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In this paper, we introduce the Hom-algebra setting of the notions of matching Rota-Baxter algebras, matching (tri)dendriform
algebras, and matching pre-Lie algebras. Moreover, we study the properties and relationships between categories of these
matching Hom-algebraic structures.

1. Introduction

1.1. Hom-Algebraic Structures. The origin of Hom-structures
may be found in the study of Hom-Lie algebras which were
first introduced by Hartwig, Larsson, and Silvestrov [1].
Hom-Lie algebras, as a generalization of Lie algebras, are
introduced to describe the structures on deformations of
the Witt algebra and the Virasoro algebra. More precisely,
a Hom-Lie algebra is a triple ðL,½−,−�, αÞ consisting of a k-
module L, a bilinear skew-symmetric bracket ½−,−�: L ⊗
L⟶ L and an algebra endomorphism α : L⟶ L satisfy-
ing the following Hom-Jacobi identity:

α xð Þ, y, z½ �½ � + α yð Þ, z, x½ �½ � + α xð Þ, x, y½ �½ �
= 0 for all x, y, z ∈ L:

ð1Þ

Recently, there have been several interesting develop-
ments of Hom-Lie algebras in mathematics and mathemati-
cal physics, including Hom-Lie bialgebras [2, 3], quadratic
Hom-Lie algebras [4], involutive Hom-semigroups [5],
deformed vector fields and differential calculus [6], represen-
tations [7, 8], cohomology and homology theory [9, 10],
Yetter-Drinfeld categories [11], Hom-Yang-Baxter equations
[12–16], Hom-Lie 2-algebras [17, 18], ðm, nÞ-Hom-Lie alge-

bras [19], Hom-left-symmetric algebras [20], and enveloping
algebras [21]. In particular, the Hom-Lie algebra on semisim-
ple Lie algebras was studied in [22], and the Hom-Lie struc-
ture on affine Kac-Moody was constructed in [23].

In 2008, Makhlouf and Silvestrov [20] introduced the
notation of Hom-associative algebras whose associativity
law is twisted by a linear map. Usual functors between
the categories of Lie algebras and associative algebras have
been extended to the Hom-setting. It is shown that a Hom-
associative algebra gives rise to a Hom-Lie algebra using the
commutator. Since then, various Hom-analogues of some
classical algebraic structures have been introduced and stud-
ied intensively, such as Hom-coalgebras, Hom-bialgebras
and Hom-Hopf algebras [24, 25], Hom-groups [26, 27],
Hom-Hopf modules [28], Hom-Lie superalgebras [29, 30],
generalize Hom-Lie algebras [31], and Hom-Poisson alge-
bras [32].

Dendriform algebras were introduced by Loday [33] with
motivation from algebraic K-theory. Latter, tridendriform
algebras were proposed by Loday and Ronco [34] in their
study of polytopes and Koszul duality. The classical links
between Rota-Baxter algebras and (tri)dendriform algebras
were given in [35, 36], resembling the structure of Lie alge-
bras on an associative algebra. In 2012, Makhlouf [37] gener-
alized the concepts of dendriform algebras and Rota-Baxter
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algebras by twisting the identities by mean of a linear map,
which were called Hom-dendriform algebras and Rota-
Baxter Hom-algebras, respectively. The connections between
all these categories of Hom algebras were also investigated in
[37]. Due to the fundamental work of Makhlouf [37], we
have the following commutative diagram of categories (the
arrows will go in the opposite direction for the corresponding
operads), see Figure 1.

1.2. Motivations for Matching Hom-Algebraic Structures. The
recent concept of a matching or multiple Rota-Baxter [38]
came from the study of multiple pre-Lie algebras [39]
originated from the pioneering work of Bruned, Hairer,
and Zambotti [40] on algebraic renormalization of regularity
structures. It is shown that the matching Rota-Baxter algebra
was motivated by the studies of associative Yang-Baxter
equations, Volterra integral equations, and linear structure
of Rota-Baxter operators [38]. More precisely, for exploring
the relationship between associative Yang-Baxter equations
and classical Yang-Baxter equations, Aguiar [41] proposed
a polarized form of the expression on the left-hand side of
the associative Yang-Baxter equation:

r, sf g≔ r13s12 − r12s23 + r23s13, ð2Þ

where r, s ∈ A ⊗ A and A is a unitary associative algebra. The
corresponding equation

r13s12 − r12s23 + r23s13 = 0 ð3Þ

was called polarized associative Yang-Baxter equation
(PAYBE) by Guo and etc. [38]. Paralleled to the fact that
solutions of the associative Yang-Baxter equation naturally
give Rota-Baxter operators, the matching Rota-Baxter opera-
tors are determined by solutions of a PAYBE [38].

The basic theory of matching Rota-Baxter algebras was
originally established in [38, 42], has proven useful not only
in (compatible) multiple operations [43–48] but also in
other areas of mathematics as well, such as polarized asso-
ciative Yang-Baxter equation [38], algebraic combinatorics
[38, 49], matching shuffle product [42], algebraic integral
equation [50], and Gröbner-Shirshov bases and Hopf alge-
bras [49]. Based on the close relationships between match-
ing Rota-Baxter algebras, matching dendriform algebras,
and matching pre-Lie algebras, Guo et al. [38] previously
showed the following commutative diagram of categories,
see Figure 2.

The main purpose of this paper is to extend these match-
ing algebraic structures to the Hom-algebra setting and study

the connections between these categories of Hom-algebras.
These results give rise to the following commutative diagram
of categories, see Figure 3.

We would like to emphasize that the notation of match-
ing Hom-Lie Rota-Baxter algebras will play a curial role in
mathematical physics. The Rota-Baxter equation on a Lie
algebra is the operator form of the classical Yang-Baxter
equation [51]. Similarly, there should be a close relationship
between the matching Hom Rota-Baxter equation in (82)
with weight zero and the polarized classical Yang-Baxter
equation, as a Hom-Lie algebra variation of the Hom version
of the polarized associative Yang-Baxter equation.

1.3. Outline of the Paper and Summary of Results. In section
2, we provide definitions concerning the generalization of
matching associative algebras, matching pre-Lie algebras to
Hom-algebras setting and describe some specific cases of
matching Hom-algebraic structures. Also, the close relation-
ship between matching Hom-Lie algebras and Hom-Lie alge-
bras will be shown.

In section 3, we extend the notion of matching Rota-
Baxter algebras to the Hom-associative algebra setting. It is
also shown that matching Hom-associative Rota-Baxter alge-
bras can be reduced from a matching Rota-Baxter algebra. At
the end of this section, the construction of Hom-algebras
using elements of the centroid is generalized to the matching
Rota-Baxter algebras.

Section 4 is devoted to the definition of matching Hom-
(tri)dendriform algebras and the approach of construction
of a matching Hom-(tri)dendiform algebra from a matching
(tri)dendiform algebra. Some results related to the connec-
tions between matching Hom-(tri)dendiform algebras and
compatible Hom-associative algebras as well as between
matching Hom-dendriform algebras and matching Hom-
preLie algebras will be established.

In section 5, the concepts of matching Hom-Lie Rota-
Baxter algebras and matching Rota-Baxter algebras involv-
ing elements of the centroid of matching Lie Rota-Baxter
algebras will be established. Also, some results related to
the connection between matching Hom-Lie Rota-Baxter
algebra of weight zero and matching Hom-preLie algebra
will be obtained.

Notation. Throughout this paper, let k be a unitary
commutative ring unless the contrary is specified, which
will be the base ring of all modules, algebras, tensor prod-
ucts, operations as well as linear maps. We always suppose
that Ω is a nonempty set. We denote by PΩ ≔ ðPωÞω∈Ω the
collection of operations Pω, ω ∈Ω, where Ω is a set index-
ing the linear operators.

Rota-Baxter
Hom-associative algebra

Commutator Rota-Baxter
Hom-Lie algebra

Hom-dendriform algebra
Commutator

Hom-pre-Lie algebra

Figure 1

Matching Rota-Baxter
associative algebra

Commutator Matching Rota-Baxter
Lie algebra

Matching
dendriform algebra

Commutator Matching (multiple)
pre-Lie algebra

Figure 2
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2. Matching Hom-Associative, Matching Hom-
preLie and Matching Hom-Lie Algebras

In this section, we give the definitions of matching Hom-
associative algebras, compatible Hom-associative algebras,
compatible Hom-preLie algebras, and compatible Hom-Lie
algebras, which generalize the corresponding matching alge-
braic structures introduced in [38]. Then, we explore the
relationships between these categories from the point of view
of Hom-algebras.

Definition 1. A matching Hom-associative algebra is a k-
module A together with a collection of binary operations
·ω : A ⊗ A⟶ A, ω ∈Ω and a linear map p : A⟶ A such
that

x·αyð Þ·βp zð Þ = p xð Þ·α y·βz
� �

for all x, y, z ∈ A and α, β ∈Ω:

ð4Þ

A matching Hom-associative algebra is called totally
compatible if it satisfies

x·αyð Þ·βp zð Þ = p xð Þ·β y·αzð Þ for all x, y, z ∈ A and α, β ∈Ω:

ð5Þ

More generally,

Definition 2. A compatible Hom-associative algebra is a k-
module A together with a collection of binary operations
·ω : A ⊗ A⟶ A, ω ∈Ωand a linear map p : A⟶ A such
that

x·αyð Þ·βp zð Þ + x·βy
� �

·αp zð Þ = p xð Þ·α y·βz
� �

+ p xð Þ·β y·αzð Þ
ð6Þ

for all x, y, z ∈ A and α, β ∈Ω. For simplicity, we denote it
by ðA, ·Ω, pÞ.

Remark 3.

(a) Any matching Hom-associative algebra or totally
compatible Hom-associative algebra is a compatible
Hom-associative algebra

(b) By taking p = id, we recover to the definition of
matching associative algebras, totally compatible
associative algebra and compatible associative alge-
bra given in [38]

(c) If Ω is a singleton and the characteristic of k is not 2,
then the notation of matching Hom-associative alge-
bras and the notation of compatible Hom-associative
algebras are equivalent and recover to the Hom-
associative algebras introduced in [20]

Definition 4. A matching Hom-Lie algebra is a k-module
g equipped with a collection of binary operations ½,�ω : g ⊗
g⟶ g, ω ∈Ω and a linear map p : g⟶ g such that

x, x½ �ω = 0 ð7Þ

p xð Þ, y, z½ �β
h i

α
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β
= 0 ð8Þ

for all x, y, z ∈ g and α, β, ω ∈Ω.

Remark 5. A totally compatible Hom-associative algebra
ðA, ·Ω, pÞ has a natural matching Hom-Lie algebra structure
with the Lie bracket defined by

x, y½ �ω ≔ x·ωy − y·ωx, for x, y ∈ A andω ∈Ω: ð9Þ

The matching Hom-Lie algebra has a close relation-
ship with Hom-Lie algebras. We first record a lemma for a
preparation.

Lemma 6. Let ðg, ½,�Ω, pÞ be a matching Hom-Lie algebra.
Consider linear combinations

,½ �A ≔ 〠
α∈Ω

aα ,½ �α and ,½ �B ≔ 〠
β∈Ω

bβ ,½ �β, ð10Þ

where aα, bβ ∈ k for α, β ∈Ω with finite supports. Then

p xð Þ, y, z½ �B
� �

A
+ p yð Þ, z, x½ �A
� �

B
+ p zð Þ, x, y½ �A
� �

B

= 0 for x, y, z ∈ g:
ð11Þ

Proof. By Eq. (10), for x, y, z ∈ g, we have

p xð Þ, y, z½ �B
� �

A
= p xð Þ, 〠

β∈Ω
bβ y, z½ �β

" #
A

= 〠
α∈Ω

aα p xð Þ, 〠
β∈Ω

bβ y, z½ �β
" #

α

= 〠
α∈Ω

〠
β∈Ω

aαbβ p xð Þ, y, z½ �β
h i

α
:

ð12Þ

Matching Hom-associative
Rota-Baxter algebra

Commutator Matching Hom-Lie
Rota-Baxter algebra

Matching
Hom-dendriform algebra

Commutator Matching (multiple)
Hom-pre-Lie algebra

Figure 3
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Similarly, we also have

p yð Þ, z, x½ �A
� �

B
= 〠

α∈Ω
〠
β∈Ω

bβaα p yð Þ, z, x½ �α
� �

β
and

p zð Þ, x, y½ �A
� �

B
= 〠

α∈Ω
〠
β∈Ω

bβaα p zð Þ, x, y½ �α
� �

β
:

ð13Þ

Since ðg, ½,�Ω, pÞ is a matching Hom-Lie algebra, then

p xð Þ, y, z½ �β
h i

α
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β

= 0 for all x, y, z ∈ g and α, β ∈Ω:
ð14Þ

Thus

p xð Þ, y, z½ �B
� �

A
+ p yð Þ, z, x½ �A
� �

B
+ p zð Þ, x, y½ �A
� �

B
= 0, ð15Þ

as desired.

Proposition 7. Let ðg, ½,�Ω, pÞ be a matching Hom-Lie algebra.
Consider linear combinations

,½ �A ≔ 〠
ω∈Ω

aω ,½ �ω, aω ∈ k, ð16Þ

with a finite support. Then, ðg, ½,�AÞ is a Hom-Lie algebra.

Proof. It follows from Lemma 6 by taking ðaωÞω∈Ω = ðbωÞω∈Ω.

More generally, we propose

Definition 8. A compatible Hom-Lie algebra is a k-module g
together with a set of binary operations ½,�ω : g ⊗ g⟶ g,
ω ∈Ω and a linear map p : g⟶ g such that

x, x½ �ω = 0 ð17Þ

p xð Þ, y, z½ �α
� �

β
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β

+ p xð Þ, y, z½ �β
h i

α
+ p yð Þ, z, x½ �β
h i

α
+ p zð Þ, x, y½ �β
h i

α
= 0

ð18Þ
for all x, y, z ∈ g and ω, α, β ∈Ω.

Remark 9.

(a) Every matching Hom-Lie algebra is a compatible
Hom-Lie algebra.

(b) Given two Hom-Lie algebras ðg, ½,�α, pÞ and ðg, ½,�β, pÞ.
Define a new bracket ½,�: g ⊗ g⟶ g as follows:

x, y½ �≔ aα x, y½ �α + bβ x, y½ �β for some aα, bβ ∈ k: ð19Þ

Clearly, this new bracket is both skew symmetric and
bilinear. Then, ðg, ½,�, pÞ is further a Hom-Lie algebra if ½,� sat-
isfies the Hom-Jacobi identity

p xð Þ, y, z½ �½ � + p yð Þ, z, x½ �½ � + p zð Þ, x, y½ �½ � = 0: ð20Þ

By a direct calculation, we get that this condition is equiv-
alent to Eq. (18).

Proposition 10. Let ðg, ½,�Ω, pÞ be a matching Hom-Lie alge-
bra. Then for x, y, z ∈ g and α, β ∈Ω, we have

p xð Þ, y, z½ �α
� �

β
= p xð Þ, y, z½ �β
h i

α
,

p xð Þ, y, z½ �α
� �

β
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β
= 0:

ð21Þ

Proof. Since Eq. (8) holds for any x, y, z ∈ A and α, β ∈Ω, we
get

p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �β
h i

α
+ p xð Þ, y, z½ �β
h i

α
= 0: ð22Þ

Eqs. (8) and (22) result in

p zð Þ, x, y½ �α
� �

β
− p zð Þ, x, y½ �β
h i

α
= 0: ð23Þ

By the arbitrariness of x, y, z, we have

p xð Þ, y, z½ �α
� �

β
= p xð Þ, y, z½ �β
h i

α
ð24Þ

and so

p xð Þ, y, z½ �α
� �

β
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β
= 0: ð25Þ

Generalizing the well-known result that an associative
algebra has a Lie algebra structure via the commutator
bracket, we show that a compatible Hom-associative algebra
has a compatible Hom-Lie algebra structure.

Proposition 11. Let ðA, ·Ω, pÞ be a compatible Hom-
associative algebra. Then ðA, ½,�Ω, pÞ is a compatible Hom-
Lie algebra, where

,½ �ω : A ⊗ A⟶ A, x, y½ �ω ≔ x·ωy − y·ωx for x, y ∈ Aand ω ∈Ω:

ð26Þ

Proof. For x, y, z ∈ A and α, β, ω ∈Ω, by Eq. (26), we get
½x, x�ω = 0 and

p xð Þ, y, z½ �α
� �

β
= p xð Þ, y·αz − z·αy½ �β
= p xð Þ·β y·αz − z·αyð Þ − y·αz − z·αyð Þ·βp xð Þ
= p xð Þ·β y·αzð Þ − p xð Þ·β z·αyð Þ

− y·αzð Þ·βp xð Þ + z·αyð Þ·βp xð Þ:
ð27Þ
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Similarly, we have

p yð Þ, z, x½ �α
� �

β
= p yð Þ·β z·αxð Þ − p yð Þ·β x·αzð Þ

− z·αxð Þ·βp yð Þ + x·αzð Þ·βp yð Þ,
p zð Þ, x, y½ �α
� �

β = p zð Þ·β x·αyð Þ − p zð Þ·β y·αxð Þ
− x·αyð Þ·βp zð Þ + y·αxð Þ·βp zð Þ,

p xð Þ, y, z½ �β
h i

α
= p xð Þ·α y·βz

� �
− p xð Þ·α z·βy

� �
− y·βz
� �

·αp xð Þ + z·βy
� �

·αp xð Þ,

p yð Þ, z, x½ �β
h i

α
= p yð Þ·α z·βx

� �
− p yð Þ·α x·βz

� �
− z·βx
� �

·αp yð Þ + x·βz
� �

·αp yð Þ,

p zð Þ, z, y½ �β
h i

α
= p zð Þ·α x·βy

� �
− p zð Þ·α y·βx

� �
− x·βy
� �

·αp zð Þ + y·βx
� �

·αp zð Þ:

ð28Þ

By Eq. (6), we get

p xð Þ, y, z½ �α
� �

β
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β

+ p xð Þ, y, z½ �β
h i

α
+ p yð Þ, z, x½ �β
h i

α
+ p zð Þ, x, y½ �β
h i

α
= 0:

ð29Þ

Hence, ðA, ½,�Ω, pÞ is a compatible Hom-Lie algebra.

Now, we give the definition of matching Hom-preLie
algebras.

Definition 12. Amatching Hom-preLie algebra is a k-module
A together with a family of binary operations ∗ω : A ⊗ A
⟶ A, ω ∈Ω and a linear map p : A⟶ A such that

p xð Þ∗α y∗βz
� �

− x∗αyð Þ∗βp zð Þ
= p yð Þ∗β x∗αzð Þ − y∗βx

� �
∗αp zð Þ

ð30Þ

for all x, y, z ∈ A and α, β ∈Ω.
Now, we give the relationship between matching Hom-

preLie algebras and compatible Hom-Lie algebras.

Proposition 13. Let ðA, ∗Ω, pÞ be a matching Hom-preLie
algebra. Then ðA, ½,�Ω, pÞ is a compatible Hom-Lie algebra,
where

,½ �ω : A ⊗ A⟶ A, x, y½ �ω
≔ x∗ωy − y∗ωx, for all x, y ∈ A and ω ∈Ω:

ð31Þ

Proof. Forx, y, z ∈ A and α, β ∈Ω, by Eq. (31), we have
½x, x�ω = 0 and

p xð Þ, y, z½ �α
� �

β
= p xð Þ, y∗αz − z∗αy½ �β
= p xð Þ∗β y∗αz − z∗αyð Þ

− y∗αz − z∗αyð Þ∗βp xð Þ
= p xð Þ∗β y∗αzð Þ − p xð Þ∗β z∗αyð Þ

− y∗αzð Þ∗βp xð Þ + z∗αyð Þ∗βp xð Þ:

ð32Þ

Similarly, we have

p yð Þ, z, x½ �α
� �

β
= p yð Þ∗β z∗αxð Þ − p yð Þ∗β x∗αzð Þ

− z∗αxð Þ∗βp yð Þ + x∗αzð Þ∗βp yð Þ,
p zð Þ, x, y½ �α
� �

β
= p zð Þ∗β x∗αyð Þ − p zð Þ∗β y∗αxð Þ

− x∗αyð Þ∗βp zð Þ + y∗αxð Þ∗βp zð Þ,

p xð Þ, y, z½ �β
h i

α
= p xð Þ∗α y∗βz

� �
− p xð Þ∗α z∗βy

� �
− y∗βz
� �

∗αp xð Þ + z∗βy
� �

∗αp xð Þ,

p yð Þ, z, x½ �β
h i

α
= p yð Þ∗α z∗βx

� �
− p yð Þ∗α x∗βz

� �
− z∗βx
� �

∗αp yð Þ + x∗βz
� �

∗αp yð Þ,

p zð Þ, x, y½ �β
h i

α
= p zð Þ∗α x∗βy

� �
− p zð Þ∗α y∗βx

� �
− x∗βy
� �

∗αp zð Þ + y∗βx
� �

∗βp zð Þ:

ð33Þ

Then, by Eq. (30), we get

p xð Þ, y, z½ �α
� �

β
+ p yð Þ, z, x½ �α
� �

β
+ p zð Þ, x, y½ �α
� �

β

+ p xð Þ, y, z½ �β
h i

α
+ p yð Þ, z, x½ �β
h i

α
+ p zð Þ, x, y½ �β
h i

α
= 0:

ð34Þ

Hence, ðA, ½,�Ω, pÞ is a compatible Hom-Lie algebra.

3. Matching Rota-Baxter Algebras and Hom-
Associative Algebras

In this section, we extend the notion of matching Rota-Baxter
algebras to the Hom-associative algebra setting.

Definition 14 [38]. Let λΩ ≔ ðλωÞω∈Ω ⊆ k be a set of scalars
indexed by Ω. A matching Rota-Baxter algebra of weight
λΩ is an associative algebra A equipped with a family PΩ ≔
ðPωÞω∈Ω of linear operators Pω : R⟶ R, ω ∈Ω, that satisfy
the matching Rota-Baxter equation

Pα xð Þ · Pβ yð Þ = Pα x · Pβ yð Þ� �
+ Pβ Pα xð Þ · yð Þ

+ λβPα x · yð Þ, for all x, y ∈ A and α, β ∈Ω:

ð35Þ

Definition 15. Amatching Hom-associative Rota-Baxter alge-
bra is a quadruples ðA, ·, PΩ, pÞ, where ðA, PΩÞ is a matching
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Rota-Baxter algebra and ðA, ·, pÞ is a Hom-associative
algebra.

Taking p = id, we recover to matching Rota-Baxter asso-
ciative algebras and denote it by ðA, ·, PΩÞ. IfΩ is a singleton,
a matching Hom-associative Rota-Baxter algebra becomes a
Hom-associative Rota-Baxter algebra given in [37].

A Hom-associative Rota-Baxter algebra can be induced
from an associative Rota-Baxter algebra with a particular
algebra endomorphism [37]. The following result generalizes
it to the matching Rota-Baxter case.

Theorem 16. Let ðA, ·, PΩÞ be a matching Rota-Baxter alge-
bra and p : A⟶ A be an algebra endomorphism which com-
mutes with Pω for all ω ∈Ω. Then ðA, ·p, PΩ, pÞ, where
x·py≔ pðx · yÞ, is a matching Hom-associative Rota-Baxter
algebra.

Proof. The Hom-associative structure of the algebra follows
from Yau’s Theorem in [52]. We only need to show that
the matching Rota-Baxter equation holds. For x, y ∈ A and
α, β ∈Ω,

Pα xð Þ·pPβ yð Þ = p Pα xð Þ · Pβ yð Þ� �
by the definition of ·p
� �

= p Pα x · Pβ yð Þ� �
+ Pβ Pα xð Þ · yð Þ�

+ λβPα x · yð Þ� by Eq: 10ð Þð Þ
= p Pα x · Pβ yð Þ� �� �

+ p Pβ Pα xð Þ · yð Þ� �
+ λβp Pα x · yð Þð Þ

= Pα p x · Pβ yð Þ� �� �
+ Pβ p Pα xð Þ · yð Þð Þ

+ λPα p x · yð Þð Þ by p ∘ Pω = Pω ∘ pð Þ
= Pα x·pPβ yð Þ� �

+ Pβ Pα xð Þ·py
� �

+ λPα x·py
� �

,
ð36Þ

as required.

Given a matching Hom-associative Rota-Baxter algebra
ðA, ·, PΩ, pÞ, it is natural to wonder that whether this match-
ing Hom-associative Rota-Baxter algebra is induced by an
ordinary associative matching Rota-Baxter algebra ðA, ·′,
PΩÞ, i.e., p is an algebra endomorphism with respect to ·′
and · = p ∘ ·′.

Let ðA, ·, pÞ be a multiplicative Hom-associative algebra,
i.e., pða · bÞ = pðaÞ · pðbÞ for all a, b ∈ A. It was proved in
[53] that in case p is invertible, ðA, p−1 ∘ ·Þis an associative
algebra. It is generalized to the multiplicative Hom-
associative Rota-Baxter algebras in [37], and the following
result generalizes it to the multiplicative matching Hom-
associative Rota-Baxter algebras.

Proposition 17. Let ðA, ·, PΩ, pÞ be a multiplicative matching
Hom-assoicative Rota-Baxter algebra, where p is invertible
and p ∘ Pω = Pω ∘ p for each ω ∈Ω. Then, ðA, ·′ ≔ p−1 ∘ ·, PΩÞ
is an associative matching Rota-Baxter algebra.

Proof. For x, y, z ∈ A, we have

x·′y
� �

·′z − x·′ y·′z
� �

= p−1 p−1 x · yð Þ · z� �
− p−1 x · p−1 y · zð Þ� �

by·′ = p−1 ∘ ·
� �

= p−2 x · yð Þ · p zð Þ − p xð Þ · y · zð Þð Þ
� by p xð Þ · p yð Þ = p x · yð Þð Þ = 0:

ð37Þ

Hence, the associativity condition holds. For α, β ∈Ω, we
have

Pα xð Þ·′Pβ yð Þ = p−1 Pα xð Þ · Pβ yð Þ� �
= p−1 Pα x · Pβ yð Þ� �

+ Pβ Pα xð Þ · yð Þ�
+ λβPα x · yð Þ�

= Pα p−1 x · Pβ yð Þ� �� �
+ Pβ p−1 Pα xð Þ · yð Þ� �

+ λβPα p−1 x · yð Þ� �
= Pα x·′Pβ yð Þ

� �
+ Pβ Pα xð Þ·′y

� �
+ λβPα x·′y

� �
:

ð38Þ

Hence, the matching Rota-Baxter equation holds for the
new multiplication, and ðA, ·′, PΩÞ is an associative matching
Rota-Baxter algebra.

There are two new ways of constructing Hom-associative
algebras from a given multiplicative Hom-associative algebra
[37, 54].

Definition 18. ([37, 54]). Let ðA, ·, pÞ be a multiplicative Hom-
algebra and n ≥ 0. Then, the following two algebras are also
Hom-associative algebras:

(a) the n-th derived Hom-algebra of type 1 of A defined
by

An = A, · nð Þ = pn ∘ ·, pn+1
� �

, ð39Þ

(b) the n-th derived Hom-algebra of type 2 of A defined
by

An = A, · nð Þ = p2
n−1 ∘ ·, p2n

� �
: ð40Þ

Now, we show that the n-th derived Hom-algebra of type
1 and 2 of a multiplicative matching Hom-associative Rota-
Baxter algebra is also a matching Hom-associative Rota-
Baxter algebra generalizing the Rota-Baxter case in [37].
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Theorem 19. Let ðA, ·, PΩ, pÞ be a multiplicative matching
Hom-associative Rota-Baxter algebra such that p ∘ Pω = Pω ∘
p for all ω ∈Ω. Then,

(a) the n-th derived Hom-algebra of type 1
ðA, ·ðnÞ = pn ∘ ·, pn+1Þ is a matching Hom-associative
Rota-Baxter algebra

(b) the n-th derived Hom-algebra of type 2 ðA, ·ðnÞ =
p2

n−1 ∘ ·, p2nÞ is a matching Hom-associative Rota-
Baxter algebra

Proof. (a) By [54], ðA, ·n, pn+1Þ is a Hom-associative algebra.
Now, we show the matching Rota-Baxter equation holds.
For x, y, z ∈ A and α, β ∈Ω, we have

Pα xð Þ·nPβ yð Þ = pn Pα xð Þ · Pβ yð Þ� �
= pn Pα x · Pβ yð Þ� ��

+ Pβ Pα xð Þ · yð Þ + λβPα x · yð Þ�
= Pα pn x · Pβ yð Þ� �� �

+ Pβ pn Pα xð Þ · yð Þð Þ
+ λβPα pn x · yð Þð Þ = Pα x·nPβ yð Þ� �
+ Pβ Pα xð Þ·nyð Þ + λβPα x·nyð Þ:

ð41Þ

Thus, the matching Rota-Baxter equation holds for the
new multiplication.

(b) By [54], ðA, ·ðnÞ = p2
n−1 ∘ ·, p2nÞ is also a Hom-

associative algebra. For x, y, z ∈ A and α, β ∈Ω, we have

Pα xð Þ·nPβ yð Þ = p2
n−1 Pα xð Þ · Pβ yð Þ� �

= p2
n−1 Pα x · Pβ yð Þ� ��

+ Pβ Pα xð Þ · yð Þ + λβPα x · yð Þ�
= Pα p2

n−1 x · Pβ yð Þ� �� �
+ Pβ p2

n−1 Pα xð Þ · yð Þ
� �

+ λβPα p2
n−1 x · yð Þ

� �
= Pα x·nPβ yð Þ� �

+ Pβ Pα xð Þ·nyð Þ + λβPα x·nyð Þ:
ð42Þ

This completes the proof.

Let ðA, ·Þ be an associative algebra. The centroid of A is
defined by

Cent Að Þ≔ p ∈ End Að Þ ∣ p x · yð Þ = p xð Þ · yf
= x · p yð Þfor all x, y ∈Ag: ð43Þ

The same definition of the centroid is assumed for Hom-
associative algebras.

In [4], Benayadi and Makhlouf gave the construction of
Hom-algebras using elements of the centroid for Lie algebras.
In [37], the construction was extended to Rota-Baxter alge-
bras. Now, we generalize it to the matching Rota-Baxter case.

Proposition 20. Let ðA, ·, PΩÞ be an associative matching
Rota-Baxter algebra. For p ∈ CentðAÞ and x, y ∈ A, define

x·1py≔ p xð Þ · y and x·2py≔ p xð Þ · p yð Þ: ð44Þ

If p ∘ Pω = Pω ∘ p for all ω ∈Ω, then ðA, ·1p, PΩ, pÞ and

ðA, ·2p, PΩ, pÞ are matching Hom-associative Rota-Baxter
algebras.

Proof By [37]. ðA, ·1p, pÞ and ðA, ·2p, pÞ are Hom-associative
algebras. Now, we show that they are also matching Rota-
Baxter algebras. For x, y ∈ A and α, β ∈Ω, we have

Pα xð Þ·1pPβ yð Þ = p Pα xð Þð Þ · Pβ yð Þ = Pα p xð Þð Þ · Pβ yð Þ
= Pα p xð Þ · Pβ yð Þ� �

+ Pβ Pα p xð Þð Þ · yð Þ
+ λβPα p xð Þ · yð Þ = Pα x·1pPβ yð Þ

� �
+ Pβ Pα xð Þ·1py

� �
+ λβPα x·1py

� �
ð45Þ

and

Pα xð Þ·2pPβ yð Þ = p Pα xð Þð Þ · p Pβ yð Þ� �
= Pα p xð Þð Þ · Pβ p yð Þð Þ

= Pα p xð Þ · Pβ p yð Þð Þ� �
+ Pβ Pα p xð Þð Þ · p yð Þð Þ

+ λβPα p xð Þ · p yð Þð Þ = Pα p xð Þ · p Pβ yð Þ� �� �
+ Pβ p Pα xð Þð Þ · p yð Þð Þ + λβPα p xð Þ · p yð Þð Þ

= Pα x·2pPβ yð Þ
� �

+ Pβ Pα xð Þ·2py
� �

+ λβPα x·2py
� �

:

ð46Þ

This completes the proof.

4. Matching Hom-Dendriform Algebras and
Matching Hom-Tridendriform Algebras

In this section, we introduce the notions of matching Hom-
dendriform algebras and matching Hom-tridendriform alge-
bras generalizing the definitions of matching dendriform
algebras and matching tridendriform algebras given in [38].

Definition 21. A matching Hom-dendriform algebra is a k-
module D together with a family of binary operations
⊙ω : D ⊗D⟶D, where ⊙ ∈f≺, ≻ g and ω ∈Ω, and a linear
map p : D⟶D such that for all x, y, z ∈D and α, β ∈Ω,

x≺αyð Þ≺βp zð Þ = p xð Þ≺α y≺βz
� �

+ p xð Þ≺β y≻αzð Þ,
x≻αyð Þ≺βp zð Þ = p xð Þ≻α y≺βz

� �
,

x≺βy
� �

≻αp zð Þ + x≻αyð Þ≻βp zð Þ = p xð Þ≻α y≻βz
� �

:

ð47Þ

For simplicity, we denote it by ðD, ≺Ω, ≻Ω, pÞ.

Definition 22. A matching Hom-tridendriform algebra is a
k-module D together with a family of binary operations
⊙ω : D ⊗D⟶D, where ⊙ e ∈ f≺, •, ≻ g and ω ∈Ω , and a
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linear map p : D⟶D such that for all x, y, z ∈D and α,
β ∈Ω,

x≺αyð Þ≺βp zð Þ = p xð Þ≺α y≺βz
� �

+ p xð Þ≺β y≻αzð Þ
+ p xð Þ≺α y•βz

� �
,

ð48Þ

x≻αyð Þ≺βp zð Þ = p xð Þ≻α y≺βz
� �

, ð49Þ

p xð Þ≻α y≻βz
� �

= x≺βy
� �

≻αp zð Þ + x≻αyð Þ≻βp zð Þ
+ x•βy
� �

≻αp zð Þ,
ð50Þ

x≻αyð Þ•βp zð Þ = p xð Þ≻α y•βz
� �

, ð51Þ
x≺αyð Þ•βp zð Þ = p xð Þ•β y≻αzð Þ, ð52Þ
x•αyð Þ≺βp zð Þ = p xð Þ•α y≺βz

� �
, ð53Þ

x•αyð Þ•βp zð Þ = p xð Þ•α y•βz
� �

: ð54Þ
Definition 23.

(a) Let ðD, ≺Ω, ≻Ω, pÞ and ðD′, ≺Ω
′ , ≻Ω

′ , p′Þ be two
matching Hom-dendriform algebras. A linear map
f : D⟶D′ is called a matching Hom-dendriform
algebra morphism if for all ω ∈Ω

≺ω
′ ∘ f ⊗ fð Þ = f ∘ ≺ω, ≻ω ∘ f ⊗ fð Þ = f ∘ ≻ω and p′ ∘ f = f ∘ p:

ð55Þ

(b) Let ðD, ≺Ω, •Ω, ≻Ω, pÞ and ðD′, ≺Ω
′ , •Ω, ≻Ω

′ , p′Þ be
two matching Hom-tridendriform algebras. A lin-
ear map f : D⟶D′ is called a matching Hom-
tridendriform algebra morphism if for all ω ∈Ω

≺ω
′ ∘ f ⊗ fð Þ = f ∘ ≺ω, •ω′ ∘ f ⊗ fð Þ = f ∘ •ω′ , ≻ω ∘ f ⊗ fð Þ

= f ∘ ≻ω and p′ ∘ f = f ∘ p:
ð56Þ

The following results show that we can construct a
matching Hom-(tri)dendriform algebra from a matching
(tri)dendriform algebra, generalizing the (tri)dendriform
case in [37].

Theorem 24.

(a) Let ðD, ≺Ω, ≻ΩÞ be a matching dendriform algebra
and p : D⟶D be a matching dendriform algebra
endomorphism. Then, Ap = ðA, ≺p,Ω, ≻p,Ω, pÞ, where
≺p,ω ≔ p ∘ ≺ω and ≻p,ω ≔ p ∘ ≻ω for each ω ∈Ω, is a
matching Hom-dendriform algebra. Moreover, sup-
pose that ðA′, ≺Ω

′ , ≻Ω
′Þ is another matching dendri-

form algebra and p′ : A′ ⟶ A′ is a matching
dendriform algebra endomorphism. If f : A⟶ A′ is
a matching dendriform algebra morphism that sat-
isfies f ∘ p = p′ ∘ f , then

f : D, ≺p,Ω, ≻p,Ω, p
� �

⟶ D′, ≺′p,Ω, ≻′p,Ω, p′
� �

ð57Þ

is a morphism of matching Hom-dendriform algebras.

(b) Let ðD, ≺Ω, •Ω, ≻ΩÞ be a matching tridendriform alge-
bra and p : D⟶D be a matching tridendriform
algebra endomorphism. Then, Ap = ðA, ≺p,Ω, •p,Ω,
≻p,Ω, pÞ, where ≺p,ω ≔ p ∘ ≺ω, •p,ω ≔ p ∘ •ω and ≻p,ω =
p ∘ ≻ω for each ω ∈Ω, is a matching Hom-
tridendriform algebra. Moreover, suppose that ðA′,
≺Ω
′ , •Ω′ , ≻Ω

′Þ is another matching tridendriform alge-
bra and p′ : A′ ⟶ A′ is a matching tridendriform
algebra endomorphism. If f : A⟶ A′ is a matching
tridendriform algebra morphism that satisfies f ∘ p =
p′ ∘ f , then

f : D, ≺p,Ω, •p,Ω, ≻p,Ω, p
� �

⟶ D′, ≺p,Ω′ , •p,Ω′ , ≻p,Ω′ , p′
� �

ð58Þ

is a morphism of matching Hom-tridendriform
algebras.

Proof. We just prove Item (b) and Item (a) can be proved
similarly. For any x, y, z ∈ A and α, β ∈Ω, we have

x≺p,αy
� �

≺p,βp zð Þ = p p x≺αyð Þ≺βp zð Þ� �
= p2 x≺αyð Þ≺βz

� �
;

p xð Þ≺p,α y≺p,βz
� �

= p p xð Þ≺αp y≺βz
� �� �

= p2 x≺α y≺βz
� �� �

;

p xð Þ≺p,β y≻p,αz
� �

= p p xð Þ≺βp y≻αzð Þ� �
= p2 x≺β y≻αzð Þ� �

;

p xð Þ≺p,α y•p,βz
� �

= p p xð Þ≺αp y•βz
� �� �

= p2 x≺α y•βz
� �� �

:

ð59Þ

Hence,

x≺p,αy
� �

≺p,βp zð Þ = p xð Þ≺p,α y≺p,βz
� �

+ p xð Þ≺p,β y≻p,αz
� �

+ p xð Þ≺p,α y•p,βz
� �

,
ð60Þ

that is Eq. (48) holds for ðA, ≺p,Ω, •p,Ω, ≻p,Ω, pÞ. Similarly, Eqs.
(49), (50), (51), (52), (53), (54) hold. Hence, ðA, ≺p,Ω, •p,Ω,
≻p,Ω, pÞ is a matching Hom-tridendriform algebra. And

f xð Þ≺p′,αf yð Þ = p′ f xð Þ≺α f yð Þð Þ = p′ ∘ f x≺αyð Þ
= f ∘ p x≺αyð Þ = f x≺p,αy

� �
;

f xð Þ≻p′,αf yð Þ = p′ f xð Þ≻α f yð Þð Þ = p′ ∘ f x≻αyð Þ
= f ∘ p x≻αyð Þ = f x≻p,αy

� �
;

f xð Þ•p′,αf yð Þ = p′ f xð Þ•α f yð Þð Þ = p′ ∘ f x•α yð Þð Þ
= f ∘ p x•yð Þ = f x•p,αy

� �
:

ð61Þ
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Hence, f : ðD, ≺p,Ω, •p,Ω, ≻p,Ω, pÞ⟶ ðD′, ≺p,Ω′ , •p,Ω′ , ≻p,Ω′ , p′Þ
is a morphism of matching Hom-tridendriform algebras.

Now, we show that any linear combinations of the oper-
ations of a matching Hom-dendriform algebra still result in a
matching Hom-dendriform algebra, generalizing the match-
ing dendriform case in [38].

Proposition 25. Let I be an nonempty set. For each i ∈ I, let
Ai : Ω⟶ k be a map with finite supports, identified with
finite set Ai = ðai,ωÞω∈Ω, ai,ω ∈ k.

(a) Let ðD, ≺Ω, ≻Ω, pÞ be a matching Hom-dendriform
algebra. Define the following binary operations:

⊙ i ≔ 〠
ω∈Ω

ai,ω ⊙ , where ⊙ ∈ ≺,≻f g and i ∈ I: ð62Þ

Then, ðD, ≺I , ≻I , pÞ is also a matching Hom-
dendriform algebra.

(b) Let ðT , ≺Ω, •Ω, ≻Ω, pÞ be a matching Hom-
tridendriform algebra. Define the following binary
operations:

⊙ i ≔ 〠
ω∈Ω

ai,ω ⊙ ω, where ⊙ ∈ ≺, •, ≻f g and i ∈ I: ð63Þ

Then, ðT , ≺I , •I , ≻I , pÞ is also a matching Hom-
tridendriform algebra.

Proof. We just prove Item (b) and Item (a) can be proved
similarly. For x, y, z ∈D and i, j ∈ I, we have

x≺iyð Þ≺jp zð Þ = 〠
β∈Ω

bj,β 〠
α∈Ω

ai,αx≺αy

 !
≺βp zð Þ

= 〠
α∈Ω

〠
β∈Ω

ai,αbj,β x≺αyð Þ≺βp zð Þ

= 〠
α∈Ω

〠
β∈Ω

ai,αbj,β p xð Þ≺α y≺βz
� ��

+ p xð Þ≺β y≻αzð Þ + p xð Þ≺α y•βz
� ��

= 〠
α∈Ω

ai,αp xð Þ≺α 〠
β∈Ω

bj,βy≺βz

 !

+ 〠
β∈Ω

bj,βp xð Þ≺β 〠
α∈Ω

ai,αy≻αz

 !

+ 〠
α∈Ω

ai,αp xð Þ≺α 〠
β∈Ω

bj,βy•βz
 !

= 〠
α∈Ω

ai,αp xð Þ≺α y≺jz
� �

+ 〠
β∈Ω

bj,βp xð Þ≺β y≻izð Þ

+ 〠
α∈Ω

ai,αp xð Þ≺α y•jz
� �

= p xð Þ≺i y≺jz
� �

+ p xð Þ≺j y≻izð Þ + p xð Þ≺i y•jz
� �

:

ð64Þ

Hence, Eq. (48) holds. Similarly, Eqs. (49), (50), (51),
(52), (53), (54) hold. Hence, ðT , ≺I , •I , ≻I , pÞ is a matching
Hom-tridendriform algebra.

The following results establish the connections between
matching Hom-(tri)dendriform algebras and compatible
Hom-associative algebras, generalizing the well-known result
that a (tri) dendriform algebra has an associative algebraic
structure.

Theorem 26.

(a) Let ðA, ≺Ω, ≻Ω, pÞ be a matching Hom-dendriform
algebra. Then ðA, ·Ω, pÞ is a compatible Hom-
associative algebra, where

·ω : A ⊗ A⟶ A, x·ωy≔ x≺ωy + x≻ωy for x, y ∈ Aand ω ∈Ω:

ð65Þ

(b) Let ðA, ≺Ω, •Ω, ≻Ω, pÞ be a matching Hom-
tridendriform algebra. Then, ðA, ·Ω, pÞ is a compatible
Hom-associative algebra, where

·ω : A ⊗ A⟶ A, x·ωy≔ x≺ωy + x•ωy + x≻ωy for x, y
∈ Aand ω ∈Ω:

ð66Þ

Proof. We only prove Item (b) and Item (a) can be proved
similarly. For x, y, z ∈ A and α, β ∈Ω, we have

x·αyð Þ·βp zð Þ + x·βy
� �

·αp zð Þ
= x≺αy + x•αy + x≻αyð Þ·βp zð Þ + x≺βy + x•βy + x≻βy

� �
·αp zð Þ

= x≺αyð Þ≺βp zð Þ + x•αyð Þ≺βp zð Þ + x≻αyð Þ≺βp zð Þ
+ x≺αyð Þ•βp zð Þ + x•αyð Þ•βp zð Þ + x≻αyð Þ•βp zð Þ
+ x≺αyð Þ≻βp zð Þ + x•αyð Þ≻βp zð Þ + x≻αyð Þ≻βp zð Þ
+ x≺βy
� �

≺αp zð Þ + x≻βy
� �

≺αp zð Þ + x•βy
� �

≺αp zð Þ
+ x≺βy
� �

•αp zð Þ + x≻βy
� �

•αp zð Þ + x•βy
� �

•αp zð Þ
+ x≺βy
� �

≻αp zð Þ + x•βy
� �

≻αp zð Þ + x≻βy
� �

≻αp zð Þ,
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p xð Þ·α y·βz
� �

+ p xð Þ·β y·αzð Þ
= p xð Þ·α y≺βz + y•βz + y≻βz

� �
+ p xð Þ·β y≺αz + y•αz + y≻αzð Þ

= p xð Þ≺α y≺βz
� �

+ p xð Þ≺α y•βz
� �

+ p xð Þ≺α y≻βz
� �

+ p xð Þ•α y≺βz
� �

+ p xð Þ•α y•βz
� �

+ p xð Þ•α y≻βz
� �

+ p xð Þ≻α y≺βz
� �

+ p xð Þ≻α y•βz
� �

+ p xð Þ≻α y≻βz
� �

+ p xð Þ≺β y≺αzð Þ + p xð Þ≺β y•αzð Þ + p xð Þ≺β y≻αzð Þ
+ p xð Þ•β y≺αzð Þ + p xð Þ•β y•αzð Þ + p xð Þ•β y≻αzð Þ
+ p xð Þ≻β y≺αzð Þ + p xð Þ≻β y•αzð Þ + p xð Þ≻β y≻αzð Þ:

ð67Þ

By Eqs (48), (49), (50), (51), (52), (53), (54), we get

x·αyð Þ·βp zð Þ + x·βy
� �

·αp zð Þ = p xð Þ·α y·βz
� �

+ p xð Þ·β y·αzð Þ:
ð68Þ

Hence, ðA, ·Ω, pÞ is a compatible Hom-associative
algebra.

Now, we explore the relationship between matching
Hom-dendriform algebras and matching Hom-preLie
algebras.

Theorem 27. Let ðA, ≺Ω, ≻Ω, pÞ be a matching Hom-
dendriform algebra. Then ðA, ∗Ω, pÞ is a matching Hom-
preLie algebra, where

∗ω : A ⊗ A⟶ A, x∗ωy≔ x≻ωy − y≺ωxfor x, y ∈ Aand ω ∈Ω:

ð69Þ

Proof. For x, y, z ∈ A and α, β ∈Ω, we have

p xð Þ∗α y∗βz
� �

− x∗αyð Þ∗βp zð Þ
= p xð Þ∗α y≻βz − z≺βy

� �
− x≻αy − y≺αxð Þ∗βp zð Þ

= p xð Þ≻α y≻βz
� �

− p xð Þ≻α z≺βy
� �

− y≻βz
� �

≺αp xð Þ
+ z≺βy
� �

≺αp xð Þ − x≻αyð Þ≻βp zð Þ + y≺αxð Þ≻βp zð Þ
+ p zð Þ≺β x≻αyð Þ − p zð Þ≺β y≺αxð Þ

ð70Þ

and

p yð Þ∗β x∗αzð Þ − y∗βx
� �

∗αp zð Þ
= p yð Þ∗β x≻αz − z≺αxð Þ − y≻βx − x≺βy

� �
∗αp zð Þ

= p yð Þ≻β x≻αzð Þ − p yð Þ≻β z≺αxð Þ − x≻αzð Þ≺βp yð Þ
+ z≺αxð Þ≺βp yð Þ − y≻βx

� �
≻αp zð Þ + x≺βy

� �
≻αp zð Þ

+ p zð Þ≺α y≻βx
� �

− p zð Þ≺α x≺βy
� �

:

ð71Þ

By Eqs (48), (49), (50), (51), (52), (53), (54), we get

p xð Þ∗α y∗βz
� �

− x∗αyð Þ∗βp zð Þ
= p yð Þ∗β x∗αzð Þ − y∗βx

� �
∗αp zð Þ:

ð72Þ

Hence, ðA, ∗Ω, pÞ is a matching Hom-preLie algebra.
A matching Rota-Baxter algebra ðA, ·, PΩÞ is of weight 0 if

the set λΩ = f0g. The connections between Rota-Baxter alge-
bras and (tri)dendriform algebras are given in [36, 41] and
extended to matching Rota-Baxter algebras. Now, we gener-
alize it to matching Hom-associative Rota-Baxter algebra.

Proposition 28.

(a) Let ðA, ·, PΩ, pÞ be a matching Hom-associative Rota-
Baxter algebra of weight 0. Assume that p ∘ Pω = Pω
∘ p for each ω ∈Ω. Define the operations ≺ω and ≻ω
for ω ∈Ω by

x≺ωy≔ x · Pω yð Þ and x≻ωy = Pω xð Þ · y, for x, y ∈ A: ð73Þ

Then ðA, ≺Ω, ≻Ω, pÞ is a matching Hom-dendriform
algebra.

(b) Let ðA, ·, PΩ, pÞ be a matching Hom-associative Rota-
Baxter algebra. Assume that p ∘ Pω = Pω ∘ p for each
ω ∈Ω. Define the operations ≺ω, ≻ω, ω ∈Ω by

x≺ωy≔ x · Pω yð Þ + λωx · y and x≻ωy = Pω xð Þ · y, for x, y ∈ A:
ð74Þ

Then, ðA, ≺Ω, ≻Ω, pÞ is a matching Hom-dendriform
algebra.

Proof. Since Item (a) can be seen as a special case of Item (b)
by taking λΩ = f0g, we only prove Item (b). For x, y, z ∈ A
and α, β ∈Ω, we have

p xð Þ≺α y≺βz
� �

+ p xð Þ≺β y≻αzð Þ
= p xð Þ≺α y · Pβ zð Þ + λβy · z

� �
+ p xð Þ≺β Pα yð Þ · zð Þ

= p xð Þ · Pα y · Pβ zð Þ + λβy · z
� �

+ λαp xð Þ
· y · Pβ zð Þ + λβy · z
� �

+ p xð Þ · Pβ Pα yð Þ · zð Þ
+ λβp xð Þ · Pα yð Þ · zð Þ = p xð Þ Pα yð Þ · Pβ zð Þ� �
+ λαp xð Þ · y · Pβ zð Þ� �

+ λαλβp xð Þ · y · zð Þ
+ λβp xð Þ · Pα yð Þ · zð Þ = x · Pα yð Þ + λαx · yð Þ
· Pβ p zð Þð Þ + λβ x · Pα yð Þ + λαx · yð Þ · p zð Þ

= x · Pα yð Þ + λαx · yð Þ≺βp zð Þ = x≺αyð Þ≺βp zð Þ:

ð75Þ
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Also,

x≻αyð Þ≺βp zð Þ = Pα xð Þ · yð Þ≺βp zð Þ
= Pα xð Þ · yð Þ · Pβ p zð Þð Þ + λβ Pα xð Þ · yð Þ · p zð Þ
= Pα p xð Þð Þ · y · Pβ zð Þ� �

+ λβPα p xð Þð Þ · y · zð Þ
= Pα p xð Þð Þ · y · Pβ zð Þ + λβy · z

� �
= Pα p xð Þð Þ · y≺βz

� �
= p xð Þ≻α y≺βz

� �
ð76Þ

and

x≺βy
� �

≻αp zð Þ + x≻αyð Þ≻βp zð Þ
= x · Pβ yð Þ + λβx · y
� �

≻αp zð Þ + Pα xð Þ · yð Þ≻βp zð Þ
= Pα x · Pβ yð Þ + λβx · y

� �
· p zð Þ + Pβ Pα xð Þ · yð Þ · p zð Þ

= Pα x · Pβ yð Þ� �
+ Pβ Pα xð Þ · yð Þ + λβPα x · yð Þ� �

· p zð Þ
= Pα xð Þ · Pβ yð Þ� �

· p zð Þ = Pα p xð Þð Þ · Pβ yð Þ · z� �
= p xð Þ≻α y≻βz

� �
:

ð77Þ

Hence, ðA, ≺Ω, ≻Ω, pÞ is a matching Hom-dendriform
algebra.

Proposition 29. Let ðA, ·, PΩ, pÞ be a matching Hom-
associative Rota-Baxter algebra. Assume that p ∘ Pω = Pω ∘
p for each ω ∈Ω. Define the operations ≺ω, ≻ω and •ω for
ω ∈Ω by

x≺ωy≔ x · Pω yð Þ, x≻ωy = Pω xð Þ · y and
x•ωy = λωx · y, for x, y ∈ A:

ð78Þ

Then, ðA, ≺Ω, •Ω, ≻Ω, pÞ is a matching Hom-
tridendriform algebra.

Proof. For x, y, z ∈ A and α, β ∈Ω, we have

x≺αyð Þ≺β p zð Þð Þ = x · Pα yð Þð Þ · Pβ p zð Þð Þ = p xð Þ · Pα yð Þ · Pβ zð Þ� �
= p xð Þ · Pα y · Pβ zð Þ� �

+ Pβ Pα yð Þ · zð Þ�
+ λβPα y · zð Þ� = p xð Þ≺α y≺β zð Þ� �
+ p xð Þ≺β y≻αzð Þ + x≺α y•βz

� �
,

x≻αyð Þ≺βp zð Þ = Pα xð Þ · yð Þ · Pβ p zð Þð Þ = Pα p xð Þð Þ · y · Pβ zð Þ� �
= p xð Þ≻α y≺βz

� �
,

p xð Þ≻α y≻βz
� �

= Pα p xð Þð Þ · Pβ yð Þ · z� �
= Pα xð Þ · Pβ yð Þ� �

· p zð Þ
= Pα x · Pβ yð Þ� �

+ Pβ Pα xð Þ · yð Þ�
+ λβPα x · yð Þ� · p zð Þ = x≺βy

� �
≻αp zð Þ

+ x≻αyð Þ≻βp zð Þ + x•βy
� �

≻αp zð Þ,

x≻αyð Þ•βp zð Þ = λβ Pα xð Þ · yð Þ · p zð Þ = λβPα p xð Þð Þ · y · zð Þ
= p xð Þ≻α y•βz

� �
,

x≺αyð Þ•βp zð Þ = λβ x · Pα yð Þð Þ · p zð Þ = λβp xð Þ · Pα yð Þ · zð Þ
= p xð Þ•β y≻αzð Þ,

x•αyð Þ≺βp zð Þ = λα x · yð Þ · Pβ p zð Þð Þ = λαp xð Þ · y · Pβ zð Þ� �
= p xð Þ•α y≺βz

� �
,

x•αyð Þ•βp zð Þ = λαλβ x · yð Þ · p zð Þ = λαλβp xð Þ · y · zð Þ
= p xð Þ•α y•βz

� �
,

ð79Þ

as required.

Corollary 30.

(a) Let ðA, ·, PΩ, pÞ be a matching Hom-associative Rota-
Baxter algebra of weight 0. Then, ðA, ∗ΩÞ is a match-
ing Hom-preLie algebra, where

x∗ωy≔ Pω xð Þ · y − y · Pω xð Þ for x, y ∈ Aand ω ∈Ω: ð80Þ

(b) Let ðA, ·, PΩ, pÞ be a matching Hom-associative Rota-
Baxter algebra. Then, ðA, ∗ΩÞ is a matching Hom-
preLie algebra, where

x∗ωy≔ Pω xð Þ · y − y · Pω xð Þ − λωy · x for x, y ∈ Aand ω ∈Ω:

ð81Þ

Proof. (a) It follows from Theorem 27 and Proposition 28 (a).
(b) It follows from Theorem 27 and Proposition 28 (b).

5. Matching Rta-Baxter Operators and Hom-
Nonassociative Algebras

Rota-Baxter Lie algebras were introduced independently by
Belavin and Drinfeld and Semenov-Tian-Shansky in [51,
55] and were related to solutions of the (modified) Yang-
Baxter equation. Makhlouf extended Rota-Baxter operators
to the context of Hom-Lie algebras. Now, we generalize it
to the matching Rota-Baxter case.

Definition 31. Let λΩ ≔ ðλωÞω∈Ω ⊆ k be a family indexed byΩ.
A matching Hom-Lie Rota-Baxter algebra is a Hom-Lie alge-
bra ðg, ½,�, pÞ endowed with a set of linear maps Pω : g⟶ g,
where ω ∈Ω, subject to the relation

Pα xð Þ, Pβ yð Þ� �
= Pα x, Pβ yð Þ� �� �

+ Pβ Pα xð Þ, y½ �ð Þ
+ λβPα x, y½ �ð Þ,

ð82Þ

for all x, y ∈ g and α, β ∈Ω. For simplicity, we denote it by
ðg, ½,�, PΩ, pÞ.

Theorem 32. Let ðg, ½,�, PΩÞ be a matching Lie Rota-Baxter
algebra and p : g⟶ g be a Lie algebra endomorphism such
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that p ∘ Pω = Pω ∘ p for each ω ∈Ω. Then, ðg, ½,�p, PΩ, pÞ, where
½,�p ≔ p ∘ ½,�, is a matching Hom-Lie Rota-Baxter algebra.

Proof. Since ½pðxÞ, ½y, z�p�p = p½pðxÞ, p½y, z�� = p2½x, ½y, z��, the
Hom-Jacobi identity for ðg, ½,�p, pÞ follows from the Jacobi
identity of ðg, ½,�Þ. The skew-symmetry of ðg, ½,�p, pÞ holds
from the skew-symmetry of ðg, ½,�Þ;, hence, ðg, ½,�p, pÞ is a
Hom-Lie algebra.

For x, y ∈ g and α, β ∈Ω, we have

Pα xð Þ, Pβ yð Þ� �
p
= p Pα xð Þ, Pβ yð Þ� �

= p Pα x, Pβ yð Þ� �� ��
+ Pβ Pα xð Þ, y½ � + λβPα x, y½ �ð Þ�

= Pα p x, Pβ yð Þ� �� �
+ Pβ p Pα xð Þ, y½ �ð Þ

+ λβPα p x, y½ �ð Þ = Pα x, Pβ yð Þ� �
p

� �
+ Pβ Pα xð Þ, y½ �p

� �
+ λβPα x, y½ �p

� �
,

ð83Þ

as required.

Proposition 33. Let ðg, ½,�, PΩ, pÞ be a matching Hom-Lie
Rota-Baxter algebra such that p ∘ Pω = Pω ∘ p for each ω ∈Ω.
Then ðg, ½,�p−1 ≔ p−1 ∘ ½,�, PΩÞ is a matching Lie Rota-Baxter
algebra.

Proof. Since ½x, ½y, z�p−1 �p−1 = p−1½x, p−1½y, z��, the Jacobi iden-
tity of ðg, ½,�p−1 holds from the Hom-Jacobi identity of ðg, ½,�,
pÞ. The skew-symmetry of ðg, ½,�p−1 holds from skew symmetry
of ðg, ½,�, pÞ; hence, ðg, ½,�p−1 is a Lie algebra.

Since p ∘ Pω = Pω ∘ p, p−1 ∘ Pω = Pω ∘ p−1. Then,

Pα xð Þ, Pβ yð Þ� �
p−1

= p−1 Pα xð Þ, Pβ yð Þ� �� �
= p−1

�
Pα x, Pβ yð Þ� �� �

+ Pβ Pα xð Þ, y½ �ð Þ + λβPα x, y½ �ð Þ�
= Pα p−1 x, Pβ yð Þ� �� �� �

+ Pβ p−1 Pα xð Þ, y½ �ð Þ� �
+ λβPα p−1 x, y½ �ð Þ� �

= Pα x, Pβ yð Þ� �
p−1

� �
+ Pβ Pα xð Þ, y½ �p−1

� �
+ λβPα x, y½ �p−1

� �
,

ð84Þ

as required.

Definition 34. Let ðg, ½,�, pÞ be a multiplicative Hom-Lie
algebra and n ≥ 0. The n th derived Hom-algebra of g is
defined by

g nð Þ = g, ,½ � nð Þ = pn ∘ ,½ �,pn+1
� �

: ð85Þ

Theorem 35. Let ðg, ½,�, PΩ, pÞ be a multiplicative matching
Hom-Lie Rota-Baxter algebra and assume that p ∘ Pω = Pω ∘ p

for each ω ∈Ω. Then its n th derived Hom-algebra is a match-
ing Hom-Lie Rota-Baxter algebra.

Proof. Following [54], the n-th derived Hom-algebra is a
Hom-Lie algebra. For x, y ∈ g and α, β ∈Ω,

Pα xð Þ, Pβ yð Þ� � nð Þ = pn Pα xð Þ, Pβ yð Þ� �� �
= pn Pα x, Pβ yð Þ� �� ��

+ Pβ Pα xð Þ, y½ �ð Þ + λβPα x, y½ �ð Þ�
= Pα pn x, Pβ yð Þ� �� �� �

+ Pβ pn Pα xð Þ, y½ �ð Þð Þ
+ λβPα pn x, y½ �ð Þð Þ = Pα x, Pβ yð Þ� � nð Þ� �
+ Pβ Pα xð Þ, y½ � nð Þ

� �
+ λβPα x, y½ � nð Þ

� �
,

ð86Þ

as required.

In the following, we construct matching Hom-Lie Rota-
Baxter algebras involving elements of the centroid of match-
ing Lie Rota-Baxter algebras. Let ðg, ½,�,Ω, RÞ be a matching
Lie Rota-Baxter algebra. The centroid is defined by

Cent gð Þ≔ p ∈ End gð Þ: p x, y½ � = p xð Þ, y½ �,∀x, y ∈ gf g: ð87Þ

Proposition 36. Let ðg, ½,�, PΩÞ be a matching Lie Rota-Baxter
algebra. Let p ∈ CentðgÞ and set for x, y ∈ g

x, y½ �1p ≔ p xð Þ, y½ � and x, y½ �2p ≔ p xð Þ, p yð Þ½ �: ð88Þ

Assume that p ∘ Pω = Pω ∘ p for each ω ∈Ω. Then, ðg, ½,�1p,
PΩ, pÞ and ðg, ½,�2p, PΩ, pÞ are matching Hom-Lie Rota-Baxter
algebras

Proof. Following Proposition 1.12 of [4], ðg, ½,�1p, pÞ and ðg,
½,�2p, pÞ are Hom-Lie algebras. Also,

Pα xð Þ, Pβ yð Þ� �1
p
= p Pα xð Þð Þ, Pβ yð Þ� �

= p Pα xð Þ, Pβ yð Þ� �� �
= p Pα x, Pβ yð Þ� �� �

+ Pβ Pα xð Þ, y½ �ð Þ�
+ λβPα x, y½ �ð Þ� = Pα p xð Þ, Pβ yð Þ� �� �
+ Pβ p Pα xð Þð Þ, y½ �ð Þ + λβPα p xð Þ, y½ �ð Þ

= Pα x, Pβ yð Þ� �1
p

� �
+ Pβ Pα xð Þ, y½ �1p

� �
+ λβPα x, y½ �1p

� �
ð89Þ
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and

Pα xð Þ, Pβ yð Þ� �2
p
= p Pα xð Þð Þ, p Pβ yð Þ� �� �

= p Pα xð Þ, p Pβ yð Þ� �� �� �
= −p2 Pβ yð Þ, Pα xð Þ� �� �

= p2 Pα xð Þ, Pβ yð Þ� �� �
= p2 Pα x, Pβ yð Þ� �� �

+ Pβ Pα xð Þ, y½ �ð Þ�
+ λβPα x, y½ �ð Þ� = Pα p xð Þ, p Pβ yð Þ� �� �� �
+ Pβ p Pα xð Þð Þ, p yð Þ½ �ð Þ + λβPα p xð Þ, p yð Þ½ �ð Þ

= Pα x, Pβ yð Þ� �2
p

� �
+ Pβ Pα xð Þ, y½ �2p

� �
+ λβPα x, y½ �2p

� �
:

ð90Þ

This completes the proof.

Proposition 37. Let ðA, ½,�, PΩ, pÞ be a matching Hom-Lie
Rota-Baxter algebra of weight zero (i.e. λω = 0 for all ω ∈Ω).
Assume that p ∘ Pω = Pω ∘ p for each ω ∈Ω. Then, ðA, f∗ω
∣ ω ∈Ωg, pÞ is a matching Hom-pre-Lie algebra, where

x∗ωy = Pω xð Þ, y½ � for x, y ∈ Aand ω ∈Ω: ð91Þ

Proof. For x, y, z ∈ g and α, β ∈Ω, we have

p xð Þ∗α y∗βz
� �

− x∗αyð Þ∗βz

= Pα p xð Þð Þ, Pβ yð Þ, z� �� �
− Pβ Pα xð Þ, y½ �ð Þ, p zð Þ� �

by Eq: 91ð Þð Þ
= Pα p xð Þð Þ, Pβ yð Þ, z� �� �

− Pα xð Þ, Pβ yð Þ� �
, p zð Þ� �

+ Pα x, Pβ yð Þ� �� �
, p zð Þ� �

by Eq: 82ð Þð Þ
= p Pα xð Þð Þ, Pβ yð Þ, z� �� �

+ p zð Þ, Pα xð Þ, Pβ yð Þ� �� �
− Pα Pβ yð Þ, x� �� �

, p zð Þ� �
by p ∘ Pα = Pα ∘ pð Þ

= − p Pβ yð Þ� �
, z, Pα xð Þ½ �� �

− Pα Pβ yð Þ, x� �� �
, p zð Þ� �

by Hom − Jacobi identityð Þ
= Pβ p yð Þð Þ, Pα xð Þ, z½ �� �

− Pα Pβ yð Þ, x� �� �
, p zð Þ� �

= p yð Þ∗β x∗αzð Þ − y∗βx
� �

∗αp zð Þ:

ð92Þ

This completes the proof.
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