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In this research, we will focus on one variant of the problem: the capacitated facility location problem (CFLP). In many for-
mulations of the CFLP, it is assumed that each demand point can be supplied by only one open facility, which is the simplest case
of the problem.We consider the case where each demand point can be supplied bymore than one open facility.We first investigate
a Lagrangian relaxation approach. *en, we illustrate in the problem decomposition how to introduce tighter constraints, which
solve the CFLP faster while achieving a better quality solution as well. At the same time, we apply the volume algorithm to improve
both the lower and the upper bound on the optimum solution of the original problem for the large problem size.

1. Introduction

*ere are a limited number of test case problems for the
CFLP that we know of in the literature, which can be used to
evaluate the results of our main goal of this research, the
Lagrangian decomposition algorithm. Most of the algo-
rithms developed in the literature have been tested on
simulated data.

Lagrangian relaxation or Lagrangian decomposition was
introduced in the early 70’s through the work of Held and
Karp [1, 2] and Held et al. [3]. *ey realized that the re-
lationship between the systematic traveling-salesman
problem and the minimum spanning tree problem gives a
sharp lower bound on the optimum solution. *ereafter,
they used a procedure called subgradient optimization [3]
and showed that it is effective for approximating the
maximum of certain piecewise linear concave functions. *e
concept of Lagrangian relaxation is that we relax some
constraints and then penalize their violation, and the mo-
tivation for the relaxation of these constraints is that many
combinatorial optimization problems consist of an easy
problem with some additional complicating constraints.
Applying the Lagrangian relaxation to these problems will

relax these complicating constraints and absorb them into
the objective function. *e resulting relaxed problem be-
comes much easier to solve.

Barahona and Anbil [4] presented an extension to the
subgradient algorithm that will produce an approximation
cost per iteration; they called it the volume algorithm. In
general, it produces a primal vector as well as a dual vector
that can be used as a starting point for a more exact method.
*ey were able to present a successful experiment with linear
programming problems.

A large number of approximation algorithms with dif-
ferent techniques have been proposed recently for various
applications of the CFLP; for example, refer [5–11].

Alenezy and Khalaf in [12] discussed the Lagrangian
decomposition and volume algorithm procedures in detail.
In this article, we use variants of it in solving our CFLP for
large size problems. *e results obtained in this work were
compared with the results of best greedy and greedy weak
solutions.

In order to evaluate the performance of our Lagrangian
decomposition algorithm, we develop a number of greedy
heuristics (filters) that provide good solutions for known
problems in the literature [9]. *is is to illustrate the
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effectiveness of these heuristics for comparative purposes
when evaluating our Lagrangian decomposition approach
on large problem instances.

In the extreme case of very large problems, it is not
possible to have any strong constraints. However, we take a
dynamic approach to the model representation, whereby an
effective tightening constraint is dynamically added to the
model representation.

In particular, in this paper, we illustrate all the results
and the analysis of our experiments for both the greedy
heuristics and the Lagrangian decomposition algorithm. We
also include tests on the performance of our algorithm
compared to a number of benchmark models.

2. Capacitated Facility Location Problem

*e facility location problem (FLP) seeks to locate a number
of facilities to serve a number of customers; thus, there is a
set of potential facility locations F; opening a facility at
location i ∈ F has an associated nonnegative fixed cost fi

and has either a limited or unlimited capacity Si of available
supply.*ere is a set of customers (clients) or demand points
D that require service; customer j ∈ D has a demand dj that
must be satisfied by the open facilities. If a facility at location
i ∈ F is used to satisfy part of the demand of client j ∈ D,
then there is a service or transportation cost incurred, which
is often proportional to the distance from i to j, denoted by
cij.

Let F� a set of potential facility locations, D� a set of
customers or demand points, m� the number of potential
locations of the facilities; m � |F|, n� the number of cus-
tomer; n � |D|, jd � the demand of customer j ∈ D(where
dj ≥ 0), cij � the unit cost of supplying the demand of cus-
tomer j ∈ D from facility i ∈ F (where cij ≥ 0), Si � the ca-
pacity of facility i (i.e., the upper limit on the total demand
that can be supplied from facility i, where Si ≥ 0), p� the
desired number of open facilities, fi � the fixed cost asso-
ciated with opening facility i (where fi ≥ 0), xij � the fraction
of the demand of customer j supplied from facility i (where

0≤ xij ≤ 1), and yi �
1 if facility i is open
0 otherwise􏼨 .

*en, the formulation of the CFLP as a mixed-integer
programming problem, which is referred to as IP found in
[12], is as follows.

*e objective equation:

minimize 􏽘
j∈D

􏽘
i∈F

djcijxij + 􏽘
i∈F

fiyi,

subject to 􏽘
i∈F

xij � 1, ∀j ∈ D.
(1)

*is equation ensures that the demand of each customer
is satisfied:

􏽘
j∈D

djxij ≤ Siyi, ∀i ∈ F, (2)

xij ≤yi, ∀i ∈ F, j ∈ D. (3)

To ensure that the closed facility does not supply any
customer and that the demand supplied from the facility
does not exceed the capacity of the facility,

yi ∈ 0, 1{ }, ∀i ∈ F. (4)

*is is the integrality constraint:

p≤ 􏽘
i∈F

yi ≤p + 2. (5)

*is constraint tightens the lower bound representation
of the CFLP. *e value of p is determined as follows; we sort
all of the facilities in descending order of capacity. *en, p is
such that, in the sorted order of facilities,

􏽘

p− 1

i�1
Si < 􏽘

n

j�1
di ≤ 􏽘

p

i�1
Si. (6)

Although the right-hand side of the constraint (5) need
not be bounded, as a consequence of our experiments using
p + 2 speeds up considerably the computational time with
no detriment to the solution quality,

xij ≥ 0, ∀i ∈ F, j ∈ D. (7)

*e last inequality provides bounds on the allocation
variables xij.

In order to develop a Lagrangian heuristic for the CFLP,
first we need to consider a linear programming relaxation for
the IP problem, which is the same formulation (IP), except
we replace inequalities (4) by

yi ≤ 1, ∀i ∈ F. (8)

We will denote the LP relaxation by P.

3. Lagrangian Decomposition and Volume
Algorithm (LD and VA)

In this part, we first consider a Lagrangian relaxation of the
above problem (P). *en, we describe how to use the volume
algorithm [7], which is an extension to the subgradient
optimization.

In order to investigate the solution of large-sized
problems, we followed the methods of Alenezy and Khalaf
[12], *at is, by decomposing CFLP into independent
problems, which are easier to solve. Motivated by this
method, let ui be the dual multiplier for the equation j in (1)
and let cij � djcij − uj. *en, a lower bound L(u) is given by
solving the following problem:

L(u) � minimize 􏽘
j∈D

􏽘
i∈F

cijxij + 􏽘
i∈F

fiyi, (9)

subject to 􏽘
j∈D

djxij ≤ Siyi, ∀i ∈ F, (10)

xij ≤yi, ∀i ∈ F, j ∈ D, (11)

yi ≤ 1, ∀i ∈ F, (12)
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p≤ 􏽘
i∈F

yi ≤p + 2, (13)

xij ≥ 0, ∀i ∈ F, j ∈ D. (14)

3.1. %e Lagrangian Decomposition (LD). It was widely re-
ported that solving the L(u) above provides a good lower
bound on the integer optimum solution.*is is improved by
using the volume algorithm. Motivated by this and by the
fact that it is difficult to solve the L(u) for large size
problems, we decompose the L(u) problem into m inde-
pendent subproblems for each i ∈ F to compute a lower
bound, we also at this point relax constraint (13), and we will
return to these later in this section.*e generic forms of each
subproblem are

minimize fy + 􏽘 cjxj,

subject to 􏽘
j

djxj ≤ Sy,

xj ≤y, j ∈ D,

0≤y≤ 1,

x≥ 0.

(15)

Solving this to get a lower bound (LB) is easy, and it is
easy too for the upper bound (UB). First, we set to 0 any
variable xj with cj > 0. *en, we assume that the rest of the
variables are ordered such that

c1

d1
≤

c2

d2
≤ · · ·

cn′
dn′

, where n′ ⊆ n and n � |D|. (16)

Now, let k be the largest index such that 􏽐
k
j�1dj ≤ S, and

let

b(k) � 􏽘
k

j�1
dj,

r �
S − b(k)

dk+1
.

(17)

If f + 􏽐
k
j�1cj + ck+1r≥ 0, then we set y � 0 and xij � 0

for all j. Otherwise, we set y � x � 1 for 1≤ j≤ k and
xk+1 � r.

Having solved these m independent subproblems, we
next consider the minimum number of facilities that are
needed to supply all the demand. In this way, we enhance the
LB here by comparing the number of opened facilities
denoted by h, after having solved the m subproblems, to the
minimum needed p. If h<p, then we sort the unopened
facilities by their fixed costs and open the cheapest facilities
until we have p opened. *e LB is suitably increased to
account for these extra fixed costs.

3.2. %e Volume Algorithm (VA). To improve the lower
bound we obtained from solving the decomposition of the
problem above, we use the VA developed in [7] and the same

algorithm found in [12], which stopped by a number of
passes� 200, and next, we extend it to 2000. *is algorithm
can be formulated by the following steps:

Step 1. Start with a vector u and solve (8)–(13) to obtain
(x, y) and L(u) and set t � 1.
Step 2. Compute vt, where vt

j � 1 − 􏽐ixij and
ut � u + svt, for a step size s given by (20) below. Solve
(8)–(13) with ut. Let (xt, yt) be the solution obtained.
*en, (x, y) is updated as

(x, y) � α x
t
, y

t
􏼐 􏼑 +(1 − α)(x, y), (18)

where α is a number between 0 and 1. In order to set the
value of α, we solve the following one-dimensional
problem:

minimize αw +(1 − α)vt
���

���,

subject to
b

10
≤ α≤ b.

(19)

*e value b was originally set to 0.1, and then every 100
iterations we check if L(ut) had not increased by at least
1%, in which case, we divide b by 2; otherwise, we keep
it as it is. When b becomes less than 10− 5, we keep it
constant at this value.
Step 3. If L(ut)> L(u), then update u as u � ut. Notice
that in, step 3, we update u only if L(ut)>L(u).
Step 4. Stopping criteria.

(1) vt
j < 0.02

(2) (UB − L(ut))/UB≤ 0.02
(3) *e number of passes equals 2000

*e algorithm terminates when one of the previous
criteria is met. If stopping rules are not satisfied, then set
t � t + 1, and go to step 2.

*e formula of the step size s is as the one used in the
subgradient method [13]:

s � λ
UB − L(u)

‖v‖2
, (20)

where λ is a number between 0 and 2. In order to set its value,
we define three types of iterations:

(i) Iteration E, which is the iteration with no im-
provement on the lower bound. A sequence of E
iterations requires the need for a smaller step size.
*erefore, after a sequence of 20 E iterations, we
multiply λ by 0.66.

(ii) If L(ut)> L(u), we compute wj � 􏽐ix
t
ij, for all j and

d � vt · w. If d< 0, this means that a larger step size
would have given a smaller value for L(ut), and we
call this iteration Y.

(iii) If d≥ 0, we call this iteration T; a T iteration suggests
the need for a larger step size, so we multiply λ by
1.1.
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3.3. Computing LB. In [12], we found that there are two
approaches to solve the L(u) formulation of the problem
above to obtain a LB. To keep this paper self-contained, we
list the following approaches:

*e first approach is to decompose L(u) into m inde-
pendent subproblems. Solve them as explained above. *en,
update this LB using the VA as mentioned previously, but in
two ways for step 1. One way is to set the value of the vector u

to 0 and continue using the VA to improve the LB.*e other
way is to set the vector u to values that is denoted by “warm
start duals.” *e warm start duals are the values of the duals
of the relaxed constraints (1), obtained from solving the
greedy weak representation of the CFLP as a solution.

*e second approach is first to remove constraints (11)
from the L(u) formulation to reduce the size of the problem
to make it possible to solve. *en, solve it without the de-
composition technique above, to obtain a LB. To improve
this LB again, we apply the VA with the same two ways we
discussed above.

Notice that the constraints (13) are included in the L(u)

formulation, but only the part p≤􏽐i∈Fyi is applicable in
obtaining the LB as we explained before. *e other part is
redundant here since it only has an impact on obtaining the
UB in the next approaches. *e lower bound in this ap-
proach does not always have integer values y, while this is
not the case in the decomposition approach; hence, the LB
from this approach is often worse than the LB from the
decomposition approach.

3.4. Computing UB. To compute the UB, one way is to first
remove constraints (3). Solve the P formulation for a LP
solution. *en, use a technique called randomized rounding
(RR) with a new technique called the unit cost technique
below, to treat the fractional solutions of y as a probability
distribution and keep opening them randomly to get enough
capacity. We keep updating this UB using the VA every 50
passes, until we meet one of the stopping criteria. We choose
the passes to be 50 because the UB changes slowly, and from
our experiments, 50 passes usually show some improvement
in the UB. *is is one way of obtaining the UB.

*e other way is similar to the above, except after we
solve the P problem; we call the upper bound of the greedy
weak representation. We call this strategy the “warm start
UB.” *is UB results in a smaller step size of the VA.
*erefore, both the LB and the UB have converged faster in
our experiments. *en, after 50 passes, we call the RR
technique below as before.We keep using the VA and the RR
technique until we meet one of the stopping criteria.

A third technique called the “unit cost technique” (UC)
selects the y′s to open according to their costs. It chooses the
ones with the minimum unit cost. We call this technique
once at the beginning before calling the RR. *en after 50
passes, we switch to call the RR and keep calling the RR every
50 passes to update the UB until one of our stopping criteria
is met. Next, we discuss these techniques in more detail.

3.5.Discussion. Combining the approaches discussed above,
which were used to obtain the LB and the UB, we got eight

different approaches to solve the CFLP. Figure 1 below is a
tree chart to simplify these eight approaches that are denoted
by methods LR1–LR8.

*ese methods are used in solving different sizes of the
CFLP. To decide which methods are used to solve which
problem, we classify the problems into three classes: the
small, the medium, and the large.

4. Computational Results

*e selected model collection was drawn from Beasley [14],
and we selected two instances where they fail to find feasible
solutions when they use the factor� 1.5. *e factor value is
defined as 􏽐i∈FSi/􏽐j∈Ddj, which is used to rescale the ca-
pacity values. *ey used heuristics that produce a feasible
integer solution and used a Lagrangian relaxation and the
volume algorithm to obtain a lower bound on the optimal
value. For the CFLP, they were able to solve instances up to
1000 × 1000.

We use instances generated as in the work of Beasley [7]
and the work of Ravi and Sinha [9], which are as follows:

(i) We generate the demand points j and the facility
points i uniformly at random in a [0, 1] × [0, 1]

(ii) *e demand values dj are generated from a uniform
distribution with mean 35 and standard deviation 5,
U[35 −

��
15

√
, 35 +

��
15

√
]

(iii) *e capacities Si are generated from a U[10, 160]

distribution and are then rescaled so that
􏽐i∈FSi/􏽐j∈Ddj was set equal to the parameter factor;
this was either set at 10 and in some cases 1.5

(iv) *e fixed cost fi of each site was set using the
formula fi � U[0, 90] + U[100, 110]

��
Si

􏽰

(v) *e unit transportation costs cij correspond to the
Euclidean distance scaled by 10

Next, we report the results of our experiments for two
algorithms using a number of approaches denoted by
methods LR1–LR8. *e first are the approaches of the La-
grangian relaxation algorithm without decomposition
(LR1–LR4), and we denote this algorithm by LR and VA.
*e second are the approaches of the Lagrangian relaxation
with the decomposition algorithm (LR5–LR8), and we de-
note this algorithm by LD and VA.

Recall that, we classify the problems into three classes
according to the size. *e classes are small, medium, and
large. In the next subsections, we report the results and the
analysis of each class of the problems.

4.1.%e Small Size Problems. In Table 1 below, we report the
solutions for solving the small problems of size 100–300. By
comparing the solutions of the two algorithms explained
above, we notice that both the LB and the UB of the La-
grangian decomposition with the volume algorithm
LR5–LR8 are much better in both quality and running time.
*ere is a big difference in the LB between the two algo-
rithms, and the reason is that one of the advantages of the LD
algorithm is forcing y′s to be 1. In addition, we were able to
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Small and medium problems

To get LB

Lagrangian relaxation

No decomposition
remove xij ≤ yi

With decomposition

Volume algorithm (step 0) Volume algorithm (step 0)

u = 0
u = warm start

duals

To get UB
(remove xij ≤ yi)

UCT
+

RR

Warm
UB
+

UCT
+ RR

Warm
UB
+

UCT
+ RR

Warm
UB
+

UCT
+ RR

Warm
UB
+

UCT
+ RR

UCT
+

RR

UCT
+

RR

UCT
+

RR

LR1 LR2 LR3 LR4 LR5 LR6 LR7 LR8

u = warm start
duals u = 0

Figure 1: *e Lagrangian heuristics and the volume algorithm’s methods LR1–LR8.

Table 1: A comparison between the results of the LR and VA and the LD and VA for the small problems sized 100–300.

Problem size m × n Algorithm Method LB UB Time Passes Error %

100 × 100

LR and VA

LR1 9529.44 11984.03 64.48 650 20.5
LR2 9529.44 11757.42 359.4 1750 18.9
LR3 9529.44 11433.22 113.8 571 16.7
LR4 9529.44 11433.22 41.0 423 16.7

LD and VA

LR5 11088.854 11717.01 4.35 450 5.43
LR6 11088.854 11599.43 3.8 397 4.46
LR7 11088.854 11433.22 4.61 482 3.03
LR8 11088.854 11433.22 4.12 443 3.02

Best greedy sol. Filter 4 11089.6 11634.30 55.19 — 4.68

200 × 200

LR and VA

LR1 18005.55 20677.407 681.68 1400 12.9
LR2 18005.75 20447.484 680.48 1450 11.9
LR3 18005.34 20083.69 822.64 617 10.3
LR4 18005.75 20083.69 78.10 503 10.3

LD and VA

LR5 19542.11 19919.04 151.54 1850 1.89
LR6 19542.02 19919.05 75.06 900 1.89
LR7 19542.08 19919.05 116.26 1400 1.89
LR8 19542.07 19792.52 95.01 1150 1.30

Best greedy sol. Filter 4 19542.3 19791.608 791.64 — 1.30

300 × 300

LR and VA

LR1 26428.89 30775.85 1552.28 1000 14.0
LR2 26428.09 29854.86 774.10 500 11.5
LR3 26428.85 29092.27 1000.82 647 9.2
LR4 26428.86 29092.27 644.98 438 9.2

LD and VA

LR5 28351.01 29197.79 616.77 702 2.9
LR6 28351.01 29065.70 1469.08 1700 2.5
LR7 28351.01 28933.05 935.91 1150 2.01
LR8 28351.01 28933.05 369.46 1150 2.01

Best greedy sol. Filter 4 28351.8 29125.771 5403.93 — 2.7
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obtain a closed LB as greedy’s of the strong representation of
the problem, but a better UB and running time. Also, the
error values are less than greedy’s in some of our methods
LR5–LR8.

In the next tables, the column “passes” presents the
number of times we go through the algorithm looking for a
better LB and UB. *e last row corresponds to the best
greedy solution we were able to obtain; we include it in

these tables for comparison purposes. *e last column
corresponds to the error percentage values, which can be
obtained by (UB − LB)/UB. *is value shows the per-
centage gap between the lower and the upper bounds of the
problem.We use this value as a stopping criterion if it is less
than 2%. Also, the stopping criteria here in most of the
results are the number of passes, and in the rest, they are the
error values.

Table 2: Computational results of the LD and VA for the medium problems of size 400–900.

Problem size m × n Algorithm Method LB UB Time Passes Error %

400 × 400 LR and VA

LR5 36935.02 37896.53 1069.32 1350 2.50
LR6 36935.06 37490.2 1444.27 1800 1.50
LR7 36935.04 37822.04 487.29 625 2.34
LR8 36935.42 37822.0 451.83 552 2.34

Best greedy sol. Mweak 34834.849 37495.195 431.67 — 7.1

500 × 500 LR and VA

LR5 45409.13 45785.48 1212.02 618 0.82
LR6 45410.19 45732.0 6285.19 1550 0.70
LR7 45409.29 45644.58 1902.88 1000 0.50
LR8 45409.0 45694.22 2158.55 1050 0.62

Best greedy sol. Mweak 43217.95 45968.784 864.89 — 6.0

600 × 600 LR and VA

LR5 53756.957 54788.362 4572.55 901 1.90
LR6 53709.728 54535.212 3333.43 651 1.50
LR7 53756.414 54285.848 4133.19 601 0.96
LR8 53687.616 54285.848 3135.78 601 0.98

Best greedy sol. Mweak 51564.439 54065.88 1541.69 — 4.60

700 × 700 LR and VA

LR5 61165.793 62260.506 5553.19 601 1.76
LR6 61166.521 62230.049 6574.87 751 1.71
LR7 61165.194 62048.79 5058.79 601 1.40
LR8 61165.867 62048.793 4972.56 601 1.4

Best greedy sol. Mweak 58997.209 61710.99 2193.92 — 4.4

800 × 800 LR and VA

LR5 68783.862 69557.30 12192.85 1100 1.1
LR6 68724.139 69956.659 13840.73 1001 1.76
LR7 68764.846 69049.99 8601.68 602 0.413
LR8 68744.645 69049.99 8582.22 601 0.44

Best greedy sol. Weak 66693.20 69049.99 543.63 — 3.4

900 × 900 LR and VA

LR5 76509.406 77139.556 12311.42 604 0.82
LR6 76421.149 77028.705 12156.0 603 0.79
LR7 76511.347 77028.705 9715.03 601 0.67
LR8 76505.026 77028.705 9723.46 602 0.68

Best greedy sol. Weak 74423.0 77054.107 1029.58 — 3.4

Table 3: Computational results of the LD and VA for the large problems sized 1000–3000.

Problem size m × n Algorithm LB UB Time Passes Error %

1000 × 1000 LD and VA 84448.103 86732.678 1140.030 1550 2.630
Greedy weak 82466.800 87710.265 1121.890 — 5.980

1200 × 1200 LD and VA 101617.237 103125.198 1705.680 882 1.460
Greedy weak 98770.100 103579.320 1766.210 — 4.640

1500 × 1500 LD and VA 124282.603 126124.230 2429.820 1100 1.460
Greedy weak — — — — —

2000 × 2000 LD and VA 161914.359 164486.627 9100.300 1760 1.564
Greedy weak — — — — —

2500 × 2500 LD and VA 202179.251 202784.372 21155.3 1950 0.300
Greedy weak — — — — —

3000 × 3000 LD and VA 239858.612 241723.867 38016.52 1993 0.772
Greedy weak — — — — —
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4.2. %e Medium Size Problems. Table 2 below lists all the
results of solving the medium problems sized 400–900. We
used the Lagrangian decomposition algorithm only because
the size of the problem is too large to solve without
decomposing them. *e results of problem sized 500 × 500
shows that we were able to obtain a better LB and UB
compared to those of greedy’s solution. Also, the gap be-
tween them is less than the gap of greedy’s solution. In
problems sized 500–900, we were able to obtain a feasible
integer solution (UB) within a gap of less than 1% of the
lower bound LB in most of our solutions and in others less
than 2.5%.*e stopping criterion was the error value inmost
of the results.

4.3. %e Large Size Problems. In Table 3, we illustrate all the
results of solving large-sized problems using the Lagrangian
decomposition with the volume algorithm, which is the goal
of this research. We were able to solve large instances of the
CFLP.*e largest problem solved was of size 3000 × 3000. In
some of the problems, we were able to compare the solution
with the greedy’s solution. Table 3 shows that we obtained a
better LB and UB than the greedy’s. Also, the gap between
them is much less than the gap between the UB and the LB of
the greedy’s. In all of the problem solution, the gap is less
than 2.63%.

5. Conclusion

In this article, we have investigated solving very large in-
stances of the CFLP. We first presented a general algebraic
model for the CFLP. In addition, the created Lagrangian
decomposition representation solves large instances of the
CFLP. We have improved the lower bound of this technique
by both exploiting the decomposition approach as well as
introducing a tightening constraint, which is a new positive
addition to the Lagrangian decomposition approach for
solving the CFLP.

In the case of very large problems, we have applied a
randomized rounding technique along with our unit cost
technique, which provided a good UB in a reasonable
computational time.

*e thrust of this paper research was to be able to solve
very large instances of the CFLP.We have illustrated that our
algorithm scales up. Our results show that increasing the
problem size leads to a small relative error between the LB
and the UB without too much burden on the computational
time. In order to process such large model instances, we have
exploited a sparse technology technique in implementing
our algorithm. *us, we have developed a sparse data
structure that we exploit in our algorithm implementation.
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