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Many industries are looking for ways to economically use truck/rail/ship fitted with drone technologies to augment the “last mile”
delivery effort. While drone technologies abound, few, if any studies look at the proper configuration of the drone based on
significant features of the problem: delivery density, operating area, drone range, and speed. Here, we first present the truck-drone
problem and then invert the network routing problem such that the best case drone speed and range are fitted to the truck for a
given scenario based on the network delivery density. By inverting the problem, a business can quickly determine the drone
configuration (proper drone range and speed) necessary to optimize the delivery system. Additionally, we provide a more usable
version of the truck-drone routing problem as a mixed integer program that can be easily adopted with standardized software used
to solve linear programming. Furthermore, our computational metaheuristics and experiments conducted in support of this work
are available for download. The metaheuristics used herein surpass current best-in-class algorithms found in literature.

1. Introduction

The use of drones or other parallel-constrained resources in
conjunction with main delivery assets offers potential per-
formance improvements that may prove beneficial. The base
problem for the truck-drone (DTSP) can be easily visualized
as two shoppers working together to fetch goods from the
shelves of a supermarket as efficiently as possible. As one
shopper pushes the cart, the second shopper may stroll
alongside or may separate and operate parallel fetching items
back to the cart. While the two shoppers may be tasked
independently in parallel operation, there will be times when
it is more efficient to walk together. Indeed, it is obvious that
there is an optimal set of routes for each shopper, but what is
less intuitive is that the necessary speed and range of the
parallel shopper will prevent any such optimization or may
significantly delay the main shopper. Here, we examine this
relationship.

For a truck-drone (say UPS) parcel-delivery system, it is
easy to imagine that a very slow drone will afford little or no
benefit to the truck. For at nearly every stop, the truck will
wait idly while looking for the drone’s return. The lumbering

drone delivers its only one package on a parallel path and is
practically useless—regardless of its range. Furthermore,
that a very fast drone affords no real improvement in de-
livery time at all if it has only a short range. The drone only
becomes a helpful servant if the drone’s range and speed are
correctly proportioned to the truck’s speed. Thus, it is easy to
imagine that there exists an optimal relationship between
truck’s speed, drone range, drone speed, and the delivery
density of the network.

For this problem, we assume the truck can launch the
drone with only one parcel from any delivery location and
then rendezvous w/drone downstream at an adjacent de-
livery location while the drone delivers on a parallel path to
the truck. This truck-drone routing is depicted (Figure 1).

The remaining sections comprised herein as follows.
Section 2 discusses the inverted problem and other theo-
retical insights to solve for “best” case drone range and drone
speed. Section 3 discusses the literature surrounding the
truck-drone problem. Section 4 defines a more usable
version for the mixed integer programming (MIP). Section 5
formulates the truck-drone problem as an evolutionary
algorithm (EA) type metaheuristic algorithm used to
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FiGgure 1: Truck with single-drone parcel delivery.

conduct computational experiments. Section 6 performs
computation experiments for the EA against best-in-class
found heuristics in literature, and Section 7 concludes the
research on findings as well as the direction of future
research.

2. System Model: Theoretical Insights

For a three-node problem whereby node v, denotes the
depot and parcel deliveries are to be made to nodes i and j;
then, the best delivery time for the system is the max of the
drone’s time or the truck’s time. The problem can easily be
scaled by establishing that the truck’s speed is always one,
and the drone’s speed is a multiple (or factor of truck’s
speed) asin (1 x «). Furthermore, since drone’s speed « is as
factor of truck speed, then an optimal configuration exists
when drone speed equals drone’s range «. In other words, we
are not saturating our drone with unnecessary resources
(range or speed) to perform the delivery operation. As il-
lustrated (Figure 2), the truck launches the drone, moves out
a distance of 1 unit at rate of 1 unit/distance, and then
returns to rendezvous with the drone. The total delivery time
is t = max (2, 2«), and an optimal configuration exists when
range and speed for the drone are equal (2 = 2« and « = k).

However, most problems are not simple three-node
problems having one truck and one drone. For more ad-
vance network problems, the delivery density p becomes a
critical component when solving for drone range and speed
(a, k). Delivery density is defined here as the number (N) of
required deliveries per area (A) of the delivery space
p=NJ/A.

In order to build the case to solve for optimal speed & and
range «, we start with a “best case” or lean scenario. In such
case, we would expect that approximately 50% of the de-
liveries will be made by the truck and 50% by the drone.
Furthermore, under these ideal conditions, a set of same size
triangles can be constructed inside the area of operation A to
represent all the parcel deliveries (Figure 3), where vertices

Advances in Operations Research

L] )
dtsp i L t = max(2, 2a)
Vo

FIGURE 2: Best case for truck and one-drone [1].
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FIGURE 3: Practical best case parallelogram.

of the triangle denote the delivery locations. We will call this
the practical best case.

Using these triangles and simple parallelogram geom-
etry, we can easily calculate the optimal drone speed and
drone range necessary to rendezvous with the truck at ex-
actly the same time at each parallel delivery operation. In
such case, we would not need to spend any extra on un-
needed resources while guaranteeing that the system will
perform optimally.

For the practical best case system, we calculate the de-
livery density as p = N/A. Using density (p), we then replace
N/A with N/((N/2) - 1) (x*/2a), where area of the paral-
lelogram is denoted as A = ((N/2) — 1) (¥*/2a). Since we are
given the delivery density when given the problem scenario,
we can then invert the problem and solve for proper drone
capability (speed («) and range (x)) that solves the problem:

- N
P N2 = 1) (2 2a)

ra>lk>a,N>4,p>0. (1)

Furthermore, we conducted several computational ex-
periments to better understand the relationship between
lean deliveries and randomly generated stochastic situations.
For each scenario, random delivery locations were uniformly
distributed in the area of operation while drone speed («),
range (x), and operating area (A) were held constant. The
number of deliveries N’ was perturbated ranging from 10 to
200 deliveries within the area of operation. Here, we wished
to understand the percent improvement gained IT (in de-
livery time) over a stand-alone truck (no drones) delivery
system. We found that as the delivery density of the random
scenario p* = (N'/A) approached or moved toward the
delivery density of the lean solution p°' = (N'/((N/2) -
1) (x*/2a)) that performance time IT (over a stand-alone
truck) improved. In such case, the delivery and routing
portion of the problem for the randomly generated exper-
iments was solved using the metaheuristics described below,
while the delivery time for a stand-along truck was solved
using standard tsp metaheuristics.

The results (Figure 4) showed that as the problem delivery
density of the randomly generated scenario was close to the
optimal delivery density (defined by N, drone speed («), and
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Performance of truck-drone when operating near optimal
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FIGURE 4: Percent improvement II over truck-only time as p*
moves toward optimal density p°P".

range (x)) that the overall performance time IT improved
without oversaturating the system with unneeded resources.
Concretely, the abscissa (x-axis) denotes the difference between
rho optimal based on alpha and kappa and the problem density
rho based on N and delivery area. The ordinate (y-axis) denotes
the improved performance over a truck-only delivery system
(tsp-routed). The graph shows that as the two densities are
closer together, the overall performance of the system improves.
Given good results of using the practical best case methodology
as a basis to evaluate the performance of a system, we con-
structed the following minimization problem to solve for the
proper drone speed and drone range based on number of
deliveries N and size delivery area of operations Akm?. As
such, minimization problem here is used to select system pa-
rameters « and « that are suited for a particular problem density
p. Itis noted that due to the stochasticity of the problem that the
solution for range and speed are lower boundaries for the
proper speed and range of the drone configuration:

min  [p® - p”|
N
opt _
SR S NR) S D (e 2a)
. N
P A’

(2)

K1 g < K< Kyp,

o g < @< Ay,
N=>4,p",
p>0.

In summary, the theorems for the optimal parameters
for the truck-drone are as follows.

(i) There exists a maximum theoretical upper boundary
for time improvement factor which will rarely, if ever,
be reached [1]. This is based on the comparison
between truck-drone and truck-only solution:

ﬁﬁl_(l-lk(x) )

(ii) The minimum Jlower boundary for time improve-
ment (worst case) of truck-drone over the truck-
only solution defaults to the truck-only route time
or a tsp route time.

(iii) The improvement (IT) over truck-only moves toward
optimal as the uniformly distributed vertices within a
delivery area move toward the optimal density:

opt N
(N/2) - 1) (x22a)

p (4)

Therefore, for a delivery scenario, if we are to be within the
vicinity of the “best set” of operating parameters to optimize
IT*, then system parameters are found by minimizing the
difference between delivery density p* and optimal density
p°Pt. The resulting drone parameters and relationship between
the two done parameters o and k become the lower
boundaries for an optimal configuration for the drone.

3. Literature

Today, a vast body of literature exists on tsp and the closely
related vehicle routing problem (vrp). Several approaches to
both problems can be found in surveys, reports, and papers
[2-4]. As a rule, the vrp problem extents the tsp by adding
additional constraints. These constraints comprised such
things as time windows, priorities, range, loiter times, per-
missible-to-vehicle type route segments, load configurations,
and traffic patterns [5]. While many variants of the tsp/vrp
problems exist in literature to include multivehicle mtsp,
customer pickup and delivery problem, multiple synchro-
nization constraints vrp [6], multiple depot vehicle scheduling
problem [7], and many-to-many milk run routing problem
[8], there exists only a handful of studies concerning the dtsp,
and no studies exist that address the proper configuration
(capabilities) of a main tool (truck) and one or more assisting
tools when solving for the optimal network routing.

Work that addresses the main tool and a constrained
assisting tool is the work of Agatz et al. [1] and Murray and
Chu [9]. Both of these authors propose the truck-drone
problem as a type of main tool with assisting tools. Their
works delineate the main differences between existing
problems and their specific version of the tsp problem by
distinguishing the drone’s ability to travel with (on/in) the
truck as well as to operate with the truck in several parallel
operations described as launch-deliver-rendezvous tasks.
Before this demarcation, no problem dealt squarely with the
unique paradigm. Concretely, the dtsp describes the drone as
a parallel resource to the truck required to periodically
rendezvous with the truck due to payload and distance
restrictions. Murray and Chu [9] formally define the flying
sidekick traveling salesman problem (FSTSP) as an NP-hard
problem. Their study suggests a mixed integer programming
(MIP) approach as well as metaheuristic approach. They also
consider a second similar hub type problem that addresses



the case where the customers are close enough to the depot to
be serviced directly from the depot by the drone as the parallel
drone scheduling TSP (PDSTSP). Both Murray and Agatz
discuss the mixed integer formulation for the optimal min-
time route. They allude to the fact that a drone is constrained
in range, capacity, and speed as it relates to the truck.
However, they do adequately address this interrelationship.
Furthermore, Agatz only considers a slightly altered version of
the FSTSP and does not address the PDSTSP. Agatz, like
Murray, considers the truck-drone in tandem as a team
whereby the truck launches the drone, traverses to a separate
delivery location from the drone, and then rendezvous with
the drone again. However, the main difference between the
approaches is that Agatz et al. [1] require that the drone and
truck traverse along the road network system; a constraint not
enforced by [9]. They do this to facilitate construction of
heuristic approaches with approximations that guarantee a
bound on the maximum achievable gain of the delivery
system over a “truck-only solution.” Murray and Chu [9]
formally define the flying sidekick traveling salesman problem
(FSTSP) as an NP-hard problem. Their study suggests a mixed
integer programming (MIP) as well as the metaheuristic
approach. They also consider a second similar hub-type
problem that addresses the case where the customers are close
enough to the depot to be serviced directly from the depot by
the drone as the parallel drone scheduling TSP (PDSTSP).
More recently Agatz et al. [10] presented an exact solution
approach for the truck-drone problem denoted as the traveling
salesman problem with drone (TSP-D) based on dynamic
programming. They modeled the problem first as an integer
program and then developed multiple route-first, cluster-
second heuristics based on local search and dynamic pro-
gramming. Their insights suggested that larger problem in-
stances could be solved by dynamic programming better than
other mathematical programming approaches found in lit-
erature. They show worst case approximation ratios for their
heuristics and compare the performance to optimal solutions
for smaller instances. They applied their heuristics to several
artificial instances with differing characteristics and sizes to
show substantial improvements over the truck-only solution.
Perhaps, the problem herein most similar is the covering
traveling salesmen problem described by Current and
Schilling [11]. The covering problem finds the shortest tour
for the “tsp” network by reducing the problem to a subset of
the total nodes. In such case, if the adjacent nodes can be
reached or “covered” within range then they can be grouped
as a single node or stop, thus reducing the final optimal tour
as well as the number of permutations of the problem
significantly. For the covering problem, they propose a
metaheuristic based solution to solve larger problem sets.
Several generalizations and extensions to the covering
problem can be found in literature [12]. For the main tool
with assisting tools, it is not enough to bypass the unvisited
or ‘covered’ nodes for three reasons: (1) first, the main and
assisting tool requires that the truck and drone rendezvous at
the end of each operation, and thus their end of operation
timing is a factor of the total time. (2) Secondly, the covered
nodes ‘within-range’ are subject to the number of assisting
tools fitted to the main tool. (3) And, thirdly, the range,
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speed, and number of assisting tools are interdependent to
the node coordinates and thus determine the total possible
‘coverage’ area which may be different for each operation.

Furthermore, the speed and range of the assisting tool is
significant to the overall performance of the system. Herein,
we give a closed form approach to determine the proper speed
and range necessary for assisting tools to obtain an optimal
performance of the system without oversaturating the system.
This is not currently found in any literature. Many other
authors create variations of the main/assisting tool problem,
but do not address these fundamental relationships.

4. Truck-Drone Mixed Integer Programming

The parallel resource truck-drone problem is recognized
when the associated second resource is constrained to re-
main at some proximity to the main vehicle, and when
separated, it will eventually rendezvous with the main ve-
hicle at a downstream location. It is permitted to temporarily
separate from the main resource, but must soon return due
to range or operational constraints.

In order to establish a generalized mathematical for-
mulation and improve the tractability and software mod-
eling (Lingo/Lindo ®) of this problem, we assume the
following: (1) number, location, and distances between
customers (nodes) are known and deterministic, (2) each
node must be visited no more than once by a vehicle or a
group of vehicles, (3) vehicles must traverse along arcs
(edges) between nodes, (4) vehicles separate and rendezvous
at node locations, not along arc space between nodes, (5) any
vehicle may separate from the group to deliver to a node
before it must rendezvous with the main vehicle (or group)
at a downstream node; once rendezvous has occurred, each
vehicle is again permitted to separate to another delivery
node and then rendezvous again at a downstream node, and
(6) each delivery node has demand of one unit; thus, one
sortie of drone or truck is capable of delivering a parcel.

Given we have one drone (y) operating in adjacent space
of the main delivery truck (x), then if drone (y) is used for
delivery, and it shall be launched from the truck at node i,
traverses to a delivery node (customer) at j, and rendezvous
with the delivery truck at third node k, whereby the binary
tuple variable (y;; = 1) flags that the route segment is used
by drone. After launching drone, the truck (x) has two
options: (1) traverses directly from launch node to the
rendezvous node (xijk =1) as depicted (Figure 5) and (2)
traverses to yet another delivery node j and then proceeds
onto the drone rendezvous node (x;j = 1).

The truck-drone dtsp problem’s material elements can be
described mathematically as a network graph G = (V, E),
where V' denotes the customers-delivery-stops and E de-
notes the edges between stops. Each vertex V = {1,...,|V]}
and N denotes the cardinality of |[V| or total number stops.
An edge E is described by two vertices {i, j}, whereas two
joined edges are described as three vertices {i, j, k}, where
vertex j is the vertex between i and k. Furthermore, binary
variables (x;j, ;) denote whether an edge triplicate is used
by a truck x;; or a drone y;j; and x;; or y;j; = 1if used, else
X;ji Of ;% = 0. The binary variable x; ;. = 1 if truck traverses
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F1GURrE 5: Truck and one-drone problem depiction: (a) truck option 1 and (b) truck option 2.

E (i, j) and then further traverses to E ( j, k). If a drone travels
on a truck in a dormant configuration, the drone is assigned
the truck’s i, j, k tuple index variables y;; = 1; else, a drone
may serve in an active delivery role and therefore be assigned
binary variable y;,;, =1 denoting the drone was launched
from vertex i, delivered to h, and subsequently recovered at
vertex k. An important characteristic of the problem here is
that the first and last vertex index of the truck and the drone
must always be the same. The distance matrix D and the
construction of triplet distances as tuple d; ; denotes the cost
or distance of traversing the E (i, j) and E (j, k). The subtour
elimination variable u; ensures that sequence of j follows i in
the event that E (i, j) is part of the solution; as such, it re-
stricts subtour formations.

The minimax objective function minimizes the max
(Z = Yicc 2 jec?ij) time of the truck or drone as each visit
three nodes in an operation. As such, z;; is used to evaluate
each vehicle’s time, where 7, j are the first and last nodes of
the three visited nods for truck (i, k, j) or drone’s (i, h, j).
Since z;; is greater than or equal to the truck or drone time,
we force z;; to evaluate each vehicle’s time using
Zij 2 Y recXikjdixj which denotes truck time while
2i; 2 YpecVin Jd,h ; (1/a) denotes drone time divided by speed
factor o which is a factor of truck’s speed:

Minimize Z = minZZzij (5)
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Equation (5) minimizes the sum of the max time for any
route triplet segment starting at i and ending at j. Equation
(6) mandates that the sum of the max time is the max of
either the truck time or the drone time for any given op-
eration described as a triplet where an operation could be a
truck-only or truck-drone. Equation (7) mandates that no
triplet can contain i = j = k. Each operation must be a move
where node i is different from node j or node k. Ensures that
vehicle loitering. Equation (8) enforces the concept of an
operation whereby a truck and a drone must operate with
same launch and recovery node; however, the delivery node
can be different. Equation (9) forces every node to be visited
by a truck or a drone or a combination thereof. Equation (10)
constrains a truck to visit a city once and only once.
Equation (11) constrains a drone to only visit a city to deliver
at most once. Equation (12) constrains each tuple segment
entered by the truck shall exit the same by truck. Equation
(13) is a subtour elimination constraint to force the se-
quencing of the route such that no subtour is possible.
Equation (14) forces all drone deliveries within the drone’s
delivery operation range « (launch, delivery, and rendez-
vous) unless riding in a truck in which case Mx;; disables
the constraint. Equation (15) constrains all Euclidean dis-
tances to greater than zero. Equation (16) assigns the var-
iables x and y as binary; and the utility sequencing variable u
is an integer between one and the total number of nodes (or
customer deliveries).

5. Truck-Drone Evolutionary
Algorithm Approach

The tournament-based evolutionary algorithm (EA) here
adopts a cluster-during-routing approach to solve the
truck-drone problem. More accurately, it assigns both
truck and drone labels during the routing process. This is
much different from all other algorithms found in liter-
ature. The best-in-class found in literature perform an
entire routing operation first, and then the algorithm labels
truck or drone. Conversely, the algorithm herein denoted
as EA creates a population matrix of randomly permuted
routes whereby each node in a tour is evaluated as a
potential drone-delivery node unless that node is out of
range. Since a population of many randomly generated
tours is evaluated simultaneously, any node within drone
range is autoassigned and labeled drone. The EA performs
the following process steps:

(a) Randomly permutes a population P of m tours where
each tour denoted as a genome sequence (1,2,...,n)
for n delivery nodes in the tour.

(b) Determines the fitness for each population member
(tours) based on total tour delivery time. All fitness
times are saved for seed tournament.

(c) The total population is divided into groups of five
tours each to conduct a set of seed tournaments.

(d) For each of the groups, the best member within the seed
group (of the five) is chosen as the single gene to mutate
for the remaining four members of the seed group.
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(1) Gene mutation (tour mutation) first copies the
fittest member of the group of five within the
seed tournament to replace the four less fit
members.

(2) Each of the four less fit members (now identical
to the fittest) are then slightly mutated to im-
prove fitness.

(3) Mutations comprised (a) randomly selecting and
swapping two nodes within the tour, (b) reverse
ordering of the tour between two nodes, (c)
sliding a tour segment down between nodes to
left or right, and (d) replacing the last node in the
tour with any other node.

(e) Repeat step (b) until convergence. Stopping condi-
tion is based on a predetermined iteration budget,
tolerance, or saturation found in improvements.

(f) Return fittest member of the entire population.

A seed tournament genetic algorithm’s strength lies in the
ability to retain multiple paths toward optimization during the
process which is critical for any network routing problem.
Furthermore, because there are multiple members in a seed
tournament, the algorithm allows for various proven mutation
methodologies to be performed on the members of the seed
tournament. In this case, the swap, flip, and slide mutations
have proven to be robust, fast, and extremely accurate for
many routing problems including the tsp, multiple-truck tsp,
as well as vehicle routing problems (vrp).

The performance of the algorithm is based on the un-
derlying theoretical principles:

(1) By initializing a relatively large population (i.e., 51)
of randomly permuted tours, multiple paths (seed
tournaments) increase the probability of an optimal
convergence.

(2) By saving the fittest gene in a seed, and then slightly
perturbing (mutating) the best gene (tour) found in
the seed group of five tours ensures the solution
never gets worse while promoting improvements at
each iteration.

(3) By autoassigning the drone to any “within range”
node, the use of the drone is maximized throughout
the routing process while simultaneously reducing
the truck’s overall tour length. The risk of assigning
the wrong node to a drone is mitigated by first
initializing the population with random permutation
and then maintaining multiple paths toward
optimization.

(4) Multiple path random search is much faster than
having to calculate the greediness or the exactness of
each neighborhood within reach as in other algo-
rithms. Therefore, the algorithm relies on compu-
tational speed and iterations without the burden of
unnecessary calculations.

For the algorithm, we randomly permute a population of
tours denoted as the initial population matrix P comprising
m tours each having n nodes in the tour (nlength of tour). In
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such case, P[1,:] denotes the first tour (1) in the population
matrix and all the nodes (:) for that first tour. Whereas
variable R! denotes the first tour in population P[1,:], then
R! also denotes the i node within the first tour or route.
The function D denotes a distance function that properly
calculates the distance between segments of the route. The
distance function nomenclature D(R’,R’,) denotes the
distance between nodes (i) and node (i + 2) found in route
RP € P[p,:]. Furthermore, the neighborhood function
N (R?) denotes the next three nodes or route segments for
R! asin [R;, R;,;, R;,, | which is used to evaluate whether or
not a segment is reachable by the drone given the constraint
drone range. In such case, the algorithm’s distance function
can handle the distance between two nodes, or a neigh-
borhood of three nodes as in D(N (R;-D )). The returned
distance from D function is then divided by the speed of the
truck or the drone to arrive at time.

6. Metaheuristic Comparisons

As stated, our evolutionary algorithm (EA) (Algorithm 1)
metaheuristic uses a cluster-during-routing approach, whereby
each drone is autoassigned to any next delivery node in the
tour if it is within range. This forces the drone to be highly
utilized. Next, we initialize the population with multiple
randomly permuted routes to improve potential optimization
paths thus helping to preclude a local optima. At each iter-
ation, each tour in the population is slightly improved using
mutations which comprised random node swaps, random tour
segment flip, and random segment slide right or left.

Concretely, our cluster-during-routing EA is robust, fast,
and is able to solve large problems optimally better than any
other found in literature. To illustrate, we compared its
performance to mathematical procedures (MIP), artificial
intelligence constraint-based programming procedures
(CP), and the ‘Dest-in-class’ heuristics conducted by Agatz
et al. [13]. To prove optimality, we compared the EA to
closed form mixed integer programming approaches for
smaller size problems less than 15 nodes and then to IBM
constraint-based programming (CP) for larger problem sizes
up to 80 delivery nodes.

The EA was compared to the following methods:

(1) Closed form mixed integer programming (MIP) for
smaller problems (less than 12 nodes) to prove
optimality.

(2) Constraint-based programming (CP) for larger
problems (less than 80 nodes) to prove optimality.

(3) MST-gp-all (route mst first, cluster with greedy al-
gorithm, all iterative improvements)

(4) MST-ep-all (route mst first, cluster with exact par-
titioning dynamic programming with all iterative
improvements)

(5) TSP-gp-all (route tsp first, cluster using greedy al-
gorithm with all iterative improvements)

(6) TSP-ep-all (route tsp first, cluster using exact par-
titioning with all iterative improvements)

6.1. Comparison Study 1 (Smaller Problem Sizes: Against Best-
in-Class). For the sake of simplicity, we generate node
coordinates within an (x, y) Cartesian coordinate system
and assume truck or drone distance Euclidean distance
based on the uniform distribution. In the original com-
parison problem [13], the metaheuristic comparison ex-
periments drew from three different distributions: uniformly
(random) distributed nodes, 1-center Gaussian-distributed
nodes, and 2-center Gaussian-nodes. In our study, we an-
alyzed the results obtained from the different distributions
and found that the underlying distribution had no statistical
relevance for our EA metaheuristic; therefore, for simplicity,
we adopted the uniform distribution from which to draw our
experiments. Concretely, all nodes for problem comparisons
herein were drawn from the uniform distribution with from
{0, 1,2, ..., 100}

The table (Table 1) below provides results for 10 ran-
domly generated instances with 10 nodes of each instance
type. For each instance the optimality delta gap is defined as

Ao objective value heuristic — optimal objective value

optimal objective value
(17)

Results proved the EA outperformed other methods
found in literature. The EA herein proved optimal for 10/10
instances for similar problem sizes found in current liter-
ature. As such, we increased the problem size, constructed a
constraint based model (CP) model in order to compare to
optimal, and conducted additional experiments.

6.2. Computational Study 2 (Larger Problem Sizes: MIP, CP,
and EA). The study was run on a 64-bit version of
Xumbutu® 15.04 on virtualBox™ 4.3.12 hypervisor with
windows 7™ as the host OS. The EA was coded in the
MATLAB®. The files we created for experimental purpose
were made available at Mathworks® file exchange
(dtsp_ga_basic) for evaluation/comparison. The hardware
configuration consisted of an Intel® Core i7-4770 CPU with
16 GB of RAM. And, the MIP and CP were all coded in IBM
OPL 12.8.0 on a personal computer with an Intel Core i5-
3537 @ 2.5 Ghz processor and 8 GB RAM.

A total of 10 test problem instances having nodes (be-
tween 10 and 100) were randomly generated and then av-
eraged. As in other studies, the drone is assumed to be twice
the speed of the truck (« = 2). In this case, all customers are
distributed across an 8 mile square region. The maximum
flight endurance (drone range) is set as 14 miles as drone
range. Table 2 summarizes the computational results of test
problem instances. Column 1 shows different job sizes
(number of nodes n). Columns 2-4, 5-7, and 8-10 record the
elapsed computational processing time (elapse ti.), objective
tunction (f), denoting total time, and gap of MIP, CP, and
EA, respectively, from optimal. The gap is calculated against
the best solution if optimality guaranteed. However, if op-
timality not guaranteed for larger problems, gap is calculated
against best of MIP, CP, and EA delivery time. In such case,
IBM CP and LINDO/LINGO MIP optimization software
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DATA: a population P matrix of initially randomly generated tours where tour R! = P[1, :] Size of the population is m and the length
of any tour is .
The distance function Distance (launch, deliver, rendezvous) determines the total distance between the nodes in the
RESULT: an ~ optimal tour for the nodes [1:#].
FOR iter 1 to Budget LOOP
FOR p in m LOOP (for each population of tours)
RP «—Plp, :]; (a tour within the population of tours)
RP ——P[p, 1:n, 1, 2, 3]; (add wrap back around to depot to tour)
time? «— 0; (initialize total tour time for this tour)
WHILE i <n DO (go through each of the nodes in tour)
case «— 1; (initialize default case: truck carries drone and delivers)
launch «— RP? (i); (truck launch node)
deliver «— R® (i+1); (drone delivery node)
rendezvous «— RP (i+ 1); (truck and drone rendezvous node)
launch fathom «— R? (i+1); (check next operation truck launch node)
deliver fathom «— R? (i +2); (check next operation drone delivery node)
rendezvous fathom «— R? (i+ 3); (check next operation truck/drone rendezvous node)
drone dist < Distance (launch, deliver, rendezvous)
truck dist «— Distance (launch, , rendezvous)
IF drone dist <range AND i+1<#n THEN
case «— 2;
fathom 1 «— max[(drone dist)/(drone speed), (truck dist)/(truck speed)]
drone dist 2 «<— Distance (fathom launch, fathom deliver, fathom rendezvous)
truck dist 2 «— Distance (fathom launch, , fathom rendezvous)
fathom 2 «— max[(drone dist 2)/(drone speed), (truck dist 2)/(truck speed)]
IF drone dist 2 <range AND fathom 2 < fathom 1 AND i+2<n THEN
case «— 1; (save drone for next operation, set to truck deliver for this iteration)
drone dist «— 0; (no drone distance)
END IF
ELSE
drone dist «— 0; (out of drone range. . .)
END IF
SWITCH CASE
CASE ==1 (truck delivers)
truck dist:= Distance (launch, , deliver); (find truck distance to next node)
ke—k+1;
CASE ==2 (truck and drone deliver)
truck dist:= Distance (launch, , rendezvous); (find truck distance to rendezvous)
drone dist:=Distance (launch, deliver, rendezvous); (find drone distance for operation)
k «—— k +2; (two nodes satisfied)

END CASE
time? = time? + max[(drone dist)/(drone speed), (truck dist)/(truck speed)] (capture and record the total time for population
member p)

END WHILE LOOP
END FOR LOOP
P «— randomly shuffle rows in population matrix P for a tournament (do not change tours)
FOR p=5:5:m LOOP (select groups comprised of 5 tours each from the population P of size m)
Best time «— Get Best Time (P[p, :]) for the group of the 5 tours
Best Id «— Find route id of the group of 5 having the best time (Best Time)
P'[p12345 :] < Replace all tours in population group P(p, :) with fittest tour of the 5 tours.
P’ [p), :] «—keep (do not mutate) the fittest tour of the group of 5 (keep for next iteration)
P'[p23.45 1] «—— Mutate the other 4 less fit tours as follows:
(1) tour 1: randomly select 2 points in the route P'[p,, :] to swap
(2) tour 2: randomly select 2 points P'[p;, :]to reverse all nodes in between
(3) tour 3: randomly select 2 points in route P'[py, :]to slide to left and replace last with first
(4) tour 4: replace the first and last nodes P'[ps, :]with two randomly selected nodes
END FOR LOOP
P «— update P with all mutations P’
END FOR LOOP
RETURN best time? and best route found in population

ALGORITHM 1: Evolutionary algorithm.
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TaBLE 1: Comparison against best-in-class heuristics. Comparison against “best-in-class” heuristic solutions to the optimal solution

(uniform #n =10 nodes, « = 2, averaged over 10 instances).

Nodes: Cartesian coordinates—uniform distribution (10 nodes)

A from optimal

Avg. Max #opt
MTSP-gp-all [13] 2.0 6.4 1/10
MTSP-ep-all [13] 0.7 2.7 4/10
TSP-gp-all [13] 1.6 3.1 1/10
TSP-ep-all [13] 0.4 2.3 6/10
EA 0.00 0.00 10/10

TaBLE 2: Elapsed time and objective function value according to different job sizes.

1 2 3 4 5 6 7 8 9 10
MIP CP EA

Nodes ) ) )

Elapse time f Gap Elapsed time f Gap Elapsed time f Gap
10 1s *228.0 0.0% Is *228.0 0.0% Is *228.0 0.0%
20 54s 285.5 0.0% 20s 285.5 0.0% 5s 285.5 0.0%
30 1834 s 400.0 8.4% 10s 369.0 0.0% 15s 374.0 1.4%
40 1692's 621.0 44.6% 55s 429.5 0.0% 30s 434.0 1.0%
50 — 118s 466.0 0.0% 45s 478.5 2.7%
60 — 422s 415.5 0.0% 60 s 419.5 1.0%
70 — 1398s 511.5 0.0% 90s 504.0 1.7%
80 — 1745 523.0 0.0% 120s 546.5 4.5%
90 — — 120s 638.0 0.0%
100 — — 120s 655.0 0.0%

Best solution in bold. *Optimal values, no valid bound found within the time limit of 1800s.

cannot guarantee optimality for jobs (number of nodes)
greater than 20+ or when computer computational time is
above 1800 seconds on current computer systems. In such
case, CP reports the best solution it finds and gives a
probability of being optimal (i.e., up to 80 job instances).
Conversely, EA consistently delivered an efficient solution
with the shortest computational time. Larger sized problems
require more computer processing capability for compari-
son studies to optimal.

All the test instances and MIP and CP logs are located at
the  following  link:  https://drive.google.com/open?
id=19ZZ9ukEwSSfjCqNID1P1kPsGMOyMefXC.

7. Conclusions

The current literature lacks any usable information in terms
of the highest yield regions of the design space (speed, range,
and number of drones) for the truck-drone configurations,
and any company considering the use of a delivery-drone
has no way to guide the selection of drone parameters
(speed factor o and range ) without some visibility into the
high yield regions of the operating space. The lean geometry
approach shown herein inverts the problem space to solve
for practical best case drone speed and drone range given a
randomly generated scenario. As such, it is quite useful for
practical design decisions regarding the proper/most effi-
cient drone speed and range to achieve the maximum de-
sired yield over the truck-only solution. As such, it serves as a
way to screen out the inadvertent selection of low per-
forming designs.

The study also gives a simplified version of the MIP not
found in any other study as well as a useful and easily
implemented metaheuristic necessary to solve for the
optimal route and optimal time for the truck-drone
problem. We used a simple single chromosome evolu-
tionary algorithm (EA) metaheuristic to test each case. The
EA was modeled as function within the MATLAB® de-
velopment environment language, and the files were made
available at Mathworks® file exchange (dtsp_ga_basic) for
evaluation. The EA was tested against current best-in-class
heuristics found in literature and significantly surpassed
them in terms of accuracy as well as computational time
performance.

In conclusion, this research answers the questions of
expected efficiencies in time would be expected given a
truck-drone configuration as well as finding on “what is the
proper configuration in terms of drone range and drone
speed for a truck-drone situation” given a typical delivery
scenario. It gives business a foundation to evaluate a variety
of configurations against their typical daily last-mile parcel-
delivery scenarios. The work also opens several additional
questions for future research. The most obvious questions
involve the design space time and/or efficiencies of 1-truck
which comprised many drones.

Data Availability

The metaheuristic codes and algorithms are available at
MATLAB.com and also from the corresponding author
upon request.


https://drive.google.com/open?id=19ZZ9ukEwSSfjCqNID1P1kPsGMOyMefXC
https://drive.google.com/open?id=19ZZ9ukEwSSfjCqNID1P1kPsGMOyMefXC
http://MATLAB.com
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