forest harvest scheduling characterized by
long planning horizons and constraints such as even flow of
wood and ending inventory linking variables from one
decision stage to another of multistage stochastic programs.
For instance, Egging [15] had limited success when extended
their BD algorithm to multistage stochastic programs. We
acknowledge, however, that there aremultistage applications
where BD had been used [17, 43, 44].

Progressive hedging (PH), on the other hand, was de-
veloped by [36] for convex two-stage stochastic programs
and is proven to produce a global optimal solution for
continuous problems. For nonconvex problems such as
stochastic mixed integer programs (SMIP), the algorithm is
not proven to converge. It relaxes nonanticipativity con-
straints and iteratively solves the stochastic program by
independently solving its scenarios and penalizing the vi-
olation of nonanticipativity constraints. PH is appealing
because it is a method based on scenario-wise decomposi-
tion and thus at each iteration the stochastic program solved
is equivalent to a risk neutral problem that is the same as the
deterministic problem which ignores uncertainty. Conse-
quently, the algorithm can deal with a large number of
scenarios.

Despite its benefits, PH performs poorly for nonconvex
multistage stochastic programs. Several researchers have
proposed PH-heuristics for solving SMIP in different ap-
plications. (e most promising PH-based heuristic explored
is fixing variables that participate in defining non-
anticipativity constraints as they meet consensus (see Sec-
tion 2.2 for definition of nonanticipativity variables). For
instance, Veliz et al. [41] fixed nonanticipativity variables
during PH iterations as they meet consensus. After a given
percentage of variables, 80%, for instance, consent on the
value they should take, the reduced problem, which is the
SMIP with some NAC variables fixed (named here and after
reduced extensive form, REF), is then solved directly. (e
inconvenience of this approach is that the reduced extensive
formmay be infeasible because toomany variables have been
fixed (for proof, see Appendix). (e infeasibility occurs
when there is uncertainty in the yield of the forest such as in
the case of climate change. In this case, the algorithm wasted
considerable time iterating. On the other hand, solving the
reduced extensive form problem can still be difficult if the
number of variables fixed is too low. (e third limitation
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stems from the fact that the reduced form problem is not
separable and thus solving it cannot be parallelized. Simi-
larly, for a two-stage problem in resource management, the
authors in [42] proposed a scheme for fixing variables. (eir
algorithm applicability was limited to a special class of re-
source management where constraints are one sided. (ey
proposed “slamming” technique which forces non-
anticipativity variables to converge, although they have not
met consensus yet. (ey showed that this technique
accelerated PH convergence. Recently, the authors in [30]
proposed fixing variables as well. In their case, they had both
binary and continuous decision variables and proposed
therefore to fix the binary NAC variables, and the resulting
linear stochastic program, since convex, can easily be solved
using progressive hedging.

Aside from fixing variables, researchers have investigated
other strategies for improving PH application to nonconvex
problems. Some of the strategies are only applicable to two-
stage stochastic programs. For instance, Atakan and Sen [4]
proposed a branch-and-bound algorithm for stochastic mixed
integer programs and tested the algorithm on stochastic
server location problem. Similarly, Barnett et al. [6] proposed
a combination of branch-and-bound and PH using the for-
mer as a wrapper. In the same context, Gade et al. [19]
proposed an algorithm for computing the lower bound of PH
for two-stage SMIP. Other researchers invested into reducing
the duality gap that arises from relaxation of the non-
anticipativity constraints [9, 19]. In the same spirit, Boland
et al. [10] looked into the minimum number of non-
anticipativity constraints that need to be reinforced to ensure
the quality of SMIP.(e authors in [8, 33] looked at reducing
the number of scenarios by clustering them into bundles that
can be solved independently. All these algorithms remain
dependent on some assumptions of the nature of the first-
stage variables or the second-stage variables, or both. In
addition, their applicability is limited to two-stage SMIP and
specific to certain disciplines. However, the main challenge
that remains is that PH does not converge for nonconvex
problems which are common in forest planning. In forest
planning, there are some problems that possess only binary
decision variables (there could be some accounting contin-
uous variables which do not participate in decision making).
Some of those problems are found in spatial explicit forest
management planning where the decision variables are the
forest units that should receive a specific treatment. (is class
of problems with pure binary decision variables is the focus of
this research.

In this work, we aim at overcoming some limitations that
are posed by using PH for multistage stochastic harvest-
scheduling problems with uncertainty in the yield. (e
objective is to have a heuristic that efficiently solves mul-
tistage stochastic harvest scheduling with little loss of op-
timality. (i) We propose decomposing SMIP into scenarios
and solving them by a special heuristic form of progressive
hedging that is completely parallelizable. We capitalize on
the idea of fixing variables as they meet consensus and
extend it so that the reduced extensive form problem is
parallelizable. Our form of PH heuristic exploits the
structure of the scenario tree by fixing variables starting from

the root-node. (ii)We assess the impact of fixing variables on
the value of the optimal solution. (iii) We investigate as well
some acceleration strategies that allow to accelerate the
algorithm by extending the slamming technique proposed
for two-stage stochastic programs by [42] to multistage
stochastic programming. (iv)We use climate change to show
one source of uncertainty in the yield although there can be
other sources of yield uncertainty such as the errors in
measurement of forest growth or uncertainty of future yield
due to prediction models. (e algorithm is suitable as well to
price uncertainty. Our aim is not to model perfectly the
uncertainty in forest growth due to climate change but to
provide an algorithm that can be used for real-life appli-
cation in stochastic forest harvest scheduling.

(e remainder of this paper is organized as follows. In
Section 2, we provide a background on stochastic pro-
gramming problem formulation and formally introduce the
progressive hedging algorithm. In Section 3, the special form
of PH for solving forest harvest planning is presented. We
provide in Section 4 the computational experiment and the
interpretation of the results. Finally, Section 5 concludes the
paper and presents the limitations of the algorithm and
future work.

2. Background

To illustrate variable fixation variant of the progressive
hedging algorithm, it is necessary to represent the scenario
tree that is the abstraction of the realization of uncertainty in
growth and yield and formerly introduce progressive
hedging (PH) algorithm.

2.1. Scenario Representation. (e stochastic program rep-
resentation can be visualized as a tree, the so-called “scenario
tree.” It can be represented as follows. LetT denote the set of
periods in the planning horizon with T � |T| being the
number of periods. In the tree, a node represents the re-
alization of the uncertain parameter and variable at a given
time period. Let n and N describe the node and the lexi-
cographically numbered set of nodes 1, . . . , |N|{ } in the tree,
respectively. From each node n, for t ∈ T∖ T{ }, there is at
least one branch leading to another node m with a condi-
tional probability pm with m ∈ In, that is, the set of nodes,
immediate successors of the node n. 􏽐m∈In

pm � 1. We
denote byNt the subset of nodes belonging to period t such
thatN � ∪ t∈TN

t andNt ∩Nt+1 � Φ for t ∈ T∖ T{ }. Let Ω
represent the finite set of representative scenarios in the tree.
A scenario ω ∈ Ω is a particular realization of the uncertain
parameter represented as a path from the root-node to a leaf-
node. Each scenario ω has an associated probability or
weight denoted by wω. Note that 􏽐ω∈Ωw

ω � 1. Similarly, let
Nω represent the set of nodes forming the scenario ω. In
other words, Nω is the set of nodes in a path from the root-
node to a leaf-node. (ere is a number of scenarios that
traverse each node. Let Ω(n) denote the set of scenarios that
traverse the node n. We have Ω(1) � Ω, Ω(n)∩Ω(n′) �

Φ∀n≠ n′ and n, n′ ∈Nt. Finally, let 􏽥S
n denote the set of

successor nodes to the node n, for n ∈N. We have N1 is a
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singleton and 􏽥S
n

� Φ for n ∈NT (leaf-nodes). Furthermore,
let αn denote the immediate ancestor node of node n for
n ∈N∖ 1{ }, since n � 1 is the root-node of scenario tree. To
introduce nonanticipativity, we need to define η as the set of
nodes having more than one leaf-node as successor
(| 􏽥S

n ∩NT|> 1⟹ n ∈ ηA). For instance, in Figure 1, nodes
2 and 3 have as leaf-node successors the set of nodes {5, 6}
and {7}, respectively. (erefore, node 2 ∈ η but node 3 does
not. Finally, Let Xω represent the matrix of variables for all
t ∈ T for the scenario ω ∈ Ω. As the result, the stochastic
program can be stated as follows:

max
X

􏽘
ω∈Ω

w
ω
fω(X), (1)

s.t. X
ω ∈ C

ω∀ω ∈ Ω, (2)

X
ω

� X
ω′

, ∀ω,ω′ ∈ Ω(n), ω≠ω′, n ∈ η. (3)

Equation (1) maximizes the expectation from all sce-
narios. Equation (2) says that all the solutions should be
feasible with respect to the constraints of the scenario. Cω is
the feasible set for scenario ω. Finally, equation (3) imposes
the nonanticipativity constraints (NACs) which require that
the solution up to a period t from two scenarios should be
the same if the two scenarios are indistinguishable up to
period t. We call this model the extensive form (EF).

Notice that we could write constraint (3) in a different
form. Let Xω

n : � xω
1n, xω

2n, . . . , xω
sn􏼈 􏼉 be the vector of variables

at node n ∈ η under scenario ω, and xω
sn is the state variable

of the forest unit or “stand” s. Let Zn represent a vector of
binary variables at node n. Imposing constraint (4) is
equivalent to reinforcing NAC. Progressive hedging exploits
the following formulation:

X
ω
n − Zn � 0, ∀ω ∈ Ω(n), n ∈ η. (4)

2.2. Progressive Hedging. Progressive hedging (PH) is a
scenario-based decomposition algorithm proposed by [36]
for stochastic programming models. (e idea of progressive
hedging is to relax the nonanticipativity constraints (NACs,
equations (4)) in an augmented Lagrangian manner
[18, 22, 35, 36] so that each scenario (subproblem) can be

solved independently. (is assumes that solving subprob-
lems independently is much easier and faster. Non-
anticipativity constraints require that values of variables that
share the same ancestor nodes should be equal across sce-
narios up to that node. In other words, if two scenariosω and
ω′ are indistinguishable up to period t, then the solutions of
the two scenarios should be the same up to that period. For
instance, in Figure 2, each variable at time t � 1 should be
the same across all the five scenarios and values of variables
in period t � 2 should be the same for scenarios 1 and 2.
However, these constraints are not reinforced when sce-
narios are solved independently. (rough progressive pe-
nalization of violations of NAC, the algorithm is proven to
ultimately converge to the optimal solution for convex
stochastic programs. In a nutshell, progressive hedging
follows the following steps:

(1) Solve each scenario without penalization
(2) Compute the average (z) for each variable
(3) If solutions have sufficiently converged, then stop
(4) Update penalization terms

λ � ρ(x − z) + λ
(5) Solve scenarios with penalization terms
(6) Go to step 2

Algorithm 1 describes progressive hedging for multi-
stage stochastic programming. (e inputs of the algorithm
are the penalty factor ρ, the maximum number of iterations
kmax, and the termination criterion ϵ which indicates the
level of consensus of nonanticipativity constraints that is
acceptable. ε � 0 means that the algorithm stops if all the
nonanticipativity constraints are satisfied. In the algorithm,
line 2 initializes a Lagrangian multiplier (λ) for each NAC
constraint. A Lagrangian multiplier is associated with each
equation (4). To compute the average, of each variable, we
need to have the conditional probability associated to each
branch of the scenario tree in the detached form (Figure 2).
Equation (5) computes the conditional probability from
node n to node m which is an immediate successor. (at
probability (qωnm) is proportional to the number of leaf-
nodes associated with node m because the number of leaf-
nodes informs on the number of scenarios passing by node
m. For instance, from Figure 2, q112 � q212 � (p2/2), q125 � p5,
and q313 � p3. Lines 6 and 17 compute the average of each
variable at node n ∈ η. Lines 7 and 18 update the Lagrangian
multiplier associated with each nonanticipativity constraint.
Line 14 computes the NAC convergence euclidean distance.
(is distance is zero if all the NACs are satisfied:

q
ω
nm �

pm

|Ω(m)|
, ∀m ∈ In, m ∈Nω. (5)

3. Variable Fixation

Progressive hedging variable fixing (PHVF) algorithm is
identical to the classic progressive hedging algorithm (Al-
gorithm 1). However, instead of letting variables converge
progressively, PHVF fixes variables as they converge. Line 10
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Figure 1: Scenario tree representation of stochastic programming.
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in the progressive hedging algorithm (Algorithm 1) is
replaced by Algorithm 2. (e algorithm starts by fixing
variables in the root-node as they converge. For instance, for
a given node n ∈ η, if a variable has a value of 1 across all
scenarios ω ∈ Ω(n), that variable will be fixed to 1 across all
those scenarios. (is process is better described in Algo-
rithm 2. However, unless a variable belongs to the root-node,
it can only be fixed if all variables in the immediate ancestor
αn have been entirely fixed. (e first thing to notice is that

once the scenario tree is decomposed, there are more sce-
narios traversing the root-node (Figure 2). In addition, as we
move away from the root-node toward the leaf-nodes, there
is a fewer number of scenarios passing by any given node.
Hence, if for instance, there are three branches originating
from the root-node (as displayed in Figure 2), |I1| � 3, then
after fixing the root-node, we get three distinct subextensive
forms (SEFs) (Ω(2), Ω(3), and Ω(4)) that can be solved
independently (Figure 3). Furthermore, the three SEFs are
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Figure 2: Example of scenario representation in a compact form (a) and in a detached form (b). (e red-dotted ellipses show the
nonanticipativity constraints that need to be imposed.

(1) function ph ρ, kmax, ε
(2) Initialize λ0,ω

n � 0, ∀n ∈ η, ∀ω ∈ Ω(n)

(3) for ω ∈ Ω do
(4) x0,ω � argmaxx fω(x): x ∈ Cω􏼈 􏼉

(5) end for
(6) z0n � 􏽐ω∈Ω(n)q

ω
nmx0,ω

n , ∀n ∈ η, ∀m ∈ In

(7) λ1,ω
n � λ0,ω

n + ρ(x0,ω
n − z0

n), ∀n ∈ η, ∀ω ∈ Ω(n)

(8) for k � 1 to kmax do
(9) for ω � 1 to |Ω| do

(10) xk,ω � argmaxx gω(x) � fω(x) − λk,ω(x − zk− 1) − (ρ/2)‖x − zk− 1‖
2
2: x ∈ Cω􏼚 􏼛

(11) ϕk
ω � maxxgω(x)

(12) end for
(13) ϕk � 􏽐ω∈Ωw

ωϕk
ω

(14) if
������������������

􏽐ω∈Ωw
ω‖xk,ω − zk− 1‖

2
2

􏽱

< ε then
(15) return (xk, λk,ϕk)

(16) end if
(17) zk

n � 􏽐ω∈Ω(n)q
ω
nmxk,ω

n , ∀n ∈ η, ∀m ∈ In

(18) λk+1,ω
n � λk,ω

n + ρ(xk,ω
n − zk

n), ∀n ∈ η, ∀ω ∈ Ω(n)

(19) end if
(20) return (xkmax, λkmax, ϕkmax)

(21) end function

ALGORITHM 1: Progressive hedging multistage.
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much easier to solve compared to the original problemΩ(1).
(e algorithm description exploits that property of the
scenario tree.

3.1. Algorithm Description. During PHVF, at each iteration
and for each scenario, the problem online 10 of Algorithm 1
needs to be solved. We refer to Cω as the feasible set created

by constraint (2) for each scenario. Note that if the un-
certainty is only in the objective function (for instance, price
uncertainty), then Cω � Cω′ , ∀ω≠ω′. In this case each so-
lution of ω is feasible for Cω′(ω≠ω′). Since z(·) is the
average of the values of the variables across scenarios (see
line 6 of Algorithm 1), if its value is 1 (or 0), then it means all
the scenarios met consensus that the variable should take a
value of 1 (or 0), respectively. (is realization is exploited in
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t = 1 t = 2 t = 3 t = 2 t = 3
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3 7
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9

Ω(2)

Ω(3)

Ω(4)

Figure 3: Structure of stochastic problem after fixing the root-node (node 1). (e three subextensive forms (SEFs) denoted by Ω(2), Ω(3),
and Ω(4) are independent.

(1) function fixVariables θ,ω, k

(2) stop� False;
(3) for t � 1 to |T| do
(4) n: n ∈Nt ∩ η∩Nω
(5) if αn is fixed OR n is root-node then
(6) for i � 1 to number of stands do
(7) if zn,i ≥ θt then
(8) Fix Xω

i,t to 1
(9) else if zn,i ≤ 1 − θt then
(10) Fix Xω

i,t to 0
(11) else
(12) stop�True
(13) end if
(14) end for
(15) end if
(16) if stop is True then
(17) break
(18) else if n not marked
(19) Mark n as fixed
(20) end if
(21) end for
(22) xk,ω � argmaxx gω(x) � fω(x) − λk,ω(x − zk− 1) − (ρ/2)‖x − zk− 1‖

2
2: x ∈ Cω

∗􏼚 􏼛

(23) return fixed nodes
(24) end function

ALGORITHM 2: Variable fixation module.
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Algorithm 2 if it is supposed that the slamming factor
θt � 1, ∀t. (e algorithmmoves to the node at the next stage
and performs variable fixation if that node belongs to the set
of nonanticipativity nodes η and its predecessor is entirely
fixed. (e new feasible set created by constraint (2) and
fixing some variables is denoted by Cω

∗ . Note that this
subproblem is much smaller compared to the original
subproblem. In Algorithm 2, the inputs are θ, a function
defining the value of the slamming factor depending on the
stage t(0≤ θt ≤ 1), see Section 3.3 for more information on
this parameter; ω which is the scenario; and k which in-
dicates the iteration.

Fixing variables impact the optimality since some var-
iables may be fixed to values that they may not have taken in
the optimal solution. Hence, the algorithm has an impact on
the optimality. (e objective of fixing variables is not to
completely solve the model through the procedure but to
obtain a reduced extensive form (REF) that is tractable. Let τ
denote the percentage of NAC variables that are fixed before
switching to solving the REF. τ is a proxy to the number of
nodes fixed. (e question is what is the appropriate τ that
will make the REF tractable while not severely impacting the
optimality? (e answer to this question is investigated in
Section 4.4.1.

3.2. Parallel Implementation. Algorithm 3 is designed for
parallel implementation of PHVF. Hence, line 10 from
Algorithm 1 has to be replaced by Algorithm 3. At each
iteration of progressive hedging, the subproblems can be
solved in parallel because they are independent. However,
fixing τ variables and switching to solve the reduced ex-
tensive form (the extensive form with some variables fixed,
REF) is not parallelized. Nonetheless, since our algorithm
(PHVF) fixes variables from the root-node to the leaf-nodes,
after fixing each node, the problem can be separated into
subextensive forms (SEFs) that can be solved independently.
For example, as illustrated in Figure 3, after fixing the root-
node, we get three separate SEF models. Recursively, each
subextensive form model can be solved through variable
fixation leading to reduced subextensive form (RSEF). Each
RSEF can then be solved directly if its size is deemed
tractable. At the end, the solutions from all the REFs can be
combined to get the solution of the stochastic program.

3.3. Acceleration Methods. Note from Algorithm 2 that if
θt � 1, then we fix a variable to 1 (or alternatively to 0) only if
all scenarios of interest agree that the value of the variable
should be 1 (or 0 alternatively), respectively. (is require-
ment is hard to meet when dealing with hundreds of sce-
narios, especially for the root-node variables which are
replicated in all the scenarios. A variable may have the same
value in all but one scenario for many iterations. Hence, that
scenario slows the convergence. To avoid such a situation,
“slamming” [42] forces variables to converge if the per-
centage of concordant scenarios for that variable reaches a
threshold θ ≤ 1. However, instead of defining a scalar θ as in
[42], we defined θt � f(θ0, Q(t)) as a function that depends
on the stage because if a low value of θ is acceptable for the

root-node, such a value is not acceptable when closer to the
leaf-nodes (to avoid infeasibility). θ0 is the initial value of θ,
whereas Q(t) can be a linear or exponential function term
that increases θ value as a function of the t. Notice that if the
uncertainty is in the objective function and we apply
slamming, then the problem will always be feasible. In our
case, preliminary tests allowed us to find the range of ac-
ceptable values of θ0. Low values of θ0 led to infeasibility.

In the same line of thought, even with slamming, there is
a chance that the algorithm is locked in a situation where
there is no improvement of NAC convergence for many
consecutive iterations. We define a “cascading” effect which
lowers the value of θ to θmin for one iteration if the algorithm
does not improve (convergence of some nonanticipativity)
for α consecutive iterations. (is behavior allows to avoid
getting stuck, since lowering θ allows to fix some variables
for which almost all the scenario already reached consensus.
For those variables, the percentage of variables that agree on
the value the variable should take is close to θt and the
consensus could eventually be reached after several itera-
tions. We have noticed that the cascading effect may lead to
infeasibility because it may be forcing some variables to a
value they would not take otherwise. When infeasibility
arises, we roll back and eliminate the cascading effect. In
general, there is a tradeoff between infeasibility and the value
of θ. Low values of θ lead to a risk of infeasibility while
raising that value may make the acceleration methods less
efficient.

3.4. Stopping Criteria. In the case of classic progressive
hedging, the algorithm stops because we have reached an
acceptable level of consensus for NAC or because all the
NACs are satisfied. (e algorithm terminates as well if the
maximum number of iterations (kmax) is reached. In our
algorithm, we keep these two stopping criteria, although we
know that they may never be reached. We instead rely on the
fact that at some points, many nodes will be fixed (NAC
consensus is reached for some nodes) and the reduced
subextensive forms can be solved directly. (e number of
NAC consensus reached is checked through the parameter τ
which is the percentage of variables fixed. When the per-
centage of variables fixed is greater than or equal to τ, the
algorithm switches to solve the REF or RSEF.

4. Numerical Experiment

We describe here an empirical performance analysis of our
proposed algorithm. For easiness to follow our experiment
and replicate the results, we formulate the stochastic version
of the so-called “Model I” of forest harvest scheduling.

4.1. Problem Definition and Formulation

Indices

ω,ω′: scenario
s: stand
t: time period
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Sets

S: set of stands
Ω: set of scenarios
Ω(n): set of scenarios passing by the node n

η: set of nodes on which NAC should be reinforced
Nt: set of nodes at stage t

T: set of time in the planning horizon

Parameters

rt: profit from selling wood in period t ($/mbf). It is
the discounted profit that includes selling cost
cst: cost of harvesting and hauling wood from stand s

in period t ($). It is the discounted cost
yω

st: volume of wood harvestable per area from stand s

in period t according to scenario ω (mbf/ac). (is
volume depends on the climate that materializes;
therefore, it is a parameter that depends on the sce-
nario ω
as: area of stand s (acres)
agest: age of stand s at the end of the planning horizon
if harvested in year t

ages·: current age of stand s

ages0: age of stand s if not harvested during the
planning horizon
fmin: allowable percentage of decrease of volume
harvested from one period to another
fmax: allowable percentage of increase of volume
harvested from one period to another
wω: probability or weight of scenario ω

Variables

xω
st: binary variable taking a value of 1 if stand s should

be harvested in period t according to scenario ω, and 0
otherwise
nω

s : binary variable: 1 if management unit s should not
be harvested during the planning horizon under
scenario ω, and 0 otherwise
Hω

t : accounting variable storing the volume of wood
harvested in period t according to scenario ω (mbf):

max 􏽘
ω∈Ω

w
ω

􏽘
t∈T

rtH
ω
t − 􏽘

s∈S
cstx

ω
st

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (6)

which is subject to

n
ω
s + 􏽘

t∈T
x
ω
st � 1, ∀s ∈ S, ∀ω ∈ Ω, (7)

􏽘
s∈S

asy
ω
stx

ω
st � H

ω
t , ∀t ∈ T, ∀ω ∈ Ω, (8)

1 − fmin( 􏼁H
ω
t ≥H

ω
t+1, ∀ω ∈ Ω, ∀t � 1, . . . , |T| − 1, (9)

1 + fmax( 􏼁H
ω
t ≤H

ω
t+1, ∀ω ∈ Ω, ∀t � 1, . . . , |T| − 1,

(10)

􏽘
s∈S

as 􏽘
t∈T

agestx
ω
st + ages0n

ω
s

⎡⎣ ⎤⎦≥ 􏽘
s

asages., ∀ω ∈ Ω,

(11)

x
ω
st � x

ω′
st , ∀ω≠ω′;ω,ω′ ∈ Ω(n); n ∈ η; t � t|n ∈Nt

􏽮 􏽯;

∀s ∈ S,

(12)

x
ω
st, n

ω
s � 0, 1{ }, H

ω
t ∈ R

+
. (13)

Expression (6) maximizes the profit from timber harvest
from all scenarios weighted by their respective probabilities.
Constraints (7) require that a stand is at most harvested once
during the planning horizon. We use the variable ns to
capture stands that are not prescribed to be harvested during
the whole planning horizon. We need that variable to
compute the average ending age of the forest as shown in
constraints (11). Constraints (8) compute the volume har-
vested in each period during the planning horizon. It uses
the parameter yω

st which values depend on the forest growth
scenario ω of interest. Note that the set of constraints (8) is
not necessary. We could have written the same model
without using that set of constraints. However, doing so
would require rewriting constraints (9) and (10), and finally,
it would negatively affect the readability of the model.
Constraints (9) and (10) impose the even flow constraints so
that the volume harvested from one period to another re-
main within an allowed fluctuation range. Constraints (11)
require that on average, the forest at the end of the planning
horizon is at least as old as the forest at the beginning of the
planning horizon. Finally, constraints (12) impose the
nonanticipativity constraints. It requires that for each stand
s, at time t, if two scenarios are indistinguishable, then the
decision should be the same for the two scenarios at that
time. If Nω ∩Nω′ ≠Φ, then there exists t such that the two
scenarios are indistinguishable at t. Constraints (13) enforce
that the decision variables are binary, and the accounting
variables are continuous. We remind the reader that vari-
ables Hω

t are not required for this model.

4.2. Climate Change Data. (e potential mean annual in-
crement, which is an indicator of forest growth in a year
might change in the Pacific North West because of climate
change. (e change depends on temperature, precipitation,
and air moisture content, all driven by human activities and
economic development [28]. In addition, the change is not
geographically uniform. Hence, the change tends to be
negative in Oregon compared to Washington State. Simi-
larly, the change tends to be negative in low altitudes in
Oregon. We used the data from [28] which forecast the
potential mean annual increment change (pMAI) by the year
2100. (e pMAI (m3/ha/year) is the potential change in
forest growth that will be observed in a given year; hence, it is
a volume given as a function of time and area. We assumed
linear change of the growth from now until that year. For
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instance, the growth change for next two decades is the
double of the growth change for the next decade.(e climate
paths defined in the Pacific Northwest are A2, A1B, B1, and
Commit (or C). Tables 1 and 2 present the values of potential
mean annual increment change for each one of the climate
paths. In Table 2, climate paths D1 to D4 are artificial climate
paths that suppose higher pMAI. We built forest growth
scenarios by assuming it is possible to transit from one
climate path to another because of mitigation or intensifi-
cation of climate change due to human actions.

4.3. Experimental Design. (e experiments were conducted
under a DELL desktop computer running onWindows with
Intel(R) Core(TM) 2 Quad CPU @ 3.70GHz and 8GB of
memory. During PHVF iterations, each scenario is solved at
optimality gap of 1%.(is is a premature stop. Nevertheless,
this criterion proved to accelerate solution time for each
scenario. Furthermore, the last solutions of a mixed integer
program are the most difficult ones with no to little im-
provement of the objective function value. All the models
were solved using IBM ILOG CPLEX 12.6 (CPLEX, [12]).
(e memory allocated for storing the nodes was 3,000MB,
and the nodes were set to be stored in a compressed format
on the hard drive. All other parameters were left to their
default values. (e code was implemented in Java 10 using
Concert Technology of CPLEX.

For parallel computation, we used the paradigm of
master-workers. (e master is in charge of coordinating the
PHVF algorithm while distributing the task of solving in-
dividual submodels or REF to the workers. Each worker
sends back its solution upon completion. (e workers
compete for access to the memory. (erefore, the choice of
the number of workers must be judicious to avoid the
overhead which is the amount of time required to coordinate
parallel tasks, as opposed to doing useful work. Preliminary
experiments showed that two workers was the optimal
number given the configurations of the computer. (e
general framework of the model is presented in Figure 4.(e
input data contain the information on the forest, the climate
change (growth change), and the regulations that ought to be
met by the harvest planning. (e input is fed to the PHVF

module that is the master governing the optimization
process. (e workers are the ones interacting with the op-
timizer (CPLEX in this case). (ey send the model to the
optimizer which returns the solution. (e advantage of this
framework is that we could change the optimizer without
having to readapt our algorithm. At the end, the output
module collects the harvest planning and informs the de-
cision making.

Forest growth scenarios were generated using the in-
formation on the growth change reported in [28] (see Ta-
bles 1 and 2). We assumed that due to climate change and
climate change mitigation efforts, it is possible to transition
from one climate path to another in two consecutive periods.
Hence, for instance, it is possible to transition from climate
path A2 in year 2020 to climate path B1 in year 2030. We
further assume that the probability of transiting from one
climate path to the other is the same. As result, the scenarios
are considered equally probable. Note that this assumption
does not have much incidence on the performance of the
algorithm. Based on the number of scenarios generated, we
defined small, medium, and big instances. (e small in-
stances have 64 scenarios (1× 4× 4× 4×1) which is four
branching for the first three periods. (e medium instances
have 256 scenarios which correspond to four branching for
the first four periods (1× 4× 4× 4× 4). For small and me-
dium instances, pMAI corresponding to each climate path is
reported in Table 1. (e big instances have 512 scenarios
made of eight branching for the first three periods
(1× 8× 8× 8×1). (e in-depth description of the scenario
tree generation methods and its quality are beyond the scope
of this research. (e interested reader could refer to

(1) function PHVF θ,Ω(j), k

(2) fixed nodes� fixVaribles((θ,ω, k), ∀ω ∈ Ω(j))
(3) if problem small enough then
(4) Solve reduced extensive form.
(5) else
(6) for n in fixed nodes which successor are not fixed do
(7) for m ∈ In do
(8) PHVF(θ,Ω(m), k + 1)

(9) end for
(10) end for
(11) end if
(12) return xω

(13) end function

ALGORITHM 3: PH variable fixing.

Table 1: Value of pMAI (m3/ha/year) for small and medium
instances.

Forests
P1 P34 P36 P75 P83 P100

A2 0.5 3.1 − 0.3 1.8 0.4 2.1
A1B 0.4 2.5 − 0.3 1.6 0.3 1.6
B1 0.4 1.3 0.0 1.0 0.3 1.0
C 0.2 0.2 0.1 0.2 0.1 0.3
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[11, 14, 21, 24, 25, 29, 33] and more importantly [34] who
describe scenario generation in the forest management
framework. We tested our algorithm on six different forests
with three being real forests, and the data of which are
publicly available1 (P1, P34, P36). (e other three were
computer-generated forests (P75, P83, P100). (e six forests
are set to be located in three different altitude classes. (e
forests are supposed to be located in Oregon and in
Washington State. (e values of pMAI for the six forests for
large instances are reported in Table 2. Table 3 shows the
characteristics of the forests and the scenario instances. In
the tables, values show the potential mean annual increment
change by 2100. Hence, negative values mean there will be a
decrease in forest growth, whereas positive values mean that
there will be an increase in forest growth.

(e medium instances were used as reference to in-
vestigate how many variables should be fixed in order to
have a problem that is computationally tractable. For that
purpose, we solved the stochastic models, using the serial
version of our algorithm (Algorithms 1 and 2), setting τ to
just 20%, 40%, 60%, and 70% before switching to solving the
reduced extensive form. τ � 20% means some variables are
fixed but the root-node is not completely fixed, and τ � 40%
means that all the root-node variables are completely fixed
and some variables from the second period nodes are fixed
(as stated before, τ is proxy to the number of nodes fixed.
(is scheme is possible because there are 25% of NAC
variables at each stage and thus at the root-node as well).

We made the experiment by allocating 15, 30, 45, and 60
minutes for each problem. (e time is chosen to allow the

Table 2: Values of pMAI (m3/ha/year) of all the six forests for large instances.

A2 A1B B1 C D1 D2 D3 D4
3.1 2.5 1.3 0.2 4.0 5.0 6.0 7.0

PHVF

Workers

Input
Output

Optimizer

Settings Prescription

ResultsTasks

Model

Solution

Scenario tree(i)
Climate data(ii)
Stand information(iii)
Other information(iv)

Schedule tasks(i)
Analyze results(ii)
Update penalty(iii)
Check stopping(iv)

Harvert blue print(i)
Statistics(ii)

CPLEX(i)
Solve model(ii)

Build model(i)
Collect results(ii)

Figure 4: Framework of the PHVF algorithm for harvest scheduling under climate change.

Table 3: Description of problem size.

Forest |Ω| Binary cols Total cols Rows Nonzeros Stands

P1
64 6,552,015 6,552,335 6,349,760 61,375,488

1,363256 62,209,423 62,210,703 61,747,968 66,199,808
512 64,286,635 64,289,195 62,798,592 614,320,640

P34
64 612,960 613,280 69,024 633,472

32256 651,872 653,152 644,288 6,150,272
512 6,100,640 6,103,200 672,704 6,322,560

P36
64 636,045 636,365 623,616 696,576

89256 6,144,269 6,145,549 6,117,248 6,431,872
512 6,279,905 6,282,465 6,189,440 6,920,576

P75
64 6,121,500 6,121,820 677,632 6,311,808

300256 6,486,300 6,487,580 6,387,328 61,400,832
512 6,943,500 6,946,060 6,621,568 63,288,576

P83
64 6,121,500 6,121,820 677,632 6,311,104

300256 6,486,300 6,487,580 6,387,328 61,398,016
512 6,943,500 6,946,060 6,621,568 63,277,312

P100
64 6,121,500 6,121,820 677,632 6,310,400

300256 6,486,300 6,487,580 6,387,328 61,395,200
512 6,943,500 6,946,060 6,621,568 63,266,048
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effect of τ to manifest itself. (e tests were run with five
repetitions, and the average of the objective function value
was reported. Notice that if the time is too long, then
eventually all problems can be solved, even the extensive
form. Conversely, if the time is too short, then PHVF may
not have enough time to finish fixing variables before the
time limit and hence low values of τ will be favored. During
the whole experiment, we defined θt � min 0.999,{

1.05(t− 1)θ0}. As results, for the first stage (t � 1), θ1 � θ0.
Similarly, we defined θmin � max 0.75, θt − 0.05t􏼈 􏼉. (ese
values were defined from empirical experimentation.

For assessment of our algorithm performance, each
problem was solved using our algorithm (PHVF) and
comparing that solution to the one obtained by CPLEX
solving directly the EF for the equivalent wall clock time. In
addition, we report the optimality gap produced by CPLEX

Table 4: Effects of τ and allocated time for the forest P1.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P1 1000000

15

20 1 6 0.95 371,524,817 —
40 9 6 0.95 386,068,433 3.9
50 18 6 0.95 T NA
60 20 6 0.95 T NA
70 21 6 0.95 T NA

30

20 1 6 0.95 373,450,417 —
40 9 6 0.95 386,156,779 3.4
50 18 6 0.95 385,676,118 3.3
60 20 6 0.95 385,394,686 3.2
70 21 6 0.95 385,258,771 3.2

45

20 1 6 0.95 375,427,413 —
40 9 6 0.95 386,156,779 2.9
50 18 6 0.95 385,676,118 2.7
60 20 6 0.95 385,394,686 2.7
70 21 6 0.95 385,258,771 2.6

60

20 1 6 0.95 375,804,390 —
40 9 6 0.95 386,156,779 2.8
50 18 6 0.95 385,676,118 2.6
60 20 6 0.95 385,394,686 2.6
70 21 6 0.95 385,258,771 2.5

T: termination because PHVF ran out of time while iterating; NA: not applicable; ρ: penalty factor; τ: percentage of variables fixed; α: cascading factor; θ0:
initial slamming factor.

Table 5: Effects of τ and allocated time for the forest P34.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P34 10000

15

20 1 10 0.95 1,333,129 —
40 1 10 0.95 1,332,692 − 0.0
50 6 10 0.95 N NA
60 9 10 0.95 N NA
70 18 10 0.95 1,347,152 1.1

30

20 1 10 0.95 1,344,498 —
40 1 10 0.95 1,344,260 − 0.0
50 6 10 0.95 N NA
60 9 10 0.95 N NA
70 18 10 0.95 1,347,491 0.2

45

20 1 10 0.95 1,345,620 —
40 1 10 0.95 1,345,761 0.0
50 6 10 0.95 N NA
60 9 10 0.95 N NA
70 18 10 0.95 1,347,555 0.1

60

20 1 10 0.95 1,346,799 —
40 1 10 0.95 1,346,489 − 0.0
50 6 10 0.95 1,343,802 − 0.2
60 9 10 0.95 N NA
70 18 10 0.95 1,347,759 0.1

N: terminated because could not find feasible solution; NA: not applicable; ρ: penalty factor; τ: percentage of variables fixed; α: cascading factor; θ0: initial
slamming factor.
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and the gain which is calculated according to gain �

(PHVF − EF/EF) where EF is the objective function value
obtained by solving directly the extensive form model and
PHVF is the solution obtained by PHVF algorithm for the
same runtime. For medium and large instances, we report as
well the EF value after solving the EF problems for 86,000
seconds (24 hours).

4.4. Results of the Experiment. In addition to the number of
scenarios, SMIP size grows as well with the number of units
(stands) because we need to define the nonanticipativity
constraint for each stand at the time periods on which
constraints (12) should be imposed. (e problem size in-
creases almost by tenfold when going from small instances to
the medium ones. (e smallest problem in this experiment

Table 6: Effects of τ and allocated time for the forest P36.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P36 5000

15

20 1 10 0.9 4,468,454 —
40 22 10 0.9 4,513,717 1.0
50 41 10 0.9 4,532,819 1.4
60 51 10 0.9 4,522,013 1.2
70 60 10 0.9 4,525,669 1.3

30

20 1 10 0.9 4,570,040 —
40 22 10 0.9 4,534,327 − 0.8
50 41 10 0.9 4,534,156 − 0.8
60 51 10 0.9 4,523,000 − 1.0
70 60 10 0.9 4,530,669 − 0.9

45

20 1 10 0.9 4,616,899 —
40 22 10 0.9 4,534,470 − 1.8
50 41 10 0.9 4,534,161 − 1.8
60 51 10 0.9 4,532,251 − 1.8
70 60 10 0.9 4,530,669 − 1.9

60

20 1 10 0.9 4,662,056 –
40 22 10 0.9 4,534,574 − 2.7
50 41 10 0.9 4,534,219 − 2.7
60 51 10 0.9 4,532,251 − 2.8
70 60 10 0.9 4,530,669 − 2.8

ρ: penalty factor; τ: percentage of variables fixed; α: cascading factor; θ0: initial slamming factor.

Table 7: Effects of τ and allocated time for the forest P75.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P75 2000

15

20 1 10 0.9 58,202,734 —
40 19 10 0.9 59,007,403 1.4
50 55 10 0.9 T NA
60 57 10 0.9 T NA
70 70 10 0.9 T NA

30

20 1 10 0.9 58,272,824 —
40 19 10 0.9 59,106,277 1.4
50 55 10 0.9 59,387,884 1.9
60 57 10 0.9 59,324,544 1.8
70 70 10 0.9 59,337,782 1.8

45

20 1 10 0.9 58,297,317 —
40 19 10 0.9 59,131,601 1.4
50 55 10 0.9 59,394,942 1.9
60 57 10 0.9 59,336,592 1.8
70 70 10 0.9 59,354,249 1.8

60

20 1 10 0.9 58,310,384 —
40 19 10 0.9 59,248,444 1.6
50 55 10 0.9 59,395,816 1.9
60 57 10 0.9 59,339,145 1.8
70 70 10 0.9 59,354,525 1.8

T: termination because run out of time iterating; NA: not applicable; ρ: penalty factor; τ: percentage of variables fixed; α: cascading factor; θ0: initial slamming
factor.
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has 600k + binary variables and over 69k constraints
(Table 3).

4.4.1. Impact of τ on the Optimality and Solution Time.
Tables 4–9 report the effect of τ on the value of the objective
function with respect to the runtime for forests P1, P34, P36,
P75, P83, and P100, respectively. We report as well,
improvement (%) which is the percentage of increase (if

positive) or decrease (if negative) of the objective function
value from the objective function value for τ � 20% for the
same runtime.

In summary, as expected, everything else being equal,
longer runtimes allow a higher objective function. As we can
see for τ > 40%which corresponds to fixing entirely the root-
node and fixing some variables from the second stage, we
have numerical issues. (e numerical issues have two
sources. On one hand, the algorithm may run out of time

Table 8: Effects of τ and allocated time for the forest P83.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P83 2000

15

20 1 10 0.9 57,970,162 —
40 14 10 0.9 58,558,170 1.0
50 30 10 0.9 58,516,976 0.9
60 32 10 0.9 58,559,069 1.0
70 34 10 0.9 58,592,562 1.1

30

20 1 10 0.9 58,305,853 —
40 14 10 0.9 58,891,381 1.0
50 30 10 0.9 58,833,317 0.9
60 32 10 0.9 58,733,563 0.7
70 34 10 0.9 58,661,347 0.6

45

20 1 10 0.9 59,052,205 —
40 14 10 0.9 58,898,935 − 0.3
50 30 10 0.9 58,834,898 − 0.4
60 32 10 0.9 58,733,746 − 0.5
70 34 10 0.9 58,661,964 − 0.7

60

20 1 10 0.9 59,052,215 —
40 14 10 0.9 58,904,481 − 0.3
50 30 10 0.9 58,835,134 − 0.4
60 32 10 0.9 58,733,734 − 0.5
70 34 10 0.9 58,661,851 − 0.7

ρ: penalty factor; τ: percentage of variables fixed; α: cascading factor; θ0: initial slamming factor.

Table 9: Effects of τ and allocated time for the forest P100.

Forest ρ Time (min) τ Iterations α θ0 Value Improvement (%)

P100 50000

15

20 1 10 0.95 42,331,212 —
40 27 10 0.95 T NA
50 63 10 0.95 T NA
60 69 10 0.95 T NA
70 79 10 0.95 T NA

30

20 1 10 0.95 42,494,130 —
40 27 10 0.95 43,307,744 1.9
50 63 10 0.95 43,298,439 1.9
60 69 10 0.95 N NA
70 79 10 0.95 43,288,841 1.9

45

20 1 10 0.95 42,819,969 —
40 27 10 0.95 43,309,455 1.1
50 63 10 0.95 43,299,189 1.1
60 69 10 0.95 N NA
70 79 10 0.95 43,290,127 1.1

60

20 1 10 0.95 42,931,057 —
40 27 10 0.95 43,309,402 0.9
50 63 10 0.95 43,299,759 0.9
60 69 10 0.95 N NA
70 79 10 0.95 43,290,127 0.8

T: termination because run out of time iterating; N: terminated because could not find feasible solution; NA: not applicable, ρ: penalty factor; τ: percentage of
variables fixed; α: cascading factor; θ0: initial slamming factor.
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while fixing the variables or finished fixing the variables but
does not have enough time to find a feasible solution to the
REF. On the other hand, the basis of the REF may be dis-
turbed in a way that the number of constraints and variables
is not balanced so it is hard for branch and cut algorithm
used by CPLEX to find an integral solution for the REF in the
allocated time.(is is the case for forest P34 with no solution
when τ � 60% even when the time is 1 hour. However, for
the same forest, there is an integral solution when τ is raised
to 70%. (is behavior occurred mainly for forest P34 and
P100 and is not observed when τ � 40%.

(e second aspect is the impact of τ on the optimality.
(e advantage that higher values of τ have over the small
ones tends to vanish when the runtime is long. Similarly, the
improvement in optimality from τ � 40% to higher values of
τ is low. In fact, for some forest such as P83, over τ � 40%,
the objective function value diminishes as τ increases which
can be interpreted as during PHVF, many variables are fixed
to values that are suboptimal. It clearly appears that fixing
just the root-node is the best choice for these problems. It
allows sufficient time for REF to find an integral solution
while avoiding to impact the optimality, and limiting the
disturbance on the structure of the basis matrix.

4.4.2. PHVF versus EF Solved Directly. Table 10 presents the
results from PHVF using τ � 40% which is equivalent to
fixing the root-node and then solving in parallel the SEF. As
we can see for the small instances (64 scenarios), solving
directly the extensive form outperformed using PHVF. (is
means the overhead of decomposing the problem into
scenarios and solving each one overweighs the benefit. For
the medium instances, the results are mixed. Out of the six
forests, PHVF outperformed the EF in two cases. Even when

PHVF under performed, it had results that were less than 1%
away from the optimal solution. (e benefit of using PHVF
over the state of art commercial solver such as CPLEX is
highlighted when dealing with big instances (512 scenarios).
PHVF outperformed the EF for the six forests. In the case of
P1 which is the biggest model with 1,363 units (Table 3), EF
completely failed to solve the model because it could not fit it
in the memory. For other cases for the same runtime, PHVF
reached gains ranging from 0.84% to over 767% corre-
sponding to forests P34 and P100, respectively. Even after
leaving EF for 24 h, PHVF run for 15min still outperformed
in some cases. Comparing the gain to the gap from EF
suggests that PHVF almost reached the optimal solution or
its solution has a relative optimal gap less than 1%.

5. Conclusions

In this paper, we have developed a method for solving
multistage stochastic mixed integer programs that arise in
natural resource management such as forest harvest plan-
ning. Although tested for growth uncertainty due to climate
change, the method is valid as well for other sources of
uncertainty such as errors in the model predicting forest
growth, and uncertainty in the price of wood.(is algorithm
is also applicable to other disciplines where the decision
variables are binary.

In the forest industry, managers solve multiple instances
of the same forest model. It is therefore necessary to have an
algorithm that allows one to quickly solve the SMIP. Fur-
thermore, having an algorithm that is faster allows the
practitioners to explore different management options.
However, problems tested in this experiment are quite small
compared to the models in the industrial standard. Nev-
ertheless, this requirement may be compensated by the

Table 10: Comparison of solutions from PHVF and the extensive form.

Same duration with PHVF 24 h
|Ω| Time (s) Forest PHVF EF Gap (%) Gain (%) EF Gap (%) Gain (%)
64 120 P1 2.99E+ 08 3.08E+ 08 0.14 − 2.69 — — —
64 120 P34 1.04E+ 06 1.05E+ 06 0.14 − 1.64 — — —
64 120 P36 3.48E+ 06 3.73E+ 06 0.32 − 6.77 — — —
64 120 P75 4.71E+ 07 4.75E+ 07 1.59 − 0.81 — — —
64 120 P83 4.70E+ 07 4.72E+ 07 0.43 − 0.46 — — —
64 120 P100 6.53E+ 07 6.54E+ 07 0.51 − 0.05 — — —
256 600 P1 3.86E+ 08 3.87E+ 08 0.05 − 0.17 3.87E+ 08 0.02 − 0.28
256 600 P34 1.35E+ 06 1.33E+ 06 2.38 1.56 1.35E+ 06 0.73 − 0.05
256 600 P36 4.73E+ 06 4.64E+ 06 2.05 1.75 4.70E+ 06 0.82 0.52
256 600 P75 5.94E+ 07 5.94E+ 07 0.69 − 0.06 5.97E+ 07 0.19 − 0.55
256 600 P83 5.90E+ 07 5.93E+ 07 0.28 − 0.47 5.93E+ 07 0.22 − 0.50
256 600 P100 4.34E+ 07 4.34E+ 07 0.34 − 0.06 4.35E+ 07 0.14 − 0.22
512 900 P1 2.91E+ 08 NA NA ∞ NA NA ∞
512 900 P34 2.07E+ 06 2.05E+ 06 1.2 0.84 2.07E+ 06 0.27 -0.08
512 900 P36 6.85E+ 06 6.78E+ 06 1.876 1.13 6.79E+ 06 1.64 0.89
512 900 P75 8.48E+ 07 4.50E+ 07 89.57 88.63 8.50E+ 07 0.22 − 0.28
512 900 P83 8.47E+ 07 4.49E+ 07 89.44 88.76 8.45E+ 07 0.63 0.27
512 900 P100 4.74E+ 07 5.49E+ 06 767.9 763.3 5.49E+ 06 767.9 763.3
NA: no results because of memory limitation.
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availability of more powerful computation resources in the
industry.

(e PHVF presented here overcomes some limitations
listed in the literature regarding the choice of the penalty
term ρ. It is documented that large values of ρ lead to the
phenomenon of cycles [9]. However, because PHVF fixes
variables, such a problem is avoided. Notwithstanding all
these benefits, PHVF has more parameters that need to be
set compared to the classic PH. Fortunately, most of those
parameters are easy to set and the limitation remains on
the choice of the penalty term ρ. In the preliminary ex-
plorations, too low values of ρ led to some numerical
issues while too high ones, although accelerated the
convergence, negatively impacted the objective function
value.

(e future extension of this work is to investigate
the impact of different parameters on the solution
quality. Similarly, having an algorithm that can dynam-
ically determine the value of the penalty term would be an
improvement for practitioners. On practical aspects, the
question of the optimal number of scenarios necessary to
approximate the growth change under climate change
remains open. (is can be done by computing the value of
the stochastic solution, the expected value of perfect in-
formation for different scenario trees [3, 13, 20, 32].

Appendix

Proof of Infeasibility of Classic Progressive
Hedging Coupled with Variables Fixation

Let us consider a hypothetical problem under studies for a
structure with four scenarios and three stages as shown in
Figure 5. Let us suppose the forest has four stands. (e
decision variable for each scenario is therefore

x �

x11 x12 x13

x21 x22 x23

x31 x32 x33

x41 x42 x43
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

(e variables xij in the matrix x are all binary. xij � 1
means that the stand i should be harvested in period j. Since
a stand cannot be harvested more than once, 􏽐jxij ≤ 1∀i.

During progressive hedging, at iteration k, we can have
this solution. We use the superscript xω to refer to the
solution from scenario ω ∈ 1, 2, 3, 4{ }, whenever necessary:
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Figure 5: Scenario tree of the problem for proof of the PH with direct variable fixation failure when there is uncertainty in the volumes.
Standard representation (a) and detached form representation (b).
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Since solutions of the second stage are identical for
scenarios 1 and 2, we can fix entirely the variables of the
second stage for the two scenarios. Similarly, we can fix
entirely the second stage variables for scenarios 3 and 4:

x
1
i2 � x

2
i2 �

0

0

0

1
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,

(A.3)

x
ω
i1 �

0
1
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, ∀ω, i � 1, 2, 4. (A.4)

Comparing variables of the first stage across the four
scenarios, we can see that we can fix all variables except for
stand 3 which is scheduled for harvest in period 1 for
scenarios 1 and 2 but is scheduled for harvest in period 3 for
the two other scenarios (equation (A.4)). (erefore, the
reduced problem will have all variables fixed except for the
third period variables as well as x31 for all scenarios. For this
problem to be feasible, either x31 � 0 or x31 � 1 for all
scenarios. However, there is a constraint that links the
volume harvested in one period to another (Constraints (9)
and (10)). Hence, setting x31 � 0 means there will be less
than acceptable volume in period 1 for scenarios 1 and 2.
Similarly, setting x31 � 1 leads to volume of zero in period 3
for scenarios 3 and 4 which may not be acceptable as well.
(is situation occurs because the productivity of each stand
is different with respect to the scenarios.
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