
Research Article
On Existence of Multiplicity of Weak Solutions for a New Class of
Nonlinear Fractional Boundary Value Systems via
Variational Approach

Fares Kamache,1 Salah Mahmoud Boulaaras ,2,3 Rafik Guefaifia,1 Nguyen Thanh Chung,4

Bahri Belkacem Cherif ,2,5 and Mohamed Abdalla6,7

1Laboratory of Mathematics, Informatics and Systems, Larbi Tebessi University, 12000 Tebessa, Algeria
2Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Saudi Arabia
3Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1, Oran, 31000 Oran, Algeria
4Department of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
5Preparatory Institute for Engineering Studies, Sfax, Tunisia
6Mathematics Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
7Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt

Correspondence should be addressed to Bahri Belkacem Cherif; bahi1968@yahoo.com

Received 10 February 2021; Revised 1 March 2021; Accepted 5 March 2021; Published 13 March 2021

Academic Editor: Kamyar Hosseini

Copyright © 2021 Fares Kamache et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper deals with the existence of solutions for a new class of nonlinear fractional boundary value systems involving the
left and right Riemann-Liouville fractional derivatives. More precisely, we establish the existence of at least three weak
solutions for the problem using variational methods combined with the critical point theorem due to Bonano and Marano.
In addition, some examples in ℝ3 and ℝ4 are given to illustrate the theoritical results.

1. Introduction

Fractional differential equations (FDEs) are a generaliza-
tion of ordinary differential equations (ODEs), as they
contain fractional derivatives whose degree is not necessar-
ily an integer. This is what makes it receive great attention
from researchers due to its ability to model some difficult
and complex phenomena in many fields, including engi-
neering, science, biology, economics, and physics (for
more information, see [1–22]). One of the most investi-
gated issues is the existence of solutions for the fractional
initial and boundary value problems by using some fixed
point theorems, coincidence degree theory, and monotone
interactive method. Among the most important of these
are the works mentioned in Oldham and Spanier and
Podlubny’s books (see [13, 23]) and the work of Metzler

and Klafter (see [24]). Furthermore, the first to use the
critical point theorem was Jiao and Zhou in [6] to study
the following problem:

tD
α
T 0D

α
t u tð Þð Þ = ∇F t, u tð Þð Þ, a:e t ∈ 0, T½ �,

 u 0ð Þ = u tð Þ = 0,

(
ð1Þ

where 0D
α
T and tD

α
T are the left and right Riemann-Liouville

fractional derivatives with 0 < α ≤ 1, respectively, and F : ½0,
T� ×ℝ⟶ℝn is a suitable function satisfying some hypothe-
sis and Fðt, xÞ is the gradient of F with respect to x:

In [22], the authors have used variational methods to
investigate the existence of weak solutions for the following
system:
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tD
α
T a tð Þ0Dα

t u tð Þð Þ = λFu t, u tð Þ, v tð Þð Þ, a:e t ∈ 0, T½ �,

tD
β
T b tð Þ0Dβ

t v tð Þ
� �

= λFv t, u tð Þ, v tð Þð Þ, a:e t ∈ 0, T½ �,
 u 0ð Þ = u Tð Þ = 0, v 0ð Þ = v Tð Þ = 0,

8>>><
>>>:

ð2Þ

for 0D
α
T and tD

α
T are the left and right Riemann-Liouville

fractional derivatives with 0 < α ≤ 1 and Fs denotes the par-

tial derivative of F with respect to s: In [?], Zhao et al.
obtained the existence of infinitely many solutions for system
(2) with perturbed functions hi, i = 1, 2.

Yet, there are a few findings for fractional boundary value
problems which were established exploiting this approach
due to its difficulty in establishing a suitable space and varia-
tional functional for fractional problems.

In this work, we shall study the existence of three weak
solutions for the following system:

for 1 ≤ i ≤ n, where αi ∈ ð0 ; 1�, 0Dαi
T and tD

αi
T are the left and

right Riemann–Liouville fractional derivatives of order αi,
respectively, ai ∈ L∞ð½0, T�Þ with

ai0 = ess inf
0,T½ �

ai > 0, for 1 ≤ i ≤ n, ð4Þ

λ > 0, F : ½0, T� ×ℝn ⟶ℝ is a measurable function for
all ðx1,⋯, xnÞ ∈ℝn and is C1 with respect to ðx1,⋯, xnÞ ∈
ℝn for a.e. t ∈ ½0, T�, Fui

denotes the partial derivative of F
with respect to ui, respectively, and hi : ℝ⟶ℝ are
Lipschitz continuous functions with the Lipschitz constants
Li > 0, for 1 ≤ i ≤ n, i.e.,

hi x1ð Þ − hi x2ð Þj j ≤ Li x1 − x2j j, ð5Þ

for all x1, x2 ∈ℝ and hið0Þ = 0, for 1 ≤ i ≤ n. In order to state
the main results, we introduce the following conditions:

(F0) For all C > 0 and any 1 ≤ i ≤ n

sup
x1,⋯,xnð Þj j≤C

Fui
t, x1,⋯, xnð Þ�� �� ∈ L1 0, T½ �ð Þ: ð6Þ

(F1) Fðt ; 0,⋯, 0Þ = 0, for a.e. t ∈ ½0 ; T�.
In the present study, motivated by the results introduced

in [12, 13, 25], using the three critical point theorems due to
Ricceri ([26], see Theorem 2.6 in the next section), we ensure
the existence of at least three solutions for system (3). For
other applications of Ricceri’s result for perturbed boundary
value problems, the interested readers are referred to the
papers [11–13, 23–25, 27].

We divided the paper as follows: in the second section, we
put some preliminary facts, while in the third section we pre-
sented the main result and its proof. Finally, we proposed two
practical examples of our theorem.

2. Preliminaries

In this section, introducing some necessary definitions and
preliminary facts.

Definition 1 [28]. Let u be a function defined on ½0, T� and
αi > 0 for 1 ≤ i ≤ n: The left and right Riemann–Liouville frac-
tional integrals of order αi for the function u are defined by

0D
−αi
t u tð Þ = 1

Γ αið Þ
ðt
0
t − sð Þαi−1u sð Þds, t ∈ 0, T½ �,

0D
−αi
t u tð Þ = 1

Γ αið Þ
ðT
t
s − tð Þαi−1u sð Þds, t ∈ 0, T½ �,

ð7Þ

for 1 ≤ i ≤ n, provided the RHS are pointwise given on ½0, T�,
where ΓðαiÞ is the standard gamma function defined by

Γ zð Þ =
ð+∞
0

zαi−1e−zdz: ð8Þ

Definition 2 [25]. Let 0 < αi ≤ 1 for 1 ≤ i ≤ n: The fractional
derivative spaceHαi

0 is given by the closureC∞
0 ð½0, T�,ℝÞ, that is

Hαi
0 = �C∞

0 0, T½ �,ℝð Þ, ð9Þ

with the norm

uik kαi =
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt + ðT
0
ui tð Þj j2dt

� �1/2
, ð10Þ

for every ui ∈H
αi
0 and for 1 ≤ i ≤ n:

We point out that Hαi
0 (0 < αi ≤ 1) is a reflexive and sepa-

rable Banach space (see [22], Proposition 3.1) for details.
For every ui ∈H

αi
0 , set

uik kLs ≔
ðT
0
ui tð Þj jsdt

� �1/s
, s ≥ 1

uik k∞ = max
t∈ 0,T½ �

ui tð Þj j:
ð11Þ

Definition 3 [27]. We mean by a weak solution of system
(3), any u = ðu1, u2,⋯, unÞ ∈ X such that for all v = ðv1, v2
,⋯, vnÞ ∈ X,

tD
αi
T ai tð Þ0Dαi

t ui tð Þ
� �

= λFui
t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ + hi ui tð Þð Þ, a:e t ∈ 0, T½ �,

 ui 0ð Þ = ui Tð Þ = 0,

(
ð3Þ
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ðT
0
〠
n

i=1
ai tð Þ0Dαi

t ui tð Þ0Dαi
t vi tð Þdt

− λ
ðT
0
〠
n

i=1
Fui

t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þvi tð Þdt

−
ðT
0
〠
n

i=1
hi uið Þvi tð Þdt = 0:

ð12Þ

Lemma 4 [27]. Let 0 < αi ≤ 1, for 1 ≤ i ≤ n. ∀ui ∈H
αi
0 , we

have

uik k L2ð Þ ≤
Tαi

Γ αi + 1ð Þ 0D
αi
t ui

		 		
L2
: ð13Þ

Moreover,

uik k∞ ≤
Tαi

Γ αið Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αi − 1ð Þp 0D

αi
t ui

		 		
L2
: ð14Þ

From Lemma 4, we easily observe that

uik kL2 ≤
Tαi

Γ αi + 1ð Þ ffiffiffiffiffiffi
αi0

p
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
: ð15Þ

for 0 < αi ≤ 1, and

uik k∞ ≤
Tαi− 1/2ð Þ

Γ αið Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai0 2αi − 1ð Þp ðT

0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
:

ð16Þ

By using (15), the norm of (10) is equivalent to

uik kαi
ðT
0
ai tð Þ 0D

αi
t ui tð Þ

�� ��2dt� �1/2
, ∀ui ∈H

αi
0 : ð17Þ

Throughout this paper, let X be the Cartesian product
of the n spaces Hαi

0 for 1 ≤ i ≤ n, i.e., X =Hα1
0 ×Hα2

0 ×⋯×
Hαn

0 ; we equip X with the norm defined by

uk k = 〠
n

i=1
uik kHαi

0
, u = u1, u2,⋯, unð Þ, ð18Þ

where kuikHαi
0

is given in (17). We have X compactly

embedded in Cð½0, T�,ℝÞn:

Theorem 5 [25]. Let X be a reflexive real Banach space and
Φ : X ⟶ℝ be a coercive, continuously Gâteaux differentia-
ble sequentially weakly lower semicontinuous functional

whose Gâteaux derivative admits a continuous inverse on
X∗, bounded on bounded subsets of X,Ψ : X ⟶ℝ a continu-
ously Gâteaux differentiable functional whose Gâteaux deriv-
ative is compact such that

Φ 0ð Þ =Ψ 0ð Þ = 0: ð19Þ

Suppose that ∃r > 0 and �x ∈ X, with r <Φð�xÞ, satisfying
(a1) sup

ΦðuÞ≤r
ðΨðuÞ/rÞ < ðΦð�xÞ/Ψð�xÞÞ.

(a2) For each λ ∈Λλ ; = ðΦð�xÞ/Ψð�xÞ, r/ sup
ΦðuÞ≤r

ΨðuÞÞ, the
functional Φ − λΨ is coercive.

Hence, ∀λ ∈Λλ, the functional Φ − λΨ has at least three
critical points in the space X.

3. Main Results

In this section, by applying Theorem 5, we examine the exis-
tence of multiple solutions for system (3). For any σ > 0, let
us define

π σð Þ = x1,⋯, xnð Þ ∈ℝn :
1
2〠

n

i=1
xij j2 ≤ σ

( )
: ð20Þ

This set will be used in some of our hypotheses with
appropriate choices of σ. For u = ðu1, u2,⋯, unÞ ∈ X, we
define

Y uð Þ≔ 〠
n

i=1
Yi uið Þ ð21Þ

where YiðxÞ =
Ð T
0HiðxðsÞÞds and HiðxÞ =

Ð x
0hiðzÞdz 1 ≤ i ≤ n,

∀t ∈ ½0 ; T� and x ∈ℝ.
Furthermore, let

k≔max
1≤i≤n

T2αi−1

Γ αið Þð Þ2ai0 2αi − 1ð Þ

( )
,

M ≔ min
1≤i≤n

1 − LiT
2αi

Γ αi + 1ð Þð Þ2ai0

( )
,

~k≔max
1≤i≤n

1 + LiT
2αi

Γ αi + 1ð Þð Þ2ai0

( )
: ð22Þ

Theorem 6. Let 1/2 < αi ≤ 1, for 1 ≤ i ≤ n, and suppose that
M > 0 and the conditions (F0) and (F1) are satisfied. Further-
more, assume that ∃r > 0 and a function ω = ðω1, ω2,⋯, ωnÞ
∈ X satisfying

ið Þ 〠
n

i=1

ωik k2αi
2

> r
M

,
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iið Þ 2r
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω2,⋯, ωnð Þ

−
ðT
0

max
x1 ,⋯,xnð Þ∈π kr

Mð Þ
, F t, x1,⋯, xnð Þdt > 0,

iiið Þ lim
x1j j,⋯, xnj jð Þ⟶ +∞,⋯,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1,⋯, xnð Þ

∑n
i=1 xij j2/2 ≤ 0:

ð23Þ

Then, setting

∀λ ∈Λ system (3) admits at least 3 weak solutions in X.

Proof. For each u = ðu1, u2,⋯, unÞ ∈ X, we introduce the
functionals Φ,Ψ : X⟶ℝ as

Φ uð Þ = 〠
n

i=1

uik k2αi
2 − Y uð Þ, ð25Þ

Ψ uð Þ =
ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt: ð26Þ

It is clear that Φ and Ψ are continuously Gâteaux differ-
entiable functionals whose Gâteaux derivatives at the point
u ∈ X are defined by

Φ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
ai tð Þ0Dαi

t ui tð Þ0Dαi
t vi tð Þdt

−
ðT
0
〠
n

i=1
hi ui tð Þð Þvi tð Þdt

Ψ′ uð Þ vð Þ =
ðT
0
〠
n

i=1
Fui

t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þvi tð Þdt, ð27Þ

for every v = ðv1, v2,⋯, vnÞ ∈ X:
We have Φ′ðuÞ,Ψ′ðuÞ ∈ X∗, where X∗ is the dual space

of X. And the functionalΦ is sequentially weakly lower semi-
continuous and its Gâteaux derivative admits a continuous
inverse on X∗; also lim

kukX⟶+∞
ΦðuÞ = +∞ it is coercive.

Now, we show that the functional Ψ is sequentially weakly
upper semicontinuous and its derivative Ψ′ : X⟶ X∗ is a
compact operator. Let um ⇀ u in X, where umðtÞ = ðum,1ðtÞ,
um,2ðtÞ,⋯, um,nðtÞÞ; then certainly um converges uniformly
to u on the interval ½0, T�. Then,

lim sup
m⟶+∞

Ψ umð Þ ≤
ðT
0
lim sup
m⟶+∞

F t, um,1 tð Þ, um,2 tð Þ,⋯, um,n tð Þð Þdt

=
ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt =Ψ uð Þ,

ð28Þ

which gets that Ψ is sequentially weakly upper
semicontinuous.

Moreover, we have

lim
m⟶+∞

F t, um,1 tð Þ, um,2 tð Þ,⋯, um,n tð Þð Þ
= F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þ, for all t ∈ 0, T½ �:

ð29Þ

Note that Fðt, ·, ⋯ , · Þ ∈ C1ðℝnÞ. The Lebesgue control
convergence theorem implies that Ψm′ ðuÞ⟶Ψ′ðuÞ
strongly, hence yielding that Ψ′ is strongly continuous on
X. Then, Ψ′ : X⟶ X∗ is a compact operator.

We show that required hypothesis Φð�xÞ > r follows from
(i) and the definition ofΦ by taking �x = ω: Indeed, as (5) holds
for all x1 ; x2 ∈ℝ and h1ð0Þ =⋯ = hnð0Þ = 0; one has jhiðxÞj
≤ Lijxj, 1 ≤ i ≤ n, for any x ∈ℝ. It follows from (15) that

Φ ωð Þ ≥
∑n

i=1 ωik k2αi
2 −

ðT
0
〠
n

i=1
Hi ωi tð Þð Þdt

�����
�����

≥
∑n

i=1 ωik k2αi
2 − 〠

n

i=1

Li
2

ðT
0
ωi tð Þj j2dt

≥ 〠
n

i=1

1
2 −

LiT
2αi

Γ αi + 1ð Þð Þ2ai0

 !
ωik k2αi

≥
M
2 〠

n

i=1
ωik k2αi :

ð30Þ

Λ =
∑n

i=1 ωik k2αi /2
� �

− Y ω1, ω2,⋯, ωnð ÞÐ T
0 F t, ω1 tð Þ, ω2 tð Þ,⋯, ωn tð Þð Þdt

, rÐ T
0 max

x1,⋯,xnð Þ∈π M/krð Þ
F t, x1,⋯, xnð Þdt

0
B@

1
CA: ð24Þ
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From (16), for every ui ∈H
αi
0 , we have

max
t∈ 0,T½ �

ui tð Þj j2 ≤ k uik kαi , ð31Þ

for 1 ≤ i ≤ n. Hence,

max
t∈ 0,T½ �

〠
n

i=1
ui tð Þj j2 ≤ k〠

n

i=1
uik kαi : ð32Þ

Assume that u0ðtÞ = ð0,⋯, 0Þ and the supposition (i)
deduces that 0 < r <ΦðωÞ and they hold Φðu0ðtÞÞ =Ψðu0ðtÞ
Þ = 0 from definitions (25) and (26), which are required
assumptions in Theorem 5. Applying relations (16), (17),
and (22) gives the following relation:

Φ−1 −∞;rð �ð Þ = u = u1, u2,⋯, unð Þ ∈ X : Φ uð Þ ≤ rf g

= u = u1, u2,⋯, unð Þ ∈ X : 〠
n

i=1

uik k2αi
2 ≤

r
M

( )

⊆ u = u1, u2,⋯, unð Þ ∈ X : 〠
n

i=1

(

� Γ αið Þð Þ2a10 2αi − 1ð Þ
2T2αi−1

uik k2∞ ≤
r
M

)

⊆ u = u1, u2,⋯, unð Þ ∈ X :
1
2〠

n

i=1
ui tð Þj j2 ≤ kr

M

( )
,

ð33Þ

which implies that

sup
u∈Φ−1 −∞;rð �ð Þ

Ψ uð Þ = sup
u∈Φ−1 −∞;rð �ð Þ

ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt

≤
ðT
0

max
x1,⋯,xnð Þ∈π kr

Mð Þ
F t, x1,⋯, xnð Þdt:

ð34Þ

Hence, under the condition (ii), we get the following
inequality

sup
u∈Φ−1 −∞;rð �ð Þ

Ψ uð Þ

r
≤
ðT
0

max
x1,⋯,xnð Þ∈π kr

Mð Þ
F t, x1,⋯, xnð Þdt

< 2r
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω2,⋯, ωnð Þ

= r

Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi /2
� �

− Y ω1, ω2,⋯, ωnð Þ

= Ψ ωð Þ
Φ ωð Þ :

ð35Þ

Thus, the hypothesis (a1) of Theorem 5 holds.

On the other hand, fix 0 < ε < ð1/2TkλÞ. From (iii) into
account, there exist constants τε ∈ℝ such that

F t, x1,⋯, xnð Þ ≤ ε〠
n

i=1
xij j2 + τε, ð36Þ

for any t ∈ ½0, T� and ðx1,⋯, xnÞ ∈ℝn, by using (36) and (15)
yields, it follows that, for each u ∈ X,

Φ uð Þ − λΨ uð Þ = 1
2〠

n

i=1
uik k2αi − λ

ðT
0
F t, u1 tð Þ, u2 tð Þ,⋯, un tð Þð Þdt

≥
1
2〠

n

i=1
uik k2αi − Tλkε〠

n

i=1
uik k2αi − λτε

≥
1
2 − Tλkε
� �

〠
n

i=1
uik k2αi − λτε:

ð37Þ

And from him,

lim
uk kX⟶+∞

Φ uð Þ − λΨ uð Þ = +∞: ð38Þ

Moreover, analogous to the case of τε > 0, we imply that
ΦðuÞ − λΨðuÞ⟶ +∞ as kukX⟶+∞ with τε ≤ 0. Then,
the hypotheses of Theorem 5 hold, which means that system
(3) admits at least 3 weak solutions in X, which completes the
proof.

Now, we present some notations, before the corollary of
Theorem 6.

Put

Ai αið Þ = 16
T2

ðT
0
ai tð Þt2 1−αið Þdt +

ðT
T/4

ai tð Þ t −
T
4

� �2 1−αið Þ
dt

(

+
ðT
3T/4

ai tð Þ t −
3T
4

� �2 1−αið Þ
dt − 2

ðT
T/4

ai tð Þ

� t2 −
T
4 t

� �1−αi
dt − 2

ðT
3T/4

ai tð Þ t2 −
3T
4 t

� �1−αi
dt

+ 2
ðT
3T/4

ai tð Þ t2 − Tt + 3T2

16 t
� �1−αi

dt

)
,

Δ1 = min
1≤i≤n

Ai αið Þ: for1 ≤ i ≤ nf g,

Δ2 = max
1≤i≤n

Ai αið Þ: for1 ≤ i ≤ nf g: ð39Þ

Corollary 7. Let 1/2 < αi ≤ 1, 1 ≤ i ≤ n and supposition (iii) in
Theorem 6 holds. Suppose that ∃τ > 0 and d such that ðτ/Δ1

kMnÞ < d2, and also

i′
� �

F t, x1,⋯, xnð Þ ≥ 0, for t, x1,⋯, xnð Þ

∈ 0, T
4

� �
∪

3T
4
, T

� ��
× 0,+∞½ Þ ×⋯ × 0,+∞½ ÞÞ,

5Advances in Mathematical Physics



ii′
� � Ð T0 max

x1 ,⋯,xnð Þ∈π τð Þ
F t, x1,⋯, xnð Þdt
τM

<
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

nk~kΔ2d
2

,

iii′
� �

lim
x1j j,⋯, xnj jð Þ⟶ +∞,⋯,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1,⋯, xnð Þ

∑n
i=1 xij j2/2 ≤ 0:

ð40Þ

Then, setting

Thus, system (3) admits at least three weak solutions in X
.

Proof. Choose

ωi tð Þ =

4Γ 2 − αið Þd
T

t, t ∈ 0, T4

� �
,

Γ 2 − αið Þd, t ∈
T
4 ,

3T
4

� �
,

4Γ 2 − αið Þd
hT

T − tð Þ, t ∈
3T
4 , T

� �
:

8>>>>>>>><
>>>>>>>>:

ð42Þ

We derive

0D
αi
t ωi tð Þ =

4d
T

t1−αi , t ∈ 0, T4

� �
,

4d
T

t1−αi − t −
T
4

� �1−αi
 !

, t ∈
T
4 ,

3T
4

� �
,

4d
T

t1−αi − t −
T
4

� �1−αi
− t −

3T
4

� �1−αi
 !

, t ∈
3T
4 , T

� �
:

8>>>>>>>>>><
>>>>>>>>>>:

ð43Þ

Moreover,

ðT
0
ai tð Þ 0D

αi
t ωi tð Þ

�� ��2dt
=
ðT/4
0

+
ð3T/4
T/4

+
ðT
3T/4

ai tð Þ 0D
αi
t ωi tð Þ

�� ��pdt
= 2Ai αið Þd2:

ð44Þ

Then, ωið0Þ = ωiðTÞ = 0, ωiðtÞ,0Dαi
t ωiðtÞ ∈ L2½0, T�, i = 1,

2,⋯, n; hence, ω = ðω1, ω2,⋯, ωnÞ ∈ X, and we have

ωik k2αi =
ðT
0
ai tð Þ 0D

αi
t ωi tð Þ

�� ��2dt = 2Ai αið Þd2: ð45Þ

By (25), for 1 ≤ i ≤ n, imply that

Φ ωð Þ =Φ ω1, ω2,⋯, ωnð Þ

= 〠
n

i=1

ωik k2αi
2 − Y ωð Þ

≥
M
2 〠

n

i=1
ωik k2αi

=Md2 〠
n

i=1
A αið Þ

≥ nMΔ1d
2:

ð46Þ

Similar to (30) and (46), we have ΦðωÞ ≤ n~kΔ2d
2.

Let r = τM/k. From ðτ/Δ1kMnÞ < d2, we have

:〠
n

i=1

ωik k2αi
2 ≥Φ ωð Þ ≥ nMΔ1d

2 > nMΔ1 ×
τ

Δ1kMn
= r
M

:

ð47Þ

Thus, the assumption (ii) of Theorem 6 holds.
(i ′) implies that

Ψ ωð Þ =
ðT
0
F t, ω1, ω2,⋯, ωnð Þdt

=
ðT/4
0

F t, ω1, ω2,⋯, ωnð Þdt

+
ð3T/4
T/4

F t, ω1, ω2,⋯, ωnð Þdt

+
ðT
3T/4

F t, ω1, ω2,⋯, ωnð Þdt

≥
ð3T/4
T/4

F t, ω1, ω2,⋯, ωnð Þdt:

ð48Þ

λ ∈Λ′ = n~kΔ2d
2Ð 3T/4

T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt
, τ

k
Ð T
0 max

x1,⋯,xnð Þ∈π τð Þ
F t, x1,⋯, xnð Þdt

0
B@

1
CA ð41Þ
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Moreover, by condition (ii ′), we have
Ð T
0 max

x1,⋯,xnð Þ∈π kr/Mð Þ
F t, x1,⋯, xnð Þdt
r

=
k
Ð T
0 max

x1,⋯,xnð Þ∈π kr/Mð Þ
F t, x1,⋯, xnð Þdt

τM

<
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

n~kΔ2d
2

≤
Ð 3T/4
T/4 F t, Γ 2 − α1ð Þd, Γ 2 − α2ð Þd,⋯, Γ 2 − αnð Þdð Þdt

Φ ωð Þ

≤
2
Ð T
0 F t, ω1, ω2,⋯, ωnð Þdt

∑n
i=1 ωik k2αi − 2Y ω1, ω,⋯, ωnð Þ :

ð49Þ

Hence, the supposition (ii) of Theorem 6 is verified.
Moreover, the supposition (iii) of Theorem 6 holds

under (iii ′) from Λ′ ⊆Λ. Theorem 6 is successfully
employed to ensure the existence of at least 3 weak solu-
tions for system (3). This completes of the proof.

4. Examples

In this section, we propose two practical examples of Theorem 6.

Example 1. Let α1 = 0:7, α2 = 0:65, α3 = 0:6,
a1ðtÞ = 1 + t2, a2ðtÞ = 0:5 + t, a3ðtÞ = 1 + t, T = 1. Then, sys-

tem (3) gets the following form:

tD
0:7
1 1 + t2
� �

0D
0:7
t u1 tð Þ� �

= λFu1
t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h1 u1ð Þ, t ∈ 0, 1½ �,

tD
0:65
1 0:5 + tð Þ0D0:65

t u2 tð Þ� �
= λFu2

t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h2 u2ð Þ, t ∈ 0, 1½ �,

tD
0:6
1 1 + tð Þ0D0:6

t u3 tð Þ� �
= λFu3

t, u1 tð Þ, u2 tð Þ, u3 tð Þð Þ + h3 u3ð Þ, t ∈ 0, 1½ �,
 u1 0ð Þ = u1 1ð Þ = 0, u2 0ð Þ = u2 1ð Þ = 0, u3 0ð Þ = u3 1ð Þ = 0,

8>>>>><
>>>>>:

ð50Þ

where h1ðu1Þ = 1/4 sin u1,h2ðu2Þ = u2/2, and h3ðu3Þ = 1/20
arctan u3.

Furthermore, ∀ðt ; x1, x2, x3Þ ∈ ½0 ; 1� × R3; put

F t, x1 tð Þ, x2 tð Þ, x3 tð Þð Þ = 1 + t2
� �

G x1, x2, x3ð Þ, ð51Þ

where

G x1, x2, x3ð Þ

=
x21 + x22 + x23
� �2, x21 + x22 + x23 ≤ 1,

10 x21 + x22 + x23
� �1

2 − 9 x21 + x22 + x23
� �1/3, x21 + x22 + x23 > 1:

8><
>:

ð52Þ

Obviously h1, h1, h3 ⟶ℝ are three Lipschitz continu-
ous functions with Lipschitz constants L1 = 1/4, L2 = 1/2, L3
= 1/20 and h1ð0Þ = h2ð0Þ = h3ð0Þ = 0. Clearly, Fðt, 0, 0, 0Þ =
0, ∀t ∈ ½0, 1�, by the direct calculation, we have a10 = 1, a20
= 1, and a30 = 0:5

Taking

ω1 tð Þ = Γ 1:3ð Þt 1 − tð Þ, ω2 tð Þ
= Γ 1:35ð Þt 1 − tð Þ, ω3 tð Þ
= Γ 1:4ð Þt 1 − tð Þ

0D
0:7
t ω1 tð Þ = t0:3 −

2Γ 1:3ð Þ
Γ 2:3ð Þ t1:3,

0D
0:65
t ω2 tð Þ = t0:35 −

2Γ 1:35ð Þ
Γ 2:35ð Þ t1:35,

0D
0:6
t ω3 tð Þ = t0:4 −

2Γ 1:4ð Þ
Γ 2:4ð Þ t1:4: ð54Þ

By a simple calculation, we obtain

ω1 tð Þk k20:7 ≈ 0:130566, ω2 tð Þk k20:65
≈ 0:078559, ω3 tð Þk k20:6
≈ 0:102638:

ð55Þ

Select r = 1 × 10−3, we find

ω1 tð Þk k20:7 + ω2 tð Þk k20:65 + ω3 tð Þk k20:6
≈ 0:311763 > 2r

M
≈ 0:002192:

ð56Þ

k =max 1
Γ 0:7ð Þð Þ2 2 × 0:7 − 1ð Þ ,

1
Γ 0:65ð Þð Þ2 2 × 0:65 − 1ð Þ ,

1
Γ 0:6ð Þð Þ2 × 0:5 2 × 0:6 − 1ð Þ

( )
≈ 4:509191,

M =min 1 − L1
Γ 0:7ð Þ + 1ð Þ2 , 1 −

L2
Γ 0:65ð Þ + 1ð Þ2 , 1 −

L3
Γ 0:6ð Þ + 1ð Þ2 × 0:5

( )
≈ 0:912084 ð53Þ
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We deduce that the supposition (i) holds, and

Ð 1
0 max

x1,x2,x3ð Þ∈π kr/Mð Þ
F t, x1, x2, x3ð Þdt
r

= 16k2r
3M2 ≈ 0:130355

< 2
Ð 1
0 F t, ω1, ω2, ω3ð Þdt

ω1 tð Þk k20:7 + ω2 tð Þk k20:65 + ω3 tð Þk k20:6
� �

− Y ω1, ω2, ω3ð Þ
≈ 0:365517,

lim
x1j j, x2j j, x3j jð Þ⟶ +∞,+∞,+∞ð Þ

sup
sup
t∈ 0,T½ �

F t, x1, x2, x3ð Þ

x1j j2/2� �
+ x2j j2/2� �

+ x3j j2/2� � = 0:

ð57Þ

Then, suppositions (ii) and (iii) are verified. Hence, in view
of Theorem 6 for every λ ∈ �2:7359,7:6714½, system (50) has at
least 3 weak solutions in the space X =H0:7

0 ×H0:65
0 ×H0:6

0 .

Example 2. Let α1 = 0:65, α2 = 0:75, α3 = 0:85, α4 = 0:95, a1ðt
Þ = 1 + t3, a2ðtÞ = 1 + t2, a3ðtÞ = 0:5 + t, a4ðtÞ = 1 + t, T = 1:

Hence, system (3) gives

Taking

ω1 tð Þ = Γ 1:35ð Þt 1 − tð Þ, ω2 tð Þ
= Γ 1:25ð Þt 1 − tð Þ, ω3 tð Þ
= Γ 1:15ð Þt 1 − tð Þ, ω4 tð Þ
= Γ 1:05ð Þt 1 − tð Þ:

ð59Þ

Moreover, for all ðt ; x1, x2, x3, x4Þ ∈ ½0 ; 1� × R4, put

F t, x1 tð Þ, x2 tð Þ, x3 tð Þ, x4 tð Þð Þ = 1 + t2
� �

G x1, x2, x3, x4ð Þ,
ð60Þ

where

Obviously h1, h1, h3, h4 ⟶ℝ are three Lipschitz contin-
uous functions, h1ðu1Þ = 1/4 sin u1,h2ðu2Þ = u2/20 and h3ðu3
Þ = 1/100 arctan u3, h4ðu4Þ = 1/10 ln ðu4 + 1Þ for all u1, u2,
u3, u4 ∈ℝ with Lipschitz constants L1 = 1/4, L2 = 1/20, L3 =
1/100, L4 = 1/10 and h1ð0Þ = h2ð0Þ = h3ð0Þ = h4ð0Þ = 0.
Clearly, Fðt, 0, 0, 0, 0Þ = 0 for any t ∈ ½0, 1�, a10 = 1, a20 = 0:5,
a30 = 1, and a40 = 1

The direct calculation, gives

k =max

1
Γ 0:65ð Þð Þ2 2 × 0:65 − 1ð Þ ,

1
Γ 0:75ð Þð Þ2 × 0:5 2 × 0:75 − 1ð Þ

, 1
Γ 0:85ð Þð Þ2 2 × 0:85 − 1ð Þ ,

1
Γ 0:95ð Þð Þ2 2 × 0:95 − 1ð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

≈ 2:663742,

M =min
1 − L1

Γ 0:65ð Þ + 1ð Þ2 , 1 −
L2

Γ 0:75ð Þ + 1ð Þ2 × 0:5

, 1 − L3
Γ 0:85ð Þ + 1ð Þ2 , 1 −

L4
Γ 0:95ð Þ + 1ð Þ2

8>>>><
>>>>:

9>>>>=
>>>>;

≈ 0:956042,

0D
0:65
t ω1 tð Þ = t0:35 −

2Γ 1:35ð Þ
Γ 2:35ð Þ t1:35,

0D
0:75
t ω2 tð Þ = t0:25 −

2Γ 1:25ð Þ
Γ 2:25ð Þ t1:25,

0D
0:85
t ω3 tð Þ = t0:15 −

2Γ 1:15ð Þ
Γ 2:15ð Þ t1:15,

tD
0:65
1 1 + t3

� �
0D

0:65
t u1 tð Þ� �

= λFu1
t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h1 u1ð Þ, t ∈ 0, 1½ �,

tD
0:75
1 1 + t2

� �
0D

0:75
t u2 tð Þ� �

= λFu2
t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h2 u2ð Þ, t ∈ 0, 1½ �,

tD
0:85
1 0:5 + tð Þ0D0:85

t u3 tð Þ� �
= λFu3

t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h3 u3ð Þ, t ∈ 0, 1½ �,

tD
0:95
1 1 + tð Þ0D0:95

t u4 tð Þ� �
= λFu4

t, u1 tð Þ, u2 tð Þ, u3 tð Þ, u4 tð Þð Þ + h4 u4ð Þ, t ∈ 0, 1½ �,
 u1 0ð Þ = u1 1ð Þ = 0, u2 0ð Þ = u2 1ð Þ = 0, u3 0ð Þ = u3 1ð Þ = 0, u4 0ð Þ = u4 1ð Þ = 0:

8>>>>>>>>><
>>>>>>>>>:

ð58Þ

G x1, x2, x3, x4ð Þ =
x21 + x22 + x23 + x24
� �2, x21 + x22 + x23 + x24 ≤ 1,

10 x21 + x22 + x23 + x24
� �1

2 − 9 x21 + x22 + x23 + x24
� �1

3, x21 + x22 + x23 + x24 > 1:

8<
: ð61Þ
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0D
0:95
t ω3 tð Þ = t0:05 −

2Γ 1:05ð Þ
Γ 2:05ð Þ t1:05: ð62Þ

So that

ω1 tð Þk k20:65 ≈ 0:104555, ω2 tð Þk k20:75
≈ 0:158153, ω3 tð Þk k20:85
≈ 0:170894, ω4 tð Þk k20:95
≈ 0:397611:

ð63Þ

Select r = 1 × 10−3; we find

ω1 tð Þk k20:65 + ω2 tð Þk k20:75
+ ω3 tð Þk k20:85 + ω4 tð Þk k20:95

≈ 0:831213 > 2r
M

≈ 0:002092:
ð64Þ

We deduce that the supposition (i) holds, and

Then, suppositions (ii) and (iii) are verified. Hence, in
view of Theorem 6 for every λ ∈ �7:3922,24:1528½, system
(58) has at least 3 weak solutions in the space X =H0:65

0 ×
H0:75

0 ×H0:85
0 ×H0:95

0 .

5. Conclusion

In this work, at least 3 weak solutions were obtained for a
new class of nonlinear fractional BVPs using a critical
three-point theorem due to Bonano and Marano. Some
appropriate function spaces and variational frameworks
were successfully created for system (3). Finally, we sug-
gested two practical examples of Theorem 6 with a special
case discussion ℝ3. As for case ℝ4, it was discussed. This
makes our results prominent and distinct than previous
ones. In the next work, we extend our recent work to
the coupled system for this important problem. Also some
numerical examples will be given in order to ensure the
theory study by using some famous algorithms which are
presented in ([28, 29]).
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