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*e combination of traditional retail channel with direct channel adds a new dimension of competition to manufacturers’
distribution system. In this paper, we consider a make-to-order manufacturer with two channels of sale, sale through retailers and
online direct sale. *e customers are classified into different classes, based on their sensitivity to price and due date. *e orders of
traditional retail channel customers are fulfilled in the same period of ordering. However, price and due date are quoted to the
online customers based on the available capacity as well as the other orders in the pipeline. We develop two different structures of
the supply chain: centralized and decentralized dual-channel supply chain which are formulated as bilevel binary nonlinear
models.*e Particle SwarmOptimization algorithm is also developed to obtain a satisfactory near-optimal solution and compared
to a genetic algorithm. *rough various numerical analyses, we investigate the effects of the customers’ preference of a direct
channel on the model’s variables.

1. Introduction

*e rapidly expanding Internet provides an opportunity for
organizations to distribute their products via both direct
channel and traditional retail channel. Some personal
computer manufacturers (like Dell company), apparel re-
tailers, and automotive industries (like General Motors) are
examples of companies that use hybrid of both direct and
retailer channels.

In the direct channel, the firm interacts with consumers
directly through Internet. *ere are a number of benefits
from direct channel distribution such as controlling the
distribution and pricing directly, providing a broader
product selection, and improving firms’ visibility [1].

Despite hybrid channel’s benefits such as capturing a
larger share of the market, combining the retail distribution
channel with direct channel may pose some challenges,
including pricing policies, distribution strategies, and

conflicting demands placed on internal company resources
such as capital, personal, products, and technology by
multiple channels [2].

To overcome these challenges, supply chain’s members
negotiate the retail as well as wholesale price to cooperate
with each other. In addition to the product price, there are
other factors such as product availability and service quality
that contribute to consumer preference of the direct channel
[3].

Delivery lead time is one of the important factors that
can affect customers’ demand [3]. *is is the reason many
e-retailers, such as Amazon.com, BestBuy.com, Walmart.
com, and FYE.com, try to offer competitively quoted lead
times [4].

*is paper is focused on competitive pricing strategy as
well lead time decisions in a supply chain for a manufacturer
that sells the products through two channels. One channel is
the traditional one in which the firm uses an intermediary to
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reach final consumers, while the other is a direct channel in
which the customer places direct orders through the In-
ternet. It is assumed that there are multiple classes of cus-
tomers in the market. *e demand of each class depends on
the price and lead time. A finite planning horizon is con-
sidered, where the production capacity in each period is
finite but varies. *e manufacturer has to respond to the
customers quickly, based on the available capacity and the
orders in pipeline. Due to the finite production capacity and
the demand sensitivity to price and lead time changes, the
manufacturer needs to decide on the selling price and the
lead time of direct customers, the contract terms with the
retailer, and the wholesale price as well as the production
schedule to maximize his own profit.

We consider two different cases, centralized and
decentralized dual-channel supply chain. We propose a
model to determine suitable lead time and price, simulta-
neously for each case. In a decentralized dual-channel supply
chain, the two members interact within the framework of
Stackelberg game. Under this framework, the manufacturer,
as the leader, determines the wholesale price for retailer and
also a price and lead time for direct sale in each period. *e
intermediary then reacts by choosing a retail price to
maximize its own profit. On the other hand, for a centralized
dual-channel supply chain, the direct sale price, the tradi-
tional retail price, and the quoted lead time in the direct
channel are determined by a vertically integrated
manufacturer.

*e resulting models happen to be binary nonlinear
programs. *ese kinds of problems with large dimensions
are not usually solved by exact algorithms. *erefore, an
alternative method for solving the models is to use meta-
heuristic algorithms to obtain a near-optimal solution with
reasonable computational time. *us, an algorithm of
Particle SwarmOptimization (PSO) is developed to solve the
models. *e results will be compared, in terms of solution
quality and computational time, with genetic algorithm
(GA).

*e remainder of this paper is structured as follows.
Section 2 reviews the more relevant literature. We formulate
the models in Section 3. *e principles of the PSO meta-
heuristic and our algorithm are explained in Section 4.
Section 5 presents some numerical examples of our model to
examine the effects of customer preference of a direct
channel on the pricing strategies and lead time decisions.
Our conclusions are summarized in Section 6.

2. Literature Review

*is paper focuses on competition in a dual-channel supply
chain. A comprehensive review of multichannel models can
be found in [1, 5].

Several researchers and practitioners have focused on
dual-channel supply chains during the last decade. Different
aspects of this chain are investigated. Most of the papers that
formulated the dual-channel supply chain focused on the
competition context in the supply chain and pricing opti-
mization issues in each channel [6–9]. *e researchers
combined the pricing issues with other aspects of supply

chain. In this regard, we can refer to sales effort determining
and service management in each channel [10–13], contract
optimization [6, 14], disruption management [15–17],
product variety in supply chain [18, 19], and multiperiod
model [20].

Besides parameters such as price, services, and quality
that can affect the demand process, the lead time (or due
date) is also an important parameter. Some researchers have
considered that the quoted lead times (or due dates) also
affect customers’ decisions on placing an order (e.g., Due-
nyas and Hopp [21]; So and Song [22]; Easton and Moodie
[23]; Keskinocak et al. [24]; Webster [25]; Watanapa and
Techanitisawad [26]; Charnsirisakskul et al. [27]; Mustafa
et al. [28]; Chaharsooghi et al. [29]; and Chaharsooghi et al.
[30]). However, the above papers have not addressed the
dual-channel distribution issue. *e papers by Chen et al.
[31]; Hua et al. [3]; Xu et al. [32]; Batarfi et al. [33]; Yang et al.
[4]; and Modak and Kelle [34] are some examples that
investigated lead time optimization in the dual-channel
supply chain.

Xu et al. [32] considered the unit delivery cost (m/t) with
m> 0 if the product is to be delivered with lead time t. Batarfi
et al. [33] considered the combination of two production
approaches: make-to-order and make-to-stock in direct
online channel and indirect offline channel, respectively.*e
demand depends on the prices, the quoted delivery lead
time, and the product differentiation.

Yang et al. [4] modeled delivery lead time optimization
for perishable products in a dual-channel supply chain.
Modak and Kelle [34] considered that the demand not only
is dependent on price and delivery time but also is stochastic.

*e lead times in the above papers are determined ex-
ogenously (determined by the sales department, without
knowing the actual production schedule). In addition, the
production capacity is unlimited. Table 1 illustrates the
major literature review with our paper included.

Based on the above literature, this paper investigates the
joint decision on production, pricing, and lead time in a
dual-channel distribution system where the lead times are
assigned internally by the scheduling model. Aside from
considering the above literature, we address a new model in
which the production capacity in each period is limited. We
also consider multiple customer classes that differ in their
arrival (commitment) times, quantities demanded, and
sensitivity to price and lead time.

3. Problem Description

We consider a dual-channel supply chain in which a
manufacturer sells to retailers as well as directly to end
customers. *e planning horizon is assumed to be finite and
divided into periods of equal length. *e capacity of the
manufacturer is limited but may vary in different periods.
Customers can be classified with respect to their sensitivity
to price and lead time. Furthermore, the attributes of cus-
tomers such as arrival (commitment) times, quantities
demanded, unit production, and holding costs are different.

In each period, the manufacturer must set a wholesale
price for the traditional retail channel as well as setting both
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price and lead time (or due date) for the customers of direct
channel. For the customers of traditional retail channel, the
production must be scheduled at the same period, at which
the order arrives. However, the manufacturer can quote a
lead time (due date) to the customers of direct channel. *e
production for these customers is scheduled within any
period between the arrival time of order and the quoted due
date. A holding cost occurs for any order of direct channel
which is completed before the quoted due date.

As mentioned before, in order to evaluate the effects of
the delivery lead time and customer’s preference of the direct
channel on the pricing decisions of the manufacturer and
retailer, we consider two different dual-channel supply
chains, centralized and decentralized systems.

3.1. Notation. We use the following notation.

3.1.1. Sets

Ψ � 1, . . . , N{ }: set of customer classes, based on
sensitivity to price and due date
T � 1, . . . , T{ }: set of planning periods

3.1.2. Parameters

e(i): arrival time of customer of class i ∈ Ψ
Chi: third party holding cost per time period per unit of
customer of class i ∈ Ψ
Cp1

i,t: production cost of customer of class i ∈ Ψ in the
direct channel in period t ∈ T

Cp2
i,t: production cost of customer of class i ∈ Ψ in the

retail channel in period t ∈ T

Cri: operational cost in the retail channel for customer
of class i ∈ Ψ

Cei: operational cost in the direct channel for customer
of class i ∈ Ψ

Kt: production capacity available in period t ∈ T

Dr
i,j: demand (in terms of production capacity units) for

customer of class i ∈ Ψ in the retail channel, quoted due
date j ∈ [e(i), . . . , T]

Ds
i,j: demand (in terms of production capacity units) for

customer of class i ∈ Ψ in the direct channel, quoted
due date j ∈ [e(i), . . . , T]

3.1.3. Decision Variables

Zi,j: 1 if the due date j, j ∈ [e(i), . . . , T], is selected
(quoted) for customer of class i ∈ Ψ in direct channel; 0
otherwise
Pr

i : price in the retail channel for customer of class i ∈ Ψ
Ps

i : price in the direct channel for customer of class
i ∈ Ψ
Wi: wholesale price charged for customer of class i ∈ Ψ
in the retail channel
Yi,t: total production (in units of capacity) for customer
of class i ∈ Ψ in the direct channel in period t ∈ T

Hi: total inventory of customer of class i ∈ Ψ

3.2. Demand Function. In line with Kurata et al. [35], Cai
et al. [6], and Hua et al. [3], we assume that the demand is a
linear function of the self- and cross-price and lead time, as
follows:

Table 1: Related literature.

Research paper
Production type

Pricing
decision

Due date quotation
Capacity
constraint

Production
planning

Customer
classes

Competition
approachMake-

to-stock
Make-
to-order Internally Exogenously

Tsay and Agrawal
[13]

∗ ∗ Nash

Chiang et al. [7] ∗ ∗ Nash

Yao and Liu [9] ∗ ∗ Bertrand and
Stackelberg

Cai et al. [6] ∗ ∗ Stackelberg,
Nash

Dan et al. [10] ∗ ∗ Stackelberg
Huang et al. [15] ∗ ∗ ∗ Stackelberg
Soleimani et al. [17] ∗ ∗ Nash
Roy et al. [12] ∗ ∗ Stackelbarg
Hua et al. [3] ∗ ∗ ∗ Nash
Xu et al. [32] ∗ ∗ ∗ Nash
Batarfi et al. [33] ∗ ∗ ∗ ∗ -
Yang et al. [4] ∗ ∗ ∗ Nash
Rofin and Mahanty
[18]

∗ ∗ Nash

Pi et al. [16] ∗ ∗ Stackelberg
Modak and Kelle [34] ∗ ∗ ∗ Stackelberg
*is paper ∗ ∗ ∗ ∗ ∗ ∗ Stackelberg
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where Ds
i and Dr

i denote the consumer demand to the
manufacturer and the consumer demand to the retailer,
respectively, ai denotes the base level of industry demand
or the demand rate for customer of class i, and
θi(0< θi < 1) represents the initial portion of customers of
class i that prefer the direct channel if the price and lead
time are zero. *us, 1 − θi represents the portion of
customers of class i that prefer purchasing from the re-
tailer. *e coefficients bs

i and br
i are the coefficients of the

price elasticity in the direct channel and retail channel
demand functions, respectively. *e cross-price sensi-
tivities αr

i and αs
i reflect the substitution’s degree of the

two channels, and cs
i is the lead time sensitivity of the

demand in the direct channel. If the lead time Ls
i increases

by one unit, cr
i units of demand will transfer to the retail

channel and cs
i units of direct channel’s demand will be

decreased. *e total demand of the two channels should
have a negative slope with respect to the retailer’s price,
the direct sale price, and the quoted lead time. *us, we
have αr

i < br
i , α

s
i < bs

i , and cs
i > cr

i .
Following Hua et al. [3], it is assumed that the man-

ufacturer uses dual channels to sell their goods, and the
base level of industry demand or demand rate in both

channels is very large; i.e., θi should not be unreasonably
small or large.

3.3. Model of the Decentralized Dual-Channel Supply Chain.
In this section, we study a decentralized dual-channel supply
chain. In this model both the manufacturer and the retailer
make their own decisions separately to maximize their
profits. *e manufacturer, as the Stackelberg leader, first
determines the wholesale price Wi, the direct sale price Ps

i ,
and the direct sale quoted lead time Ls

i . *en, the retailer
chooses his own optimal retail price Pr

i based on the
manufacturer’s decisions.

3.3.1. Manufacturer’s Best Response. *e goal of the man-
ufacturer as a leader is to maximize his profit, considering
the capacity constraints and demand constraints in the
systems and constraints determined by the retailer opti-
mization problem. *e problem is formulated within the
framework of bilevel programming (BLP), first level (the
manufacturer model called the leader) and second level (the
retailer model called a follower). In BLP model, each de-
cision maker tries to optimize its own objective function
without considering the objective of the other party.
However, the decision of each party affects the objective
value of the other one as well as the decision space.

3.3.2. First-Level Model: Manufacturer Model.

Max Πs � 􏽘
N
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􏽘
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D
s
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D
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􏽘

T
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Hi ≥ 􏽘

j

t�e(i)

(j − t) Yi,t􏼐 􏼑 + M Zi,j − 1􏼐 􏼑, ∀i ∈ Ψ, j � e(i), . . . , T, (9)
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3.3.3. Second-Level Model: Retailer Model.

Max
Pr

i

Πr � 􏽐
i∈ψ
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T

j�e(i)

(j − e(i) + 1) · Zi,j ≥ 0, ∀i ∈ Ψ, (13)

Yi,t, Hi, Ds
i,j, Pr

i , Ps
i , Wi ≥ 0, ∀i ∈ Ψ, t � e(i), . . . , T, j � e(i), . . . , T,

Zi,j ∈ 0, 1{ }, ∀i ∈ Ψ, j � e(i), . . . , T.
(14)

*e first and second terms in the first-level objective
represent the total revenue and production cost of direct
sales. *e third term represents the total profit obtained by
sales to the retailer and the fourth one is the carrying cost.

Constraint (4) indicates that the wholesale price cannot
be higher than the direct channel price; otherwise, the re-
tailer may purchase from the direct channel at a lower price.
Constraints (5) ensure that only one due date is chosen for
each direct channel customer order. Constraint (6) ensures
that if due date j is selected for customer of class i in the
direct channel, then exact Ds

i,j units must be produced and
delivered, where Ds

i,j depends on the selected price and due
date. Constraint (7) is a capacity constraint that ensures that
the production capacity in each period is not exceeded. An
order of a retail channel customer is produced in the cus-
tomer’s arrival time period and delivered instantaneously in
the same period, whereas an order of a direct channel
customer can be produced in any period between its arrival
period and the quoted due date. *e first term in the left
hand side of constraint (7) indicates the total production for
direct channel customers and the second term is the total
production for retail channel customers. Constraint (8)
indicates that an order of a direct channel customer can be
produced in any period between its arrival period and the
quoted due date.

*e required inventory for orders is scheduled in any
period prior to its commitment, and the negotiated due date
is controlled by constraint (9), where M is a sufficiently large

number. Constraint (10) is demand functions for customer
orders in the direct channel. *e term j − e(i) + 1 is a time
interval between the arrival time of an order and the quoted
due date, which is called the lead time. *e objective
function of second-level optimization problem for the re-
tailer channel is represented by (11). Constraints (12) and
(13) control feasibility as well as demand restrictions.

Without considering constraints (12)–(14) for retailer, its
best response to the wholesale price can be defined in
Proposition 1.

Proposition 1. :e retailer’s best response to the wholesale
price Wi, the direct sale price Ps

i , and the direct quoted lead
time Ls

i set by the manufacturer is as follows:

P
r
i �

ai · 1 − θi( 􏼁 + Wi · br
i + αs

i P
s
i + cr

i L
s
i + Crib

r
i

2br
i

, ∀i ∈ Ψ.

(15)

:e Proof of Proposition 1 as well as the other propositions
is given in the appendix.

*e BLP model (4)–(14) can be formulated as a single
level mixed binary problem.*is is achieved by replacing the
lower level problem (12)–(14) with its Kuhn–Tucker con-
ditions, which we name Model I, as follows.

3.3.4. Model I.
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(28)

Constraints (24)–(27) indicate the optimality condition
for the retailer to convert the bilevel problem into a single
level one.

Proposition 2. For any given due date j, the wholesale price
Wi, and the direct sale price Ps

i for customer class i, the
optimal retail price Pr

i is always positive.
As a result of Proposition 2, it can be concluded that ]i is

always equal to zero, because ]i · Pr
i � 0 in Model I.

Proposition 3. Consider an unlimited production capacity
in each period for a decentralized dual-channel supply chain.

If 8br
i · bs

i − (αs
i )
2 − (αr

i )
2 − 6αs

i · αr
i > 0, the dual channel Πs is

strictly jointly concave in Wi and Ps
i .

From Proposition 3, if αs
i � αr

i , then 8br
i · bs

i − (αs
i )
2 −

(αr
i )
2 − 6αs

i · αr
i is always greater than zero.*us, in this case,

the manufacturer profit Πs is always strictly jointly concave
in Wi and Ps

i . *us, for the sake of analytical tractability, we
will assume that the cross-price effects are symmetric and
αs

i � αr
i .

Proposition 4. Let the production capacity be unlimited in
each period for a decentralized dual-channel supply chain and
suppose there is a L0

i ∈ [Ll
i, Lu

i ] with
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:en, the optimal lead time Ls
i ∈ [Ll

i, Lu
i ] can be found

from Ll
i, Lu

i , and L0
i by comparing their Πs values; the one with

the largest Πs value is the optimal lead time.

3.4. Model of the Centralized Dual-Channel Supply Chain.

In a centralized dual-channel supply chain, a vertically in-
tegrated manufacturer controls the wholesale price Wi, the
direct sale price Ps

i , the direct sale quoted lead time Ls
i , and the

retailer sale price Pr
i . *e model, called Model II, is as follows.

3.4.1. Model II.

Max Πc � Πs +Πr � 􏽐
N

i�1
􏽐
T

j�e(i)

ps
i × Ds

i,j × Zi,j􏼐 􏼑 − 􏽐
N

i�1
􏽐
T

t�e(i)

Yi,t × Cp1
i,t􏼐 􏼑 + 􏽐

N

i�1
􏽐
T

j�e(i)

pr
i − Cp2

i,e(i) − Cri􏼐 􏼑 Dr
i,j × Zi,j􏼐 􏼑 − 􏽐

N

i�1
Chi × Hi

⎛⎝ ⎞⎠, (30)

S.T.

􏽘

T

j�e(i)

Zi,j � 1, ∀i ∈ Ψ, (31)

􏽘

T

t�e(i)

Yi,t � 􏽘
T

j�e(i)

D
s
i,jZi,j, ∀i ∈ Ψ, (32)

􏽘
i∈Ψ|e(i)≤t

Yi,t + 􏽘
i∈Ψ|e(i)≤t

􏽘

T

j�e(i)

D
r
i,jZi,j ≤Kt, t � 1, . . . , T, (33)

􏽘

T

t�j+1
Yi,t ≤M 1 − Zi,j􏼐 􏼑, ∀i ∈ Ψ, j � e(i), . . . , T − 1, (34)

Hi ≥ 􏽘

j

t�e(i)

(j − t) Yi,t􏼐 􏼑 + M Zi,j − 1􏼐 􏼑, ∀i ∈ Ψ, j � e(i), . . . , T, (35)

Ds
i,j � ai · θi − bs

i · Ps
i + αr

i · Pr
i − cs

i · (j − e(i) + 1), ∀i ∈ Ψ, j � e(i), . . . , T, (36)

Dr
i,j � ai · 1 − θi( 􏼁 − br

i · Pr
i + αs

i · Ps
i + cr

i · (j − e(i) + 1), ∀i ∈ Ψ, j � e(i), . . . , T, (37)

Yi,t, Hi, Ds
i,j, Pr

i , Ps
i ≥ 0, ∀i ∈ Ψ, t � e(i), . . . , T, j � e(i), . . . , T,

Zi,j ∈ 0, 1{ }, ∀i ∈ Ψ, j � e(i), . . . , T.
(38)

*e objective function (30) maximizes the total profit of
the centralized supply chain, which is the sum of manu-
facturer’s profit and retailer’s profit. *e remaining con-
straints are the same as those in Model I.

Proposition 5. Consider an unlimited production capacity
in each period for a centralized dual-channel supply chain. If
4br

i · bs
i − (αs

i )
2 − (αr

i )
2 − 2αs

i · αr
i > 0, then the optimal lead

time Ls
i ∈ [Ll

i, Lu
i ] can be found from Ll

i and Lu
i by comparing

their Πc values; the largest Πc value is the optimal lead time.

4. Solution Approach

Models I and II are 0-1 nonlinear programs with continuous
price and production decision variables and binary variables

for due date selection. It is well known that the problem of
nonlinear 0-1 programming is NP-hard [36]. *us, these
problems cannot be solved easily, and exact algorithms can
be time consuming when the number of 0-1 variables is
large. An alternative for solving these models is to use ap-
proximate algorithms or heuristic methods with reasonable
computational times.

In this paper, PSO metaheuristic is used and compared
to the GA for modeling and optimization of the pricing
and due date setting problems in a dual-channel supply
chain.

PSO and GA can handle the whole MINLP easily and
naturally, and it is easy to apply it to various problems for
comparison with conventional methods.
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If we fix the set of binary variables Z in the models,
then both models are converted to quadratic programs
that can be solved by the nonlinear programming solver
LINGO.

4.1. Particle SwarmOptimization (PSO). *e PSO algorithm
was first proposed by Kennedy and Eberhart [37]. *is
method is based on the information shared among members
of a species and then used for evolution.

Update the local best position Pk,d, global best

Send values of Zi,j to the Lingo, solve the model, and
Calculate every particle’s fitness value

Satisfy stop
criterion?

Initialize a population of particles with random positions
and velocities

Fix the set of variables Zi,j in problems I and II according to the
values for the lead times

Set up the searching range for L according to proposition 6

Initialize the parameters: population size the inertial 
weight (ω), and two learning factors (c1 and c2)

No

Yes

End

Update the velocity and position for every particle.

Lk,d
(new) = INT(Lk,d

(old) +Vk,d
(new))

Vk,d
(new) = ωVk,d

(old) + c1r1(Pk,d
(old) – Lk,d

(old)) + c2r2(Pgd
(old)–Lk,d

(old))

Figure 1: PSO flowchart for pricing and due date quotation.
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Simple structure, ease of implementation, speed of ac-
quiring solutions, and robustness are the advantages of the
PSO that persuade us to use it in solving the models.

Recently, PSO algorithms were successfully applied to a
wide range of applications. A comprehensive survey of PSO
algorithms and applications can be found in the paper by
Kennedy et al. [38].

In the proposed PSO algorithm, particle k is represented
as Lk � Lk,1, Lk,2, . . . , Lk,N􏽮 􏽯, which denotes the due dates
quoted to N customers. For each Lk,i in N-dimensional
space, the ZiLk,i

is set to one in Models I and II, and the other
variables Zi,j, j � e(i), . . . T, and j≠ Lk,i, are fixed to zero for
customer order i ∈ Ψ.

*is section will present the application of the PSO
algorithm forModels I and II.*e PSO algorithm for solving
these models is illustrated in Figure 1.

*e key point in a constrained optimization process is to
deal with the constraints. We must modify the original PSO
method for constrained optimization. Many methods were
proposed for handling constraints, such as methods based
on preserving the feasibility of solutions, methods based on
penalty functions, methods that make a clear distinction
between feasible and infeasible solutions, and other hybrid
methods [39]. *e most straightforward method is the one
based on preserving the feasibility of solutions. In this
method, each particle searches the whole space but only
keeps track of the feasible solutions. To accelerate the
process, we derive an upper bound on the search range by
finding the largest lead times such that both demand in retail
and direct channel will be nonnegative; i.e., Ds

i,j ≥ 0Dr
i,j ≥ 0.

*e upper bounds on lead times are given in the following
proposition.

Proposition 6. :e best due date for each customer i ∈ Ψ is
restricted to a range Ll

i ≤Li ≤ Lu
i . :e lower bound of the range

is the arrival time of the customer, i.e., e(i), and the upper
bound of the range is

L
u
j �

ai θi · br
i − θi · αr

i + αr
i( 􏼁

cs
i · br

i − cr
i · αr

i

+ e(i). (39)

4.2. Genetic Algorithm (GA). GA is a well-known meta-
heuristic optimization technique based on Darwin’s theory
of the “survival of the fittest,” proposed by Holland [40]. *e
GA starts with a group of individuals created randomly. *e
individuals in the population are then evaluated using a
fitness value. Two individuals are then selected based on
their fitness. *ese individuals “reproduce” to create one or
more offspring by crossover and mutation operators. *e
one-point crossover and swap mutation are used in this
article. According to the description provided in PSO al-
gorithm, each solution can be represented by an integer
string with length N (number of customers). Each gene
represents the due date quoted to each customer.

*e GA algorithm for solving these models is illustrated
in Figure 2:

5. Numerical Studies

In this section, we investigate the relation between the
wholesale price, the direct sale price, and the retail price in
the decentralized and centralized supply chain. *e pricing
strategies and quoted lead time decisions are compared for
the two models using numerical experiments.

*e parameters of the proposed PSO algorithm are
selected based on parameter tuning. With testing different
values for PSO’ parameters, the ones selected are those that
gave the best results. *e best values of the computational
experiments are as follows: (1) the values of a population of
30 individuals are used for both GA and PSO, (2) the initial
inertia weight is set to 0.9, and (3) the values of the accel-
eration constants c1 and c2 are fixed to 0.9. *e maximum
velocity is set as the difference between the upper and the
lower bounds, which ensures that the particles are able to fly
across the problem-specific constraints region. *e other
parameters used in GA are crossover rate of 0.80 and
mutation rate of 0.3.

Each instance was run for 50 iterations, and 30 repli-
cations were conducted for each instance. *e performance
of PSO algorithm was compared with MINLP solver GAMS
and GA algorithm by testing on a set of 8 small size instances
in the decentralized (Model I) and centralized (Model II)
supply chain. Table 2 reports the comparison between the

Initialize the parameters: the population size, Crossover
probability, and Mutation probability

Randomly generate solutions or chromosomes according to
the ranges in the previous step

 Generate offspring with crossover technique

Fix the set of variables Zi,j in problems I and II according
to the values for the lead times

Set up the searching range for L according to proposition 6

Send values of Zi,j to the Lingo, solve the model, and
calculate every particle’s fitness value

Perform mutation operation on the new offspring 

Satisfy stop
criterion?

No
Yes

End

Figure 2: GA flowchart for pricing and due date quotation.
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GAMS solutions and the presented PSO algorithm.*e sum
ofmanufacturer’s and retailer’s profit is shown in Table 2. All
the results show that PSO algorithm can achieve better
results than those obtained by GAMS solver.

Comparing the results of the GA and PSO methods, we
can see that there is no conclusive winner. In some cases, the
GAmethod results in a better solution and in some cases the
PSO method does. Due to the simplicity of the PSO
structure, we use it for our sensitivity analysis.

To analyze the effects of models’ parameters on prices
and profits, we considered 18 different problem groups to
carry out this numerical study. For each group of problems,
the production capacity of each period (K) is categorized as
high and low capacity. *e ratio of operational costs in
direct channel and retailer (Ce/Cr) is categorized as high,
medium, and low. We can have single class customer
problems where the price and lead time sensitivities are the
same across the customers and multiclass customer
problems based on the variability of these sensitivities.
With this assumption, the additional categories are based
on price sensitivity variability (PV) and lead time sensi-
tivity variability (LV). Table 3 presents the characteristics of
different groups of problems.

*e other parameters are considered as follows:

Table 2: A comparison between the GAMS solutions, the presented PSO algorithm, and the GA algorithm.

Problem number N T
Model I Model II

PSO GAMS solver GA PSO GAMS solver GA
Test1 6 12 104202.90 99659.64 103960.30 131059 126182.57 131190.62
Test2 6 12 191024.60 179887.90 186743.10 204614.50 192186.88 203760.16
Test3 12 12 700107.10 656490.40 687800.42 786710.60 745207.09 784619.42
Test4 12 12 125705.30 116692.20 118314.32 135097.20 125816.00 135266.22
Test5 12 12 160890.30 139234.50 161420.60 185068.60 164681.83 186343.64
Test6 12 20 123685.50 107878.50 119659.70 129199.40 119983.29 129934.9
Test7 20 20 138419.10 No feasible 139520.10 146737.70 82849.83 147780.33
Test8 30 20 149965.6 No feasible 148832.40 156788.81 No feasible 157613.04
N: number of customer classes; T: planning periods.

Table 3: Specifications of different groups of problems.

Problem number K (Ce/Cr) PV LV
1 M M No No
2 H M No No
3 M M No Yes
4 H M No Yes
5 M M Yes No
6 H M Yes No
7 M H No No
8 H H No No
9 M H Yes No
10 H H Yes No
11 M H No Yes
12 H H No Yes
13 M L No No
14 H L No No
15 M L Yes No
16 H L Yes No
17 M L No Yes
18 H L No Yes
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80000

100000
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140000
160000
180000
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instance 7
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Figure 3: Manufacturer’ profit in the decentralized dual-channel
supply chain for different instances.
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Figure 4: Retailer’ profit in the decentralized dual-channel supply
chain for different instances.
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Figure 5: Comparison of the retail price, direct sale price, and wholesale price in decentralized dual-channel supply chain for different
instances.
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*e holding costs per unit of time for each customer of
class i are Chi � 5, and the production cost in each period t

for each customer of class i is Cpi
t � 10. *e demand rate for

customer of class i, ai, is generated randomly from
ai ∈ [500, 3000]. We considered a planning horizon with 12
time periods and 6 customer classes arriving during the
planning horizon for all problems. Two types of arrival time
distributions are considered: the arrival times near the be-
ginning of planning horizon (B) (e(i) ∼ uniform [1, 4]) and
the uniform distribution along planning horizon (U) (e(i) ∼
uniform [1, 12]) [29, 33].

In all instances, we investigated the effect of customer
preference of the direct channel, θ, on pricing and lead time
decisions. *e results of some carried instances are sum-
marized in Figures 3–9 and Tables 4 and 5. Tables 4 and 5
show the differences between average values of retailer
prices (P

r

II − P
r

I ) and direct prices (P
s

II − P
s

I) obtained for
customer classes and the profits (ΠII − ΠI) under both
decentralized (Model I) and centralized (Model II) supply
chains. In the decentralized supply chain, as illustrated in

Figures 3 and 4, in some examples, the manufacturer’s
profit increases as the customer preference of the direct
channel increases, whereas the profit decreases for others.
Almost all the examples with decreasing profit functions
are consequence of high operational cost in the direct
channel. *e retailer’s profit is decreasing with customer
preference of the direct channel.

As we can see from Figures 5 and 8, in both the cen-
tralized and decentralized dual-channel supply chain, when
customer preference of the direct channel θ is below a certain
level, the retail price is higher than the direct sale price;
conversely, when θ exceeds that level, the direct price be-
comes higher than the retail sale price.*is result shows that
if the base level of demand or demand rate in one channel is
relatively higher than a certain threshold, the sale price in
that channel should be set higher than the one in the other
channel.

From Figure 5, in some examples, when θ is relatively
low, the direct sale price should be set equal to the
wholesale price, and when θ is relatively high, the direct sale
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Figure 6: Comparison of the optimal quoted lead time in decentralized dual-channel supply chain for different instances.
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price should be set higher than the wholesale price. In other
words, when θ is lower than a certain threshold, the base
level of demand in the retail channel is high.*us, the retail
price can also be set to be high, but according to the low
base demand in the direct channel, the direct sale price is

set to be low.*e wholesale price must be less than or equal
to the direct sale price. *erefore, the direct sale price is
equal to the wholesale price, and the retail price is higher
than the wholesale price; conversely, when θ exceeds the
threshold, the base level of demand in the retail channel is
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Figure 8: Comparison of the retail price and direct sale price in centralized dual-channel supply chain for different instances.
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Table 4: Comparison of retailer and direct prices under both decentralized and centralized supply chain.

Problem number
P

r

II − P
r

I P
s

II − P
s

I

θ � 0.15 θ � 0.25 θ � 0.5 θ � 0.75 θ � 0.85 θ � 0.95 θ � 0.15 θ � 0.25 θ � 0.5 θ � 0.75 θ � 0.85 θ � 0.95

1 − 5.20 − 5.99 − 0.23 0.88 0.15 0.00 0.06 − 0.36 − 1.94 − 0.93 − 0.06 0.00
2 − 5.24 − 5.74 0.15 0.65 0.37 0.02 − 0.19 − 4.24 − 5.18 − 1.39 − 0.36 − 0.01
3 − 0.45 − 0.44 − 0.97 0.05 0.00 − 0.05 − 0.05 − 0.08 − 0.12 − 0.05 0.00 − 0.01
4 − 5.64 − 4.52 0.19 − 0.02 0.37 0.01 − 0.26 − 4.64 − 4.92 − 2.16 − 0.36 − 0.01
5 − 0.82 − 1.11 − 0.86 0.44 0.01 − 3.49 0.03 − 0.02 − 0.07 − 0.14 0.00 − 0.62
6 − 4.47 − 3.76 − 0.34 − 0.01 0.27 − 3.81 − 1.53 − 5.06 − 5.06 − 2.18 − 0.61 − 0.69
7 − 4.22 − 4.22 − 1.53 0.00 0.00 0.00 1.28 1.28 0.47 0.00 0.00 0.00
8 − 5.24 − 6.21 − 1.32 − 0.79 − 0.58 − 0.37 − 0.19 − 5.31 − 6.99 − 4.20 − 3.08 − 1.97
9 − 0.78 − 1.42 − 1.07 0.68 1.29 − 5.67 0.67 0.55 0.46 − 0.28 − 0.29 − 1.25
10 − 5.31 − 4.60 − 1.82 − 0.74 − 1.42 − 6.64 − 1.74 − 5.44 − 7.01 − 4.46 − 3.20 − 2.89
11 − 4.99 − 4.99 − 2.63 0.00 0.00 − 0.76 1.14 1.14 0.29 0.00 0.00 − 0.11
12 − 5.24 − 5.96 − 1.32 − 0.79 − 0.58 − 1.41 − 0.19 − 5.34 − 6.99 − 4.20 − 3.08 − 1.94
13 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 − 0.10
14 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 − 0.01
15 0.00 0.00 0.07 0.09 − 0.01 − 3.96 0.00 0.00 0.01 0.02 0.00 − 0.69
16 0.00 0.00 0.00 0.00 0.00 − 3.81 0.00 0.00 0.00 0.00 0.00 − 0.69
17 0.00 0.00 − 0.01 0.05 0.00 0.28 0.00 0.00 0.03 0.01 0.00 − 0.14
18 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 − 0.01

Table 5: Comparison of obtained profits under both decentralized and centralized supply chain.

ΠII − ΠI

Problem number θ � 0.15 θ � 0.25 θ � 0.5 θ � 0.75 θ � 0.85 θ � 0.95

1 3884.36 5657.56 3091.33 136.57 91.42 16.27
2 6589.72 9055.78 6495.73 839.46 75.91 0.00
3 75.40 98.32 336.52 8.66 0.00 − 167.17
4 6713.26 9965.70 7062.69 908.76 75.91 0.00
5 440.87 582.24 502.25 272.85 − 438.03 609.73
6 8812.77 10719.97 5635.36 965.10 123.80 0.00
7 385.00 385.00 140.00 0.00 0.00 67.57
8 6589.72 15270.77 10452.74 3773.87 2034.84 971.90
9 566.32 612.44 912.49 101.92 96.21 108.02
10 11481.49 16019.67 10816.05 4407.86 2449.25 1022.60
11 354.53 354.53 81.87 3.20 3.20 54.06
12 6603.00 13601.09 10455.94 3777.07 2038.04 1062.36
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 111.02 130.35 147.26 − 185.62
16 0.00 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 − 47.52 156.25 − 10.91 166.67
18 0.00 0.00 0.00 0.00 0.00 0.00
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low, and the retail price is generally also set to be low. We
know that the wholesale price must be lower than the retail
price. *erefore, with increasing θ, the retail price and
consequently the wholesale price decrease. As we can see
from Figures 5 and 8, for some values of θ, both the retail
price and the direct price in the decentralized dual-channel
supply chain should be set higher than those in the cen-
tralized one, while the total profit in the decentralized dual-
channel supply chain is lower than that in the centralized
one.*e negative value of gap in price differences in Table 4
and the positive value of gap for profits in Table 5 show this
fact.*is shows that when each partner in the decentralized
dual-channel supply chain maximizes his own profit, this
leads to double marginalization. Double marginalization
means that the retailer and the manufacturer indepen-
dently set their price to maximize their profit margins; as a
result, the price is higher and the sales volume and profits
are lower than those of a vertically integrated channel [3].

In instances with low (Ce/Cr) or with high Cr, the direct
sale price in the centralized setting tends to equal the direct
sale price in decentralized settings. *is trend is also true for
retail prices in the two settings. Moreover, when Cr is very
large, the retail channel has a small impact on the manu-
facturer’s profits, and in both settings, the manufacturer has
a main role in determining prices. *erefore, the prices
defined in the two settings become close.

As illustrated in Figure 7, in the centralized dual-channel
supply chain, when customer preference of the direct channel
θ is lower than a certain threshold, the total profit decreases

with increasing θ; conversely, when θ exceeds the threshold,
the total profit increases with increasing θ. *is threshold
differs from one instance to another. In examples with high
direct channel operational cost, the threshold is near 1,
meaning the function seems as decreasing function. To
compare the profitability changes of the firm according to
different direct and retail channel operational costs, we
carried somemore examples by varying these two parameters.
Figure 10 shows the results. As we can see from Figure 10,
under high value of direct channel operational cost, the profit
decreases with increasing θ. *erefore, it is more profitable to
encourage customers buying from retail channel.

As we can see from Figures 6 and 9, the high lead time
changes depending on θ in two centralized and decentralized
setting show that the delivery lead time has a strong effect on
the manufacturer’s and the retailer’s pricing strategies and
profits. We can see the results of Propositions 4 and 5 in
instances 2 and 16, where the unlimited capacity is con-
sidered.*e quoted lead times for the customers are equal to
the lower bound or the upper bound of the lead time.

We perform a numerical study to compare how the lead
time flexibility affects the profitability of the firm.

We consider two policies of lead time flexibility: P1 (lead
time flexibility), P2 (no lead time flexibility). With lead time
flexibility, we quote different lead times to different cus-
tomers. When there is no lead time flexibility, a single (fixed)
lead time is quoted to all customers.

We have generated the problems in three situations: the
customers’ sensitivity to price in direct channel is 1- greater,
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Figure 10: Comparison of the profitability of the firm according to different direct and retail channel operational costs.

Table 6: *e percentage of profit increases over P2 policy with no lead time flexibility.

Problem number Capacity (K) Lead time sensitivity variability (LV)
Gap� ((P1 − P2)/P2)∗ 100

bs
i > br

i bs
i � br

i bs
i < br

i

1 M Yes 19.74 19.81 22.86
2 M No 17.20 15.98 18.34
3 H Yes 1.08 1.64 0.11
4 H No 0 0.80 0
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2- equal, and 3- lower than customers’ sensitivity to price in
retail channel. We have considered the same price sensi-
tivities for all customers. *e categorization for production
capacity and variability of customers’ lead time sensitivity is
shown in Table 3. *e percentage of profit increases over P2
policy with no lead time flexibility under each policy and
category is represented in Table 6.*e main conclusions one
can draw from Table 6 are as follows:

(1) *e effect of production capacity: comparing in-
stances 2 and 4 (instance 4 with high production
capacity), we can see that more capacity makes the
manufacturer able to charge equal lead times to all
customers, and manufacturers usually determine a
lead time equal to that of the first period for all
customers.

(2) *e effect of variability of customers’ sensitivity to
lead time: comparing instances 1 and 2 (instance 1
with high variability in customers’ sensitivity), we
can see that if there is high variability in customers’
lead time sensitivities, the manufacturer can obtain
more profit from lead time flexibility. *e manu-
facturer can charge the high lead time for customer
with lower sensitivity to lead time and reserve the
capacity of the first period for customers with higher
sensitivity to lead time.

6. Conclusion

In this paper, we presented a pricing and due date setting
model for a manufacturer with a dual sale channel, an online
direct channel, and a traditional retail channel. We see that a
large number of e-retailers, such as Amazon.com, BestBuy.
com, and Walmart.com, attempt to offer a proper delivery
lead time (Yang et al. [4]). Also the model can be developed
for ’s auto industry which is the second largest industry in
Iran after oil and gas. Currently, Iran’s auto industry has an
online sale and the proposed list price is sometimes based on
delivery time.

We assumed a finite planning horizon divided into
periods of equal length. We considered the limit production
capacity in each period and multiple classes of customers
arriving during these periods. We developed a Stackelberg
game to model the decentralized dual-channel supply chain.
Under this game framework, the supplier, as the leader,
announces the wholesale price to an intermediary in ad-
dition to the direct channel sales price and lead time. *e
intermediary then reacts by choosing a retail price to
maximize its own profit. Bilevel programming was devel-
oped to model this situation. For a centralized dual-channel
supply chain, the traditional retail price, the direct sale price,
and the quoted lead time in the direct channel are deter-
mined in an integrated manner. Considering the lead time

selection for each customer order, mixed binary integer
nonlinear programming models for the design of the cen-
tralized and decentralized dual-channel supply chains were
used.

Because exact algorithms for solving the proposed
models can be expensive and time consuming for instances
with large numbers of 0-1 variables, the PSO algorithm
solving model is adopted to get a satisfactory near-optimal
solution efficiently.

*rough numerical analyses, we have examined the
effects of the customer preference of a direct channel on the
manufacturers’ and retailers’ pricing behaviors. We also
compared the optimal lead times, prices, and profits in the
two settings of a centralized and decentralized dual-channel
supply chain.

Numerical examples have shown that the retail price is
decreasing with increasing customer preference of the direct
channel and that the direct sale price is increasing with
increasing customer preference of the direct channel.
*erefore, when the customer preference of the direct
channel is low, the retail price is higher than the direct sale
price; conversely, when the customer preference of the direct
channel is high, the retail price is lower than the direct sale
price. Comparing the two settings of dual-channel supply
chains, we found that when θ is relatively low and, thus, the
base level demand in the retail channel is high, both the retail
price and the direct price in the decentralized dual-channel
supply chain should be set to be higher than those in the
centralized supply chain, while the total profit in the
decentralized dual-channel supply chain is lower than that in
the centralized supply chain. *is shows double marginal-
ization in the decentralized dual-channel supply chain which
each member maximizes his own profit.

*e high changes in the lead time as a function of θ in the
centralized and decentralized settings show that the delivery
lead time strongly influences the manufacturers’ and the
retailers’ pricing strategies and profits. *erefore, consid-
ering a constant value for the lead time in all scenarios leads
to a decrease in profits.

*is research can be extended in several directions in
future work. First, our model is deterministic, and we can
study a model with stochastic demand. Second, we can
consider competition among several manufacturers and
retailers. *ird, it is worth investigating the coordination of
the dual-channel supply chain by contracts when the price
and lead time are both considered in the models.

Appendix

Proof of Proposition 1. For given Wi, Ps
i , and Ls

i , the retailer’s
profit is determined by

Max
Pr

i

Πr � 􏽘
i∈ψ

P
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i − Wi − Cri( 􏼁 · ai · 1 − θi( 􏼁 − b

r
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s
i + c

r
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(j − e(i) + 1) · Zi,j
⎛⎝ ⎞⎠. (A.1)

16 Advances in Operations Research

http://Amazon.com
http://BestBuy.com
http://BestBuy.com
http://Walmart.com


Obviously, Πr is a concave quadratic function of Pr
i .

Using the partial first-order condition, we get

P
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i �
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i P
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i + cr

i L
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i

, ∀i ∈ Ψ.

(A.2)

Proof of Proposition 2. If Pr
i � 0, then we can simplify

(24)–(26) as follows:

a
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(j − e(i) + 1) · Zi,j � Si
′ . (A.5)

Hence, Si
′ > 0. Based on complementary conditions (27),

the λi
′ � 0. *us, the constraint (A.3) can be simplified as

follows:

− a
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*erefore, the ]i is always negative which is a
contradiction.

Proof of Proposition 3. *e retailer’s best response to the
wholesale price Wi, the direct sale price Ps

i , and the direct
sale quoted lead time Ls

i set by the manufacturer is given by
(3).

According to unlimited capacity in each period, the
manufacturer’s profit is determined by
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Substituting (15) into (A.7) and simplifying it, we get

Πs � 􏽘
N

i�1
p

s
i − Cp

2
i􏼐 􏼑 × ai · θi − b

s
i · P

s
i + αr

i ·
ai · 1 − θi( 􏼁 + Wi · br

i + αs
i P

s
i + cr

i L
s
i + Crib

r
i

2br
i

􏼠 􏼡 − c
s
i · L

s
i􏼠 􏼡

+ 􏽘
N

i�1
Wi − Cp

1
i􏼐 􏼑 × ai · 1 − θi( 􏼁 − b

r
i ·

ai · 1 − θi( 􏼁 + Wi · br
i + αs

i P
s
i + cr

i L
s
i + Crib

r
i

2br
i

􏼠 􏼡 + αs
i · P

s
i + c

r
i L

s
i􏼠 􏼡.

(A.8)

Taking the second-order partial derivatives of Πs with
respect to Ps

i and Wi, we have the Hessian matrix as follows:
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Proof of Proposition 4. As expressed in Proposition 3, under
unlimited production capacity, the manufacturer’s best price
is obtained from
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and the KKT conditions for this model are
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*e second-order partial derivative of Πs with respect to
Ls

i is (z2Πs/z(Ls
i )
2) � 0 which indicates that theΠs is a linear

function of Ls
i . *erefore, in this case, the optimal value of Ls

i

will be equal to its upper bound (Lu
i ) or lower bound (L0

i ).
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Case 2. When ηi > 0, thenW∗i (Ls
i ) � ps∗

i (Ls
i ). When Ls

i < L0
i ,

we have ηi > 0. In this case, the second-order partial de-
rivative ofΠs with respect to Ls
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2) � 0 and
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i ).

Overall, the optimal value Ls
i can be found from Ll
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and L0
i by comparing the Πs values at them, and the one at

which Πs is the largest is the optimal.

Proof of Proposition 5. According to unlimited capacity in
each period, the profit of the centralized supply chain is

Πc � Πs + Πr � 􏽘
N

i�1
p

s
i − Cp

1
i􏼐 􏼑 × ai · θi − b

s
i · P

s
i + αr

i · p
r
i − c

s
i · L

s
i(⎛⎝ ⎞⎠ + 􏽘

N

i�1
p

r
i − Cp

2
i − Cri􏼐 􏼑 × ai · 1 − θi( 􏼁 − b

r
i · p

r
i + αs

i · P
s
i + c

r
i L

s
i( 􏼁.

(A.18)

Taking the second-order partial derivatives of Πc with
respect to Pr

i , Ps
i , and Ls

i we have the Hessian matrix as
follows:
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*e second-order partial derivative of Πc with respect to
Ls

i is (z2Πc/z(Ls
i )
2) � 0 which indicates that theΠc is a linear

function of Ls
i . According to the above properties, the op-

timal value of Ls
i will be equal to its upper bound or lower

bound.

Proof of Proposition 6. From Ds
i ≥ 0, Dr

i ≥ 0 and constraints
(1) and (2), we obtain

P
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To have a feasible space for Ps
i and Pr

i , the upper bound
obtained for Pr

i must be greater than or equal to the lower
bound. Consequently, we have
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Substituting Ps
i � 0 into the above inequality, we can

derive (39) which is upper bound for Ls
i .
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