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Many network problems deal with the routing of a main tool comprised of several parallel assisting tools. )ese problems can be
found with multi-tool-head routing of CNC machines, waterjets, plasma sprayers, and cutting machines. Other applications
involve logistics, distribution, and material handling that require a main tool with assisting tools. Currently no studies exist that
optimally route a main tool comprised of and fitted with multiple tools, nor do any studies evaluate the impact of adding
additional capabilities to the tool set. Herein we define the network routing problem for a main tool comprised of multiple
secondary tools.We introduce first principles to properly configure themain tool with the appropriate number of supporting tools
such that that system is not overstatured. We invert the network geometry to extract the “best case” configuration for toolset
configuration to include speed, range, and number of such that the system is lean. Our computational studies reveal that the
theorems introduced herein greatly improve the overall system performance without oversaturating it with unused resources. In
order to validate experiments, we define a mixed integer program and compare it to our metaheuristics developed for ex-
perimentation. Both the MIP and the metaheuristics herein optimally route a main tool with multiple assisting tools as well as the
routing of a parcel delivery truck comprised of many drones.

1. Introduction

)e use of multiple tools consisting of a main tool and
several parallel resources in conjunction with the primary
tool offers processing efficiencies in a range of applications.
Semiconductor manufacturers are looking at ways to allow
autonomous vehicles to interact such that overall travel time
and traffic-congestion are reduced. Advances in multi-
headed CNC and 3D printing-devices are expected to reduce
print time significantly. In these designs, the main tool is
confined to the primary axis of performance while assisting
tool heads operate in parallel to the main tool. From a lo-
gistics standpoint, UPS, FedEx, and Amazon are evaluating
the use of a single truck that is fitted with multiple parcel
delivery drones to achieve greater efficiencies in delivery
time.

)e simplest example of this problem can be visualized
as a mother with several children assisting with grocery
shopping. )e family has one grocery cart, and children are

dispatched in different directions around the store to re-
trieve items back to the cart while the parent routes through
the store. It is obvious that there exists a set of optimal routes
that the mother and children take that would optimize the
total shopping time. However, it is less clear how the un-
derlying relationships between the speed of the mother and
children as well as their ranges of travel will also greatly
impact any gained efficiencies in shopping. If a child is
exceptionally slow, then the parent is better off to carry the
child. If the child is exceptionally fast, but does not have the
travel range, then the child’s speed gives little advantage.
Furthermore, that if the mother were to bring all her
children into the store (in which case she has more than a
dozen), she would be overwhelmed by idle children ac-
companying the overburdened shopping cart with much
complaining due to their unemployed idle time.

So, it is easy to imagine that there exists a set of optimal
assisting tool parameters (speed, range, and number of) that
properly define the configuration of the overall system. For
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simplicity, we adopt a parcel delivery truck comprised of and
fitted with multiple delivery drones to describe the problem.

)e main idea here is that there exists a geometric re-
lationship between the size and delivery-density of the total
operations area (Figure 1) and the density of truck-drone
operations area. Specifically, the size and number of deliv-
eries in the total operational area needs to be proportional to
the size and number of deliveries in the truck-drone op-
erations area for the most efficient operations. In words, a
single truck-drone operation is described as a truck
launching one or more drones, each drone traverses out to
make deliveries, and then subsequently rendezvous with the
truck at a downstream delivery location. In a single truck-
drone operation, we know that there is a max coverage area
(denoted by the elliptical circle) that n drones can reach
(being constrained by range) and a total number of deliveries
that can be performed. To achieve the maximum efficiencies,
the truck-drone operation area density needs to be pro-
portional to the total density of the larger delivery space.
Since the larger space density is fixed, we adjust the drone
parameters (speed, range, and number of) in order to match
the truck-drone operations density to the larger delivery
density. )us, we advise to invert the network problem and
solve the assisting tool parameters a priori such that they fit
“the most” typical delivery scenarios for the delivery region
in order to achieve maximum efficiencies.

In Section (2), we lay out the first principles geometric
relationships between drone parameters and the truck-drone
operations area. )e notion here is that an operations is
comprised of several truck-drone routing triangles. Each of
these triangles fits within the area of an ellipse defined by
truck speed and drone range. )us, the elliptical area of the
truck-drone operation and the number of deliveries within
this space must be proportional to the larger delivery space
delivery-density. To support the working theory, we conduct
several computer experiments that reveal the production
curve and “efficiencies gained” for systems described by the
geometric relationships compared to systems defined by
standard drone parameters of speed and range found in the
literature. Section (3) reveals the results of these experiments.

An evolutionary algorithm (EA) was developed to
perform empirical tests of our theory. )e EA solves the
truck-multidrone network routing problem by minimizing
the total cumulative time based on either the max truck time
or the max drone time for each set of launch-deliver-ren-
dezvous operations cumulated in the total tour. Figure 1
shows ∼optimal routing solution for one of the problem
scenarios. )e algorithm is used to test the performance
(total delivery time) of a lean configured truck-drone/s
system to a standard configured system. )e EA is validated
by comparing it to the mixed integer program (MIP) shown
in Section (5). )e MIP is also validated by comparing it to
known solutions and to brute force methods for smaller
problem sets. As such, the validated metaheuristic solves
problems optimally for nearly all of the smaller problem sets
involving ten or less delivery stops and ∼optimal for
problems as large as one hundred stops.

)e sections comprised herein are as follow: Section (2)
discusses working theory and theoretical insights. Section

(3) reveals the results of the hypothesis testing performed in
relation to the fundamental theorems. Section (4) discusses
the literature surrounding the network routing problems.
Section (5) defines a tractable version of the mixed integer
programming (MIP) used to validate metaheuristics that can
be easily adopted to optimization software tools available to
researchers. Section (6) formulates EA used to higher di-
mension truck-multidrone routing problems. Section (7)
gives comparative studies: the first comparative study shows
the performance of the evolutionary algorithms (EA-1 and
EA-2) used to solve the optimal routing for empirical studies.
)e algorithms are compared to each other and toMIP-solved
optimal solutions. )e second study compares a lean con-
figured system to a standard system configurations found in
the literature. Section (8) concludes the research findings.

2. Theoretical Insights

2.1. Truck-Drone Performance Boundaries. )e simplest
truck-drone example involves a truck and one drone (Fig-
ure 2). For this, there are three nodes comprised of a depot vo

and two delivery locations i and j. If the truck’s speed is
scaled to one (1) and the drone’s speed is a factor of the truck
speed, then an optimal configuration exists when the drone’s
range (κ) equals the drone’s speed factor (α). So, as the truck
travels out one unit distance from the depot (Figure 2) to a
delivery (i), the drone also travels one (κ) units of distance
(where α � κ) from the depot to delivery location j for best
configuration. )e important thing here is that under the
“best” configuration both the truck and drone return at the
same time such that neither is waiting on the other. So, the
best percent time (Π) improvement that the dual system can
possibly achieve over a truck-only system (truck having to
deliver the two parcels itself and return to the depot tsp) is
defined by [1]. )us, the best case (Π) of a truck-one-drone
over a truck-only system is
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Figure 1: Total delivery operations area proportional to the truck-
drone operations area.
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Π � 1 −
2

2α + 2
􏼒 􏼓 � 1 −

1
a + 1

􏼒 􏼓. (1)

2.2. Truck-Multiple-Drone Performance Boundaries. )e
more complex case for a truck fitted with multiple drones
necessarily involves more than three delivery locations, say
(i, j, m, v0) For this argument, we assume that a well-con-
figured system will involve the drones as much as possible
throughout the delivery process. )erefore, if there are N

delivery stops to bemade during the day, then the “best case”
number of deliveries allotted to each resources is (N) divided
by the number of assisting drones (]) plus the main tool
(truck): (N/(] + 1)). Furthermore, that delivery density
plays an important role in determining the proper speed (α)
and range (κ) factors in the analysis where total delivery
density ρ is defined as the number (N) of required deliveries
for the operation divided by the size of the geometric op-
erating or delivery area (A) as in ρ � N/A. A densely
populated delivery area requires more short-range drones
while a sparse delivery density requires longer range and
higher speed drones.

In order to construct a case for the theoretical upper
boundary in potential performance improvement, we ex-
amine the geometry of a circle. We surmise that the best case
(truck-multidrone) system for delivery time performance Π
(over a truck-only) can be determined by launching drones
from the depot, sending the drones out to delivery locations
along the perimeter of the circle and returning to the depot
as shown in (Figure 3). Both drones and truck launch from
the depot, traverse out, and return to the depot. Conversely,
in an absolute worst case scenario, the truck would have to
deliver to all delivery locations. )is means that the worst-
case truck route having no drones (i.e., hub-spoke route) will
have to traverse from depot to edge of circle and then back to
the depot.

Concretely, there exists a maximum and minimum yield
(Π ) on potential performance improvement for a truck and
multiple drone/s system over the truck-only system. )e
worst case performance (lower boundary) is the truck having
to make all the deliveries itself inside the circle (hub-spoke).
)e best case improvement requires the drones to traverse
out to the radius of the circle (α); each makes a delivery, and
then traverses back to the depot rendezvousing simulta-
neously with the truck.

Summarizing, if the truck traverses out one unit distance
while the drones traverse κ units of distance where (κ � α),
then the max time for any truck or drone is 2 units of time
(Figure 3). )us, a worst-case situation would exist if a truck
had to visit all ] + 1 deliveries on the circle (hub-spoke
fashion). In such case, the absolute worst time the truck
could encounter would be 2(1 + ]α) where (]) is the number

of deliveries around the circle (thus number of drones) at
radius (α) and one delivery made by the truck (1). Con-
versely, the best case (Π) improvement for truck-multidrone
(]) over a truck-only system (Π) is

Π � 1 −
2

2 + 2]α
� 1 −

1
1 + ]α

. (2)

2.3. Truck-Multidrone Operations Area. Expanding on the
theoretical delivery problem means that trucks and each
drone must traverse through the operating space and,
therefore, do not return immediately to the depot. As such,
drones travel using a triangular path to launch and deliver
and then rendezvous with the truck downstream where the
two legs of the drone’s triangular path cannot exceed the
drone’s total range kappa (κ). Since the truck and the drone
do not have the same speed, we have to adopt a configuration
using an ellipse (as opposed to a circle) (Figure 4) such that
the foci f points on the ellipse denotes the truck’s delivery
locations, while a triangle formed inside the ellipse (using
the foci points and edge of ellipse) denotes any of the po-
tential launch-delivery-rendezvous operation for any of the
drones. )us, the drones are confined by range to operate
within the area of the ellipse where they are launched. )ey
are launched from the first foci point and must then be
retrieved at the second foci of the ellipse by the truck in a
perfect scenario. )erefore, it is easy to imagine that there
exists a proper sizing of the ellipse whereby the truck’s speed
and distance (from foci to foci) must be aligned with the
drone’s range, drone’s speed, and the number of drones. )e
number of drones is based on the density of deliver locations
within the elliptical area.

)e first interrelationship requires that in order for the
drone to traverse out to its maximum distance and return
back to the truck without any idle time, it is require that the
truck-only travel kappa divided by alpha κ/α distance.
)erefore, the distance between the two foci is a factor of
both drone range and drone speed. For example, if the drone
travels twice the speed of the truck (α � 2) and the drone can
travel a total of 10 km (κ � 10), then the truck should only
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Figure 3: Practical best case truck-multiple drone delivery.
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Figure 2: Best case for truck-drone (Agatz et al., 2015).
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travel 5 km before having to retrieve the faster drone having
travelled 10 km in the same time period if there is to be no
idle time. As such, we limit our elliptical area such that from
foci to foci is denoted as (2c) must be equal to (κ/α) for a
perfectly lean scenario.

)e second interrelationship requires that the total
distance that the drone can travel is limited by the drone’s
range. )erefore, the drone should be limited to twice the
axis of the major axis (κ � 2a). For relaxation of the
problem, drone range must be greater than twice the major
axis (κ≥ 2a), and truck travel distance (2c) at speed one is
consistent with drone speed factor (α≥ κ/2c) where the
truck speed sT and drone speed sD are defined by speed
factor alpha α � sD/sT.

Moreover, delivery density directly reflects the number
of drones assigned to deliver within the elliptical area. We
can imagine that if given the total delivery density (ρ) for the
entire area is comprised of total deliveries (N) and a total
area (A), then delivery density would be computed as
ρ � (N/A) km2. Under a best-case delivery density scenario,
the densities of two of the ellipses (ρ′) would need to be
proportional to the total delivery density for the problem
space as in ρ � ρ′. )us, we define the truck-drone opera-
tions area as that of two overlapping ellipses joined at the foci
(minus intersection) as

A′ � 2πab −
��
Φ

√
π(a − c)

2
􏽨 􏽩, (3)

where (a) is the major axis, (b) is the minor axis (a> b), (c)

is the foci distance from centre to foci, and (Φ) is the golden
ratio (∼1.618) shown in figure (Figure 5).

Furthermore, based on the interrelationship between
truck speed, drone speed, and drone range, the total distance
between two foci (2c) is approximately equal to (κ/α) .
)erefore, we would expect to see N′ deliveries within the
dual elliptical area A′. )us, we compute the number of
expected deliveries inside any of our elliptical drone oper-
ational areas as N′ � A′(ρ) for a “practical best-case”
scenario.

In summary, we can surmise for practical best-case
situation that twice the distance from the centre of the ellipse
to the foci is a factor of both drone range (κ) and drone
speed (α) as in (2c � κ/α) so that the truck and drone’s
operation reduces idle time and that drone range is greater
than or equal to the two legs of the triangle (κ≥ 2a)

(Figure 5). In such case, the “practical best case” for the
number of drones (]) fitted to the truck is based on N′
deliveries needed to be within the combined area of the two
ellipses (A′). Also, since the truck canmake three of the total
(N′) deliveries, then the number of drones required to be
fitted to the truck under “best case” scenario is ] � (N′ − 3).

Using the area of two ellipses A′ and the appropriate
“practical best case” density ρ′ for a given system, the
problem can be inverted by knowing a priori the delivery
density ρ and then forcing ρ′ to be equal to ρ by selecting
proper parameters for range, speed, and number of drones.
)us inverting the problem, we solve for the drone range,
drone speed, and number of drones that would produce a
“practical best case” geometric design for the problem.

2.4. 1eoretical Summary. In summary, the hypothesis for
d]tsp is as follows.

2.4.1. Maximum1eoretical Upper Boundary. )ere exists a
maximum theoretical upper boundary for best possible
percent time improvement (Π) over a truck-only system
that will never be exceeded without special construction of
problem scenario based on the assisting drone’s time im-
provement factor (1 + α]) where α denotes the speed factor
and ] denotes the number of drones assigned.

Π< 1 −
1

1 + α]
. (4)

2.4.2. Lower Boundary. )e theoretical lower boundary
percent improvement (worst case) for a truck-multiple-
drone system over a single truck only solution is Π � 0%
based on the fact that a truck can perform all the deliveries by
itself and default to a single truck route, thus no time
improvement.

2.4.3. Improvement. Improvement Π moves toward the
practical upper boundary as the delivery density of the given
operating area (ρ) scenario moves toward the calculated
theoretical “best case” delivery density (ρ′). As such, the
problem can be inverted. As the absolute value between the
problem delivery density (ρ) and the “practical best case”
delivery density (ρ′) are minimized, the best case (optimal)
drone speed factor α, drone range κ, and number of drones ]
based on the geometric layout of the ellipse emerge. Due to
the stochastic nature of most problem scenarios, the optimal
drone speed, drone range, and number of drones is a lower
boundary optimal.

min ρ − ρ′
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (5)

S.T.

κ≥ 2a, (6)

] � N′ − 3, (7)

a a

b
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Foci Focic c

Range
κ ≥ 2a = f + g

Speed factor
α ≥ κ/2c

Figure 4: Example of truck-drone delivery inside an ellipse.
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α≥
κ
2c

, (8)

N′ � A′(ρ), (9)

ρ �
N

A
, (10)

ρ′ �
N′

A′
, (11)

A′ � 2πab −
��
Φ

√
π(a − c)

2
􏽨 􏽩, (12)

c
2

+ b
2

� a
2
, (13)

α �
sD

sT

, (14)

sD > sT, (15)

sDLB
≤ sD ≤ sDUB

, (16)

κLB ≤ κ≤ κUB, (17)

]LB ≤ ]≤ ]UB, (18)

ρ, ρ′ > 0, α, κ, ]≥ 1. (19)

For the proper configuration of the minimization
problem, let (a) be the major axis, let (b) be the minor axis,
and let (c) denote the distance from foci to the centre of the
ellipse. Furthermore, let alpha (α) denote the speed factor of
drone as related to the truck’s speed of one (1). Let kappa (κ)

denote the range of the drone whereby the range must be
greater than twice the major axis of the ellipse; let nu (]) be
the number of drones assigned to assist the truck. Let the
area of one ellipse be Aellipse � (πab) and the combined area
of two ellipses (Atwo � 2πab). Since the ellipses are inter-
secting at a foci point (c), then let the area of the two
combined ellipses be reduced by the area of one of the
intersected ellipses [

��
Φ

√
π(a − c)2] where (Φ) is the golden

ratio (∼1.618).

Concretely, equation (5) minimizes the absolute distance
between the problem delivery density and the practical best
case delivery density of the two ellipses. Equation (6) forces
the range of the drone (κ) to be greater than that of the two
legs of the triangle inscribed within an ellipse. Equation (7)
solves for the optimal number of drones to be fitted to the
truck by allowing the truck the opportunity to deliver to
three of the delivery vertices found within the area of the two
ellipses. Equation (8) guarantees that the interrelationship
between truck speed, drone speed, and range are configured
such that for each operation, (launch-deliver-rendezvous)
the truck and drone arrive back at nearly the same time to
reduce potential idle time for either truck or drone. )e
truck travels (2c), while the drone travels a max of (2a) and
the interrelationship gives enough flexibility to solve the
problem by establishing that (2c≥ κ/α). Equation (9) cal-
culates the expected number of deliveries found within the
area of two ellipses (A′). Equation (10) defines the delivery
density as the number of deliveries per total area of oper-
ation. Equation (11) calculates the delivery density of the two
ellipses. Equation (12) defines the area of the two ellipses
minus their intersecting area. Equation (13) establishes the
geometric relationship of the triangle inscribed within an
ellipse where (a) is the hypotenuse. Equation (14) solves for
drone speed factor alpha as the ratio of the drone’s speed to
the truck’s speed. Equations (15)–(18) are boundary equa-
tions for the drone’s speed, truck’s speed, drone range, and
the total number of drones. Equation (19) ensures that
delivery density of ellipses is greater than zero while drone
range, drone speed factor, and number of drones are greater
than one.

3. Hypothesis Testing

To test our hypothesis, thousands of random experiments
were conducted by holding range (κ), speed factor (α), and
number of drones (]) stationary while perturbing number of
deliveries (N) over the delivery area (A). In essence, the
optimal delivery density (ρ′) is precalculated based on drone
parameters (α, κ, ]). For each experiment, delivery density
(ρ) changes based on changing number of deliveries (N)

within the delivery space (A). )e experiments are designed
to test the performance of a truck multidrone system against
a truck-stand-alone (no drones) system. In the experiments,

Vi Vk

f

κ/α κ/αFoci
V0

Foci
V1

Foci
Vj

Assisting tool area

g
gf

Figure 5: Best-case geometric layout for truck-multiple-drone scenario.
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we see that, when the delivery density (along the x-axis)
reaches the optimal density line on the graph, then the
overall performance of the system improves until it begins to
saturate. In words, the denser the deliveries are in a delivery
space, the better the system performs until saturation. Using
the fundamentals mentioned above, we can now calculate
the optimal density (ρ′) at which the system saturates. )e
figure below (Figure 6) reveals low performance when de-
livery density is sparse. )e system then begins to improve
up to and including the optimal delivery density before the
resources begin to saturate, and improvement curve as-
ymptotically reaches its peak performance.

)e figure shows that the fundamental relationships
established in Section 3 accurately predict the system per-
formance. Using the fundamentals as a guide, the experi-
ments revealed that as the delivery density (ρ) approached
the optimal density (ρ′) the overall performance of the
system improved. Concretely, that as density ρ � N/A
moved closer toward ρ′ � N′/A′ the system improved until
saturation. As such, we can surmise that the geometric
layout of the ellipses comprising the delivery density ρ′ is an
accurate depiction of the practical best case geometric
configuration for the system. )erefore, the minimization
problem established in Section 3 is a “practical best case”
method to derive speed factor alpha (α), drone range kappa
(κ), and number of drones nu (]) to be fitted to a truck based
on a typical delivery situation.

4. Literature

A large body of literature exists about the traveling salesman
problem (tsp) and the vehicle routing problem (vrp). Many
approaches and variations to both can be found in surveys,
reports, and papers [2–4]. As a general rule, the vrp problem
extents the tsp problem by adding additional constraints.
)ese constraints are comprised of time windows, priorities,
range, loiter times, permissible-to-vehicle type route seg-
ments, load configurations, traffic patterns, etc. [5, 6].
Originally, Danzig and Ramser [7] investigated the vehicle
routing problem. Later, Clarke and Wright [8] proposed an
effective greedy heuristic which subsequently followed by
several techniques or models involving exact and heuristic
approaches to solve the extensions and variations of the vrp.
An extensive survey can be found in [9] with exact methods
to solve various routing problems.

While many variants to the tsp problem exist in the
literature including multivehicle, customer pickup and de-
livery problem, multiple synchronization constraints [10],
multiple depot vehicle scheduling problem [11], and many-
to-many milk run routing problem [12], there exists only a
handful of studies concerning the truck-drone problem.
Moreover, the truck multidrone problem is a relatively new
paradigm not found in the recent literature. Although the
truck-drone problem has been addressed by research thus
far, there is no work found on the truck-n-drone problem.

4.1. Truck-Drone Problem. )e operational aspects and the
formulation of the truck-drone problem were first shown by

Murray and Chu [13]. Shortly thereafter, Agatz et al. [1]
considered a close, but slightly altered version of the
problem. Murray and Chu identify two ways that drone can
be useful in delivery: drones can be launched and recovered
from the depot (parallel drone scheduling traveling salesman
problem PDSTSP) or drones can assist the truck in a parallel
operation (launch-deliver-recover) as in the “flying sidekick
tsp” FSTSP. Both Murray and Agatz define the material
aspects of the truck-drone problem and discuss the mixed
integer formulation for the optimal min-time route. )ey
consider the drone is constrained in range, capacity, and
speed. Agatz only considers a slightly altered version of the
FSTSP and does not address the PDSTSP. Agatz, like
Murray, considers the truck-drone in tandem as a team
whereby the truck launches the drone, traverses to a separate
delivery location from the drone, and then rendezvous with
the drone again. However, the main difference between the
approaches is that Agatz et al. [1] proposed that the drone
and truck traverse along the road network system, a con-
straint not enforced by [13]. )ey do this to facilitate
construction of heuristic approaches with approximations
that guarantee a bound on the maximum achievable gain of
the delivery system over a “truck-only solution.” Murray and
Chu [13] formally define the flying sidekick traveling sales-
man problem (FSTSP) as an NP-hard problem. )eir study
suggests a mixed integer programming (MIP) as well as a
metaheuristic approach. )ey also consider a second similar
hub-type problem that addresses the case where the cus-
tomers are close enough to the depot to be serviced directly
from the depot by the drone while the truck delivers to
farther reach areas. )is is denoted as the parallel drone
scheduling TSP (PDSTSP). More recently, Agatz et al. [14]
presented an exact solution approach for the truck-drone
problem denoted as the TSP-D based on dynamic pro-
gramming. )ey conducted experimental studies using the
different dynamic programming heuristics which indicated
that the dynamic-programming-problem could solve larger
problems better than mathematically programming ap-
proaches found in the literature.
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Figure 6: As problem delivery density nears optimal density for the
system, performance improves.
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Although existing research shows mathematical for-
mulations and discusses various methods to approach the
metaheuristics, the main gaps are that no studies reveal
details concerning the expected percent improvement for a
given configuration of the truck-drone to various delivery
densities. Specifically, there are no studies that investigate
the tradeoff between number of drones, speed factor, and
drone range.

4.2. TruckMultiple Drones. Ferrandez et al. [15] introduce a
method using k-means clustering to cluster deliveries based
on distance and then to route the truck around to each of the
clusters using a tsp approach.)is cluster-first-route-second
approach also introduces a genetic algorithm to optimally
tsp route the truck through center mass quasinodes created
from each of the clusters. In the described scenario, the truck
may loiter at any center mass cluster node (hub) while the
drone/s deliver to customers within the cluster region using
a minimum spanning tree (MST) hub-spoke type of ap-
proach. Additionally, analysis was conducted on the
tradeoffs between total time and total energy consumed by
the truck-drone team as a factor of number of truck stops.

Our study herein is different than Ferrandez et al. [15].
Here, we require that the truck launch multiple drones then
proceed to the next delivery location prior to rendezvous. It
is an improvement in time over a hub-spoke method.
Furthermore, we use an MIP metaheuristic to solve for
optimal network routing while minimizing total delivery
time. Furthermore, we introduce the concepts of “practical
best case” or lean configuration which has not been
addressed by any author for any of the main tool/assisting
tool problems.

Other gaps in the literature are that no research deals
squarely with the truck-multidrone problem from a math-
ematical modeling or a metaheuristic perspective. Moreover,
there exists no study that discusses of the tradeoffs or se-
lection of system parameters α, κ, ] with changes in the
operating area or density of the delivery area. )ere is
obviously a delta time improvement that can be determined
using two or more drones or proper selection of range and
speed when these are used in conjunction with a truck
addressed herein.

5. Mixed Integer Program (MIP)

)e MIP for the truck-multiple (]) drones d traveling
salesman problem (d]tsp) solves for the optimal network
routing of a truck with multiple ] drones while minimizing
total time. It was developed and used herein as the basis to
analyze and evaluate the effectiveness of the “practical best
case” configuration. Material elements of the d]tsp are
described as a network graph G � (V, E) where V denotes
the customers-delivery-stops and E the edges between stops.
Each vertex V � 1, . . . , |V|{ } where n � |V|. Edge E is de-
scribed by two vertices i, j􏼈 􏼉, and two edges or an operation
is described by two vertices i, j􏼈 􏼉 for a truck indicating
launch and recovery. Furthermore, the binary variables

(xij, yikykj) denote a truck and the two edges used by a
drone in an operation if an operation exists between (i, j).
)e binary variable xij � 1 if truck traverses edge E(i, j). If a
drone is dormant, it is assigned no vertices for a null op-
eration. As in the truck-drone problem, the first and last
vertices of an operation must always be the same for the
truck and all drones. )e distance matrix is denoted as D

where dij ∈ D is the cost or distance of traversing edge
E(i, j). )e subtour elimination variable Uj ensures that
sequence of j follows i in the event that E(i, j) is part of the
solution; as such, it restricts subtour formations. )e min-
sum of max (of max) objective function minimizes the max
time of either the truck’s time or any of ] drone’s time for an
operation. As such, zij is used to evaluate each vehicle’s max-
time where i, j are the first and last nodes of the two visited
nodes for truck (xij) as well as the first and last of three
nodes traveled by any drone as in (yikykj). Since zij is
greater than or equal to the max time of the truck or any of
the ] drones, it forces zij to evaluate the max (of max) of all
vehicle’s time.

minimizeZ � 􏽘
i∈V

max
j∈V

zij , (20)

S.T.
zij ≥ dijxij,

zij ≥
yiKyKj yiKdik + yKjdKj􏼐 􏼑

α
,

∀i, j, k, i, j, k ∈ V,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

􏽘
i∈k

xik � 􏽘
j∈k

xkj, ∀k ∈ V,
(22)

􏽘

i∈V
i≠k

xik + 􏽘

i∈V
i≠k

yjk ≥ 1, ∀k ∈ V,

(23)

􏽘

i∈V
i≠k

xki + 􏽘

j∈V
j≠k

ykj ≥ 1, ∀k ∈ V,

(24)

􏽘

i∈V
i�k

xki � 0, ∀k ∈ V,

(25)

􏽘

i∈V
i�k

yki � 0, ∀k ∈ V,

(26)

xij ≥yikykj, ∀i, k, j ∈ V, (27)

xij + yij ≤ 1, ∀i, j ∈ V, (28)
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U j

j>1
j≠k

≥Uk + xkj − (N − 2) 1 − xkj􏼐 􏼑 +(N − 3)xjk, ∀k, j ∈V,

(29)

U k

k>1

≤N − 1 − (N − 2)x1k, ∀k ∈ V,
(30)

U k

k>1

> 1 +(N − 2)xk1, ∀k ∈ V,
(31)

3≤ 􏼘
n

]
􏼙≤N≤ n, (32)

yikykj yikdik + ykjdkj􏼐 􏼑≤ κ, ∀i, k, j ∈ V, (33)

dij ≥ 0, κLB ≤ κ≤ κUB, αLB ≤ α≤ αUB, ∀ i, j ∈ V,

(34)

xij ∈ 0, 1{ }, ∀i, j, i, j ∈ V, (35)

yij ∈ 0, 1{ }, ∀i, j, i, j ∈ V. (36)

In the dvtsp construction, equation (20) minimizes the
sum all the max of truck or drone edges (i, j) to all oper-
ations described as a truck route xij � 1 and potentially a
triangle drone operation described by (yikykj � 1). Equation
(21) forces the max (worst case) of either a truck edge or the
drones’ two-edges to be in the resultant minimization cal-
culation for objective Z. )e distance for a truck edge (i, j) is
denoted as dijxij whereas the drone’s triangular operation
distance is denoted by yikykj(dikyik + dkjykj)/α where α is
the drone speed as a factor of truck speed s where s � 1. In
essence, this equation serves as a mini-sum of max (of max)
construction. Equation (22) constrains the truck portion of
the route xij � 1 to make a circuit or at a minimum
manifests a sub-tour. Equations (23) and (24) ensure each
city has at least one truck or one drone visiting the city.
Equation (23) establishes that each city must be visited
(entered), while (24) constrains that each city visited must
then be exited. Equations (25) and (26) prohibit any truck or
drone from loitering as in xii or yii. Equation (27) requires
that any drone operation triangle yikykj has an associated
truck launch and recovery xij. Equation (28) forces that any
drone operation edge is not already a truck edge. Equation
(29) forces a utility variable Uj and Uk to properly sequence
truck route segments xjk such that sequence number j

follows k so that no subtour is formed in the truck sequence
of the truck portion of the route. Equation (30) and (31)
work in conjunction with equation (29) to set vertex (20) as
first and vertex N | (3≤ n/]≤ N≤ n) as the last of the truck-
route segments. Equation (32) sets the minimum number of
truck cities visited to be greater than or equal to three
(3≤ n/]≤ N≤ n) but less than total nodes available, n.
Equation (33) limits any drone operation to be less than the

constrained range of the drone (κ) if those two edges (i, k)

and (k, j) are used as a drone operation yikykj � 1. Equa-
tions (34)–(36) set minimum requirements for distance
matrix, range, and speed factor as well as sets truck variable
xij and drone variable yij as binary integers.

6. Evolutionary Algorithm

)e tournament-based evolutionary algorithm (EA) here
adopts a cluster-during-routing approach to solve the truck-
drone problem. More accurately, it assigns both truck and
drone labels during the routing process. Currently, there are
no other algorithms found in the literature. )e algorithm
denoted as EA1 creates a population matrix of randomly
permuted routes whereby each node in a tour is evaluated as
a potential drone-delivery node unless that node is out of
range. Since a population of many randomly generated tours
is evaluated simultaneously, any node not within drone
range is autoassigned and labelled truck; otherwise, the al-
gorithm labels it drone.

6.1. Evolutionary Algorithm (1) Steps. )e EA randomly
permutes a population P of m tours where each tour
denoted as a genome sequence (1, 2, . . . , n) for n delivery
nodes in the tour. It determines the fitness for each
population member (tours) based on total tour delivery
time. All fitness times are saved for seed tournament. )e
total population is then divided into groups of five tours
each to conduct a set of seed tournaments. For each of the
groups, the best member within the seed group (of the five)
is chosen as the single gene to mutate for the remaining
four members of the seed group. Gene mutation (tour
mutation) first copies the fittest member of the group of
five within the seed tournament to replace the four less fit
members. Each of the four less fit members (now identical
to the fittest) is then slightly mutated to improve fitness.
For each of the four, mutations are comprised of only one
of (a) randomly selecting and swapping two nodes within
the tour, (b) reverse ordering of the tour between two
nodes, (c) sliding a tour segment down between nodes to
left or right, and (d) replacing the last node in the tour with
any other node. )e algorithm iterates repeatedly until
convergence, or a terminating condition is met based on a
predetermined budget, tolerance, or a saturation found in
improvements (Algorithm 1).

6.2. Evolutionary Algorithm (2). )e second metaheuristic
denoted as EA2 is nearly identical to EA1, but differs by
performing a cost check before assigning a drone to the job.
Concretely, EA2 performs a calculation to determine if it is
more efficient to assign the truck or the next drone. If the
truck is more efficient, the greedy algorithm assigns the truck
and foregoes assigning a drone.

Both algorithms use an approach similar to simulated
annealing. A seed tournament genetic algorithm’s strength
lies in the ability to overcome local optima by retaining
multiple paths (or seeds) that simultaneously advance to-
ward optimization. )is ideology is especially critical for
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network routing problems. Furthermore, because there are
multiple members of the population within a seed tour-
nament, the algorithm allows for various mutation meth-
odologies to be performed on the members of the seed
tournament. In this case, the random swap (or pairwise
swap), flip, and slide mutations have proven to be robust,
fast, and extremely accurate for problems involving per-
mutations whereby order matters.

)e performance of the evolutionary algorithm is based
on the underlying theoretical principles: (a) by initializing a
relatively large population (i.e., 5n) of randomly permuted
tours, multiple tracks are maintained toward optimal con-
vergence (seed tournaments). )ese multiple, but different,
paths slowly converge and, thus, increase the probability of
an optimal convergence. (b) By saving the fittest gene in a
seed and then slightly perturbing (mutating) the best gene
(tour) found in the seed group ensure the solution never gets
worse while promoting improvements at each iteration. (c)
By autoassigning the drone to any “within range” node, the
use of the drone is maximized throughout the routing
process while simultaneously reducing the truck’s overall
tour length. )e risk of assigning the wrong node to a drone
is mitigated by multiple seeds. (d) Multiple path (seed)
random search is much faster than having to calculate the
greediness or the exactness of each neighborhood within
reach as in other algorithms. )erefore, the algorithm relies
on computational speed and iterations without the burden
of unnecessary calculations.

Both EA1 and EA2 use a route-during-clustering ap-
proach. )is approach has several advantages over other
algorithms. All algorithms found in the literature with the
exception of [16] use route-first, cluster-second or a cluster-
first, route-second approach. )is results in a two-phase
algorithmic process whereby the first phase solves for
routing (as in travelling salesperson routing (tsp) or mini-
mum spanning tree, (mst) routing); the second phase relying
extensively on solutions found in first phase performs swaps
between truck or drone delivery. )e best known algorithms
for tsp (or mst) routing are on the order of O(n22n) where n
is the number of nodes in the route. )e second phase in a
route-first-cluster-second algorithm relies heavily on the
initial routing solutions being in the vicinity of a truck-drone
solution. As such, the second phase is equally complex as the
first phase with the disadvantage of being locked into a
potentially suboptimal routing scheme especially when
drone configurations change.

Conversely, the route-during-clustering algorithm per-
forms the routing and the selection of the truck or drone for
the next operational move, segment of the route. As such, the
complexity of the algorithm is based on the number of it-
erations (n2), the population size (4n), and the number of
nodes (n) found in the tour. In such case, the algorithm is
consistent with the order of O(n2 × 4n × n) or O(4n4). A
computer with an Intel core (i5) and 1.70GHz CPU,
comprised of 50 nodes and 3 drones, requires approximately
∼25 million iterations or ∼35 seconds for convergence.

)e overall complexity of the truck-multidrone problem
denoted as (d]tsp) can be analysed from a brute force
methodology. To evaluate every potential solution for a ten

node problem would require slightly less than ((10!/2) × 210)
permutations or approximately ∼1.86e+09 routes and binary
drone assignments. Every solution requires two genes, a gene
describing the order of the tour (10!/2) and a gene to describe
every possible truck or drone assignments 210. For larger problem
sizes, say n � 50 would require ((50!/2) × 250) � 6.8486e+79
iterations translating to approximately 2.8e61 seconds computer
time or ∼7.1e53 years on a 1.70GHz CPU. For such method, the
number of iterations to accomplish would exceed the time in the
universe.

7. Comparison Studies

Two different computational studies are conducted here.)e
first study analyses the performance of the metaheuristics
against the optimal solution based on MIP and brute force
solution. )e second study analyses the performance of the
system model parameters (α, κ, ]) against arbitrarily
(standard) assigned system variables.

In the first study, the performance of the two meta-
heuristics described in Section 6 is analysed. )e two
metaheuristics are compared against themselves as well as
compared with the guaranteed optimal results obtained
from the mixed integer program (MIP). )e comparison
study analyses four different performance factors: (1) the
average delta delivery-time of the metaheuristic versus the
optimal delivery time found using theMIP, (2) the max delta
(delivery-time) between the metaheuristic versus the opti-
mal time of MIP, and (3) the total number of metaheuristic
experiments that resulted in optimal results out of ten
studies, and the average computer solution time for the
metaheuristic to compute the optimal solution.

)e second study analyses the performance of properly
(optimally) configured system parameters (α, κ, ]) as de-
scribed in Section 2 (theoretical insights: system model)
against standard parameters found in the literature
(α � 2, κ � 10, ] � 3). In many cases, the literature arbi-
trarily chooses system parameters as drone speed factor set
at two times the speed of the truck (α � 2) and an arbitrary
drone range set at ten kilometres (κ � 10) based on current
technical capabilities. )e system comparison study here
analyses three performance metrics: (1) the total delivery-
time obtained by a properly configured (lean) system versus
the total delivery-time obtained by arbitrary system pa-
rameters (α, κ, ]), (2) the overall utilization of the drones
throughout the delivery: a properly configured (lean) system
versus the utilization of the drones from a system with
arbitrary parameters, and (3) the under or oversaturation of
the system determined by the average wait or idle time (by
the truck or by drone) for all operations.

7.1. Computational Study 1: Metaheuristic Performance to
Optimal Solution. For the sake of simplicity, a plane of
(x, y) coordinates is uniformly randomly generated from
the Cartesian coordinate system with Euclidean distance
between the nodes. Concretely, all nodes for problem
comparisons herein were sampled from the uniform dis-
tribution from {0, 1, 2, . . ., 30}. For each metaheuristic
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experiment, 10 runs were conducted in order to average the
results. Results obtained were based on delta from optimal,
whereby delta is defined as the difference between delivery-

time (and final route) obtained from the metaheuristic
versus the delivery-time (and final route) obtained by an
optimal guarantee process (i.e., MIP).

DATA : Random Population matrix tours where Routei ∈ Population

RESULT : Routeopt ∼ optimal tour ∈ Population of n delivery stops

FOR iterations in budjet LOOP
FOR each (i) population member LOOP

Routei⟵ a tour within the populations of tours
launch⟵Routei (1) first node;
rendezvous⟵Routei (2) second node;
candidate⟵Routei (3) third node;
drone count⟵ 0;
route time⟵ 0;

WHILE candidate≤ total delivery nodes DO
truck op time⟵ get truck time (launch, rendezvous);
drone op time⟵ get drone time (launch, candidate, rendezvous);
drone op dist⟵ get drone distance (launch, candidate, rendezvous);
IF candidate≥ total delivery nodes THEN
IF drone count≥ number drones avail.OR drone op dist.> drone range THEN
Max op time�max (truck op time, drone op time, multiple drone op time);
route time⟵ route time+max op time+ truck op time;
route time⟵ route time+ get truck time (candidate depot);

ELSE (drone makes last delivery)
Max op time�max (truck op time, drone op time, multiple drone op time);
Route time⟵ route time+max op time+ get truck time (rendezvous, depot);

END IF
BREAK while loop;

END IF
IF drone count≥ number drone avail OR drone dist.> drone range THEN
Max op time⟵max (truck op time, multiple drone op time);
Route time⟵ route time+max op time;
Launch⟵ rendezvous;
rendezvous⟵ candidate;
candidate⟵min (Routei(candidate+ 1), total number stops);
drone count⟵ 0;
multi drone op time⟵ 0;

ELSE (assign delivery to drone)
max op time⟵max (truck op time, drone op time, multiple drone op time);
route time⟵ route time+max op time
candidate⟵Routei(candidate+ 1);
drone count⟵ drone count+ 1;
multi drone op time(drone count)⟵ drone op time;

END IF
List of all Route Times (p)⟵ route time;

END WHILE
END FOR (each population member)
Population⟵ randomly shuffle among the tours in population, keep routes intact

FOR each of five tours in population LOOP through, keep tournament winners, mutate losers
Best time, Id, Best Route⟵Get Fittest Member tour of tournament of 5;
Overwrite each of the four less fit tours with the fittest member;
Mutate first of the four less fit tours by random swap;
Mutate second of the four less fit tours by random segment slide;
Mutate third of the four less fit tours by random segment flip;
Mutate fourth of the four less fit tours by swapping last node in tour with any other
Do nothing for fifth tour; keep the fittest tour intact;

END FOR mutations and tournament winners
Population⟵ update old Population with new Population mutations and winners

END FOR total budget exhausted
RETURN overall best tour in population (time, route) and graph route;

ALGORITHM 1: Evolutionary Algorithm (EA1).
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Δ �
objective value heuristic − optimal objective value

optimal objective value
.

(37)

)e metaheuristic experiments were run on a Windows
10 operating system, Intel® Core™ i5-835OU CPU @
1.70GHz and 4GB of memory. )e main purpose of the
experiments was to determine the accuracy of the meta-
heuristics denoted by delta (Δ or deviation fromoptimal)
and total computer-solution time (elapse time). Since op-
timization can only be guaranteed (compared to MIP) by
smaller job sizes, the job size for experiments ranged from 10
to 15 jobs (nodes). Table (Table 1) below shows results for 10
randomly generated instances with 10 and 15 nodes of each
instance type. For each experiment (10 runs), the delta from
optimal is averaged (avg.), the max deviation from optimal is
determined (max), the total number of experiments found to
be optimal (#opt out of 10), and the total computer-solution
time is given (elapse time) for comparison.

Results indicate that both EA-1 and EA-2 are capable of
solving the truck-multidrone problem near optimal.)e EA-
1 slightly outperformed EA-2 due to the higher utilization of
drones. It is estimated that depending on the configuration
of the system parameters to the operational spaced, EA-2 is
efficient when there are more drones than necessary fitted to
the truck or the system is highly saturated with resources.

7.2. Computational Study 2: Lean System Parameters Com-
pared to Standard Parameters. )e second study compares
the performance of a lean or properly configured system
parameters (α, κ, ]) against an arbitrarily set of system
parameters (α � 2, κ � 10, ] � 3) often found in the litera-
ture. For the sake of simplicity, an experiment was drawn
from a uniform random distribution of the (x, y) plane

comprised of Euclidean distance between each of the co-
ordinate delivery nodes. Since the experiments are designed
to compare the performance of a lean system to an arbitrary
system, the performance parameters selected for comparison
are delivery-time ti, utilization util., and truck or drone wait
time. Each experiment was comprised of ten (10) runs in
order to obtain an averaged set of results. )e delivery area
was perturbed between 1 km2 to 1000 km2 to evaluate vari-
ous delivery densities for 30 delivery sites. Table 2 shows the
results of six experiments each with ten runs comparing the
arbitrary system parameters to the lean system parameters
derived from the nonlinear optimization in Section 3. )e
evolutionary algorithm EA-1 (Section 7) was used to opti-
mally route and cluster the truck and n-drones throughout
the delivery area to arrive at the optimal delivery times for
each run for each experiment. EA-1 was also used to obtain
average utilization (of drones) and the average wait time for
either the truck or the drone for each operation within each
run. )e average of the ten runs is reported in Table 2.

Experiment results show that by adopting the lean
system parameters, the overall delivery time is consistently
reduced. Results show delivery time reductions for each
experiment (56%, 33%, 15%, 8%, 9% and 26%). It is noted
that for at least two experiments, the arbitrary configuration
was close to the calculated lean configuration; thus, no major
improvements were expected for experiments 4 and 5. An
expected tradeoff is utilization. In poorly configured sys-
tems, the drones are either highly utilized or rarely utilized;
thus, they range from bottleneck to saturated resources. )e
lean configuration slightly relieves the bottleneck system and
unsaturates low utilization configurations. Average wait
time for each operation slightly increased due to the sto-
chastic nature of within the experiment design. In this case,
the drones often found themselves advance of the truck in

Table 1: Comparison of EA1 and EA2 to optimal solutions.

From optimal Comp. performance time
EA-I EA-2 EA-1 EA-2

Sire kg Max #opt Avg. Max #opt Elapse time (s) Elapse time (s)
10 nodes 0.00 0.00 10/10 0.00 0.00 111,10 23 25
15 node. 0.03 0.03 9/10 0.04 0.04 9/10 32 41
Note: algorithm performances arc compared to known optimal solulions (brute force, 4EP). Rends: averaged over ten MICHMelat. Standard drone pa-
rameters: Delivery nodes sampled from random uniform distribution, drone speed factor α� 2, drone range κ� 10, number drones assigned truck v� 4.

Table 2: Lean system performance results. System performance Comparing geometric-based optimal drone parameters to standard drone
parameters

Exp. Size operating area (km2)
Standard parameters (α� 2, κ� 10, v � 3) Optimal system parameters (α, κ, and v)
Avg. utiL Avg. wait Avg. time Avg. utiL Avg. wait Avg. time

1 1 1.00 0.063 2.48 0.98 0.05 1.08
2 25 1.00 0.286 11.82 0.99 0.24 7.91
3 100 0.95 0.93 25.03 0.86 1.76 21.13
4 300 0.75 2.03 51.52 0.64 2.10 47.10
5 700 0.22 2.73 102.94 0.29 3.30 93.24
6 1000 0.24 2.22 139.47 0.29 3.16 103.31
For each of the six experiments, ten runs were conducted for each delivery area (km2) and results were averaged. Each experiment was comprised of 30
delivery nodes. Arbitrary system parameters (α� 2, κ� 10, v � 3) were compared to lean system parameters determined by nonlinear-optimization equations
found in Section 2.
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operations and therefore at an increased opportunity to
accumulate wait time.

8. Conclusions

)e current literature lacks any usable information in terms
of the highest yield regions of the design space (speed, range,
and number drones) for a main tool with multiple assisting
tools; specifically, herein, we analysed a truck-multiple-
drone configuration. Few, if any, research articles address a
tractable, usable MIP for the truck-multidrone problem for
quick transfer and testing within standard optimization tools
(IBM® ILOG CPLEX, Lindo® Lingo). )erefore, any
business wishing to evaluate the use of a single truck fitted
with multiple drones has a way neither to guide the selection
of drone parameters nor to evaluate the efficiencies of those
selections without developing scientific experiments. )e
“practical best case” geometric approach shown herein in-
verts the problem space and solves for practical best case
drone speed, drone range, and number of drones given a
general delivery scenario. Concretely, it serves as a basis to
address practical design decisions regarding the proper
configurations to achieve the maximum desired yields for a
system. It serves as a way to screen out low performing
designs while giving the decision maker a Pareto front of
potential configuration solutions that achieve a lean align-
ment. Moreover, both the MIP and metaheuristics devel-
oped herein for empirical studies accurately solve for the
optimal truck-multidrone routing, thus giving the business
ample tools for evaluating generalized scenarios.

)e simplified version of the MIP is not found in any
other study; it is useful and an easily implemented meta-
heuristic necessary to solve for the optimal route and op-
timal time for the truck-multiple-drone for smaller problem
sets. For larger problem sets, the single chromosome evo-
lutionary algorithm (EA-1) is best in class metaheuristic to
test various test-case scenarios. Both EA-1 and EA-2 were
modelled as functions within the MATLAB® development
environment language, and the files were made available at
Mathworks® file exchange (dvtsp_ga_basic) for evaluation
and general purpose use/testing. As far as we could surmise,
our EA is the only algorithm available for such problems
found in the literature or in an open resource environment.

In conclusion, this research answers the questions of
expected efficiencies in time that would be expected given a
truck-multidrone configuration as well as finding “what is the
proper configuration for a truck-multidrone situation.” It
gives business a foundation to evaluate a variety of config-
urations against a typical daily last-mile parcel-delivery sce-
nario. )e work also opens several additional questions for
future research. )ese questions tend to be toward the total
energy savings and the energy saturation for different truck-
multiple-drone generalized situations the business may en-
counter. Future research studies a fleet of trucks each fitted
with the optimal number and type of drones.
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