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We consider wave propagation problems in which there is a preferred direction of propagation. To account for propagation in
preferred directions, the wave equation is decomposed into a set of coupled equations for waves that propagate in opposite
directions along the preferred axis. This decomposition is not unique. We discuss flux-normalised and field-normalised
decomposition in a systematic way, analyse the symmetry properties of the decomposition operators, and use these symmetry
properties to derive reciprocity theorems for the decomposed wave fields, for both types of normalisation. Based on the field-
normalised reciprocity theorems, we derive representation theorems for decomposed wave fields. In particular, we derive
double- and single-sided Kirchhoff-Helmholtz integrals for forward and backward propagation of decomposed wave fields. The
single-sided Kirchhoff-Helmholtz integrals for backward propagation of field-normalised decomposed wave fields find
applications in reflection imaging, accounting for multiple scattering.

1. Introduction

In many wave propagation problems, it is possible to define
a preferred direction of propagation. For example, in ocean
acoustics, waves propagate primarily in the horizontal direc-
tion in an acoustic wave guide, bounded by the water surface
and the ocean bottom. Similarly, in communication engi-
neering, microwaves or optical waves propagate as beams
through electromagnetic or optical wave guides. Wave prop-
agation in preferred directions is not restricted to wave
guides. For example, in geophysical reflection imaging appli-
cations, seismic or electromagnetic waves propagate mainly
in the vertical direction (downward and upward) through a
laterally unbounded medium.

To account for propagation in preferred directions, the
wave equation for the full wave field can be decomposed
into a set of coupled equations for waves that propagate
in opposite directions along the preferred axis (for example,
leftward and rightward in ocean acoustics or downward
and upward in reflection imaging). In the literature on elec-
tromagnetic wave propagation, these oppositely propagating
waves are often called “bidirectional beams” [1, 2] whereas in

the acoustic literature they are usually called “one-way wave
fields” [3–7]. In this paper, we use the latter terminology.

There is a vast amount of literature on the analytical and
numerical aspects of one-way wave propagation [8–13].
A discussion of this is beyond the scope of this paper.
Instead, we concentrate on the choice of the decomposition
operator and the consequences for reciprocity and represen-
tation theorems.

Decomposition of a wave field into one-way wave fields is
not unique. In particular, the amplitudes of the one-way
wave fields can be scaled in different ways. In this paper, we
distinguish between the so-called “flux-normalised” and
“field-normalised” one-way wave fields. The square of the
amplitude of a flux-normalised one-way wave field is by def-
inition the power-flux density (or, for quantum-mechanical
waves, the probability-flux density) in the direction of prefer-
ence. Field-normalised one-way wave fields, on the other
hand, are scaled such that the sum of the two oppositely
propagating components equals the full wave field. These
two forms of normalisation have been briefly analysed by
de Hoop [14, 15]. From this analysis, it appeared that the
operators for flux-normalised decomposition exhibit more
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symmetry than the operators for field-normalised decom-
position. Exploiting the symmetry of the flux-normalised
decomposition operators, the author derived reciprocity
and representation theorems for flux-normalised one-way
wave fields [16, 17].

The first aim of this paper is to discuss flux-normalised
versus field-normalised decomposition in a systematic way.
In particular, it will be shown that reciprocity theorems for
field-normalised one-way wave fields can be derived in a sim-
ilar way as those for flux-normalised one-way wave fields,
even though the operators for field-normalised decomposi-
tion exhibit less symmetry.

The second aim is to discuss representation theorems
for field-normalised one-way wave fields in a systematic
way. This discussion includes links to “classical” Kirchhoff-
Helmholtz integrals for one-way wave fields as well as to
recent single-sided representations for backward propaga-
tion, used for example in Marchenko imaging [18]. Despite
the links to earlier results, the discussed representations
are more general. An advantage of the representations
for field-normalised one-way wave fields is that a straight-
forward summation of the one-way wave fields gives the
full wave field.

We restrict the discussion to scalar wave fields. In Sec-
tion 2, we formulate a unified scalar wave equation for
acoustic waves, horizontally polarised shear waves, trans-
verse electric and transverse magnetic EM waves, and
finally quantum-mechanical waves. Next, we reformulate
the unified wave equation into a matrix-vector form, discuss
symmetry properties of the operator matrix, and use this to
derive reciprocity theorems in matrix-vector form. In Section
3, we decompose the matrix-vector wave equation into a
coupled system of equations for oppositely propagating
one-way wave fields. We separately consider flux normal-
isation and field normalisation and derive reciprocity the-
orems for one-way wave fields, using both normalisations. In
Section 4, we extensively discuss representation theorems for
field-normalised one-way wave fields and indicate applica-
tions. We end with conclusions in Section 5.

2. Unified Wave Equation and Its
Symmetry Properties

2.1. Unified Scalar Wave Equation. Using a unified notation,
wave propagation in a lossless medium (or, for quantum-
mechanical waves, in a lossless potential) is governed by the
following two equations in the space-frequency domain:

−iωαP + ∂jQj = B, ð1Þ

−iωβQj + ∂jP = Cj: ð2Þ

Here, i is the imaginary unit and ω the angular fre-
quency (in this paper, we consider positive frequencies
only). Operator ∂j stands for the spatial differential opera-
tor ∂/∂xj, and Einstein’s summation convention applies to
repeated subscripts. Pðx, ωÞ and Qjðx, ωÞ are space- and
frequency-dependent wave field quantities, αðxÞ and βðxÞ

are real-valued space-dependent parameters, and Bðx, ωÞ
and Cjðx, ωÞ are space- and frequency-dependent source dis-
tributions. Parameters α and β are both assumed to be posi-
tive; hence, metamaterials are not considered in this paper.
All quantities are specified in Table 1 for different wave phe-
nomena and are discussed in more detail below. As indicated
in the first column of Table 1, we consider 3D and 2D wave
problems. For the 3D situation, x = ðx1, x2, x3Þ is the 3D Car-
tesian coordinate vector and lowercase Latin subscripts take
on the values 1, 2, and 3. For the 2D situation, x = ðx1, x3Þ
is the 2D Cartesian coordinate vector and lowercase Latin
subscripts take on the values 1 and 3 only.

The unified boundary conditions at an interface between
two media with different parameters state that P and njQj are
continuous over the interface. Here, nj represents the compo-
nents of the normal vector n = ðn1, n2, n3Þ at the interface for
the 3D situation or n = ðn1, n3Þ for the 2D situation.

We discuss the quantities in Table 1 in more detail. The
quantities in row 1, associated to 3D acoustic wave propaga-
tion in a lossless fluid medium, are acoustic pressure pðx, ωÞ,
particle velocity vjðx, ωÞ, compressibility κðxÞ, mass density
ρðxÞ, volume-injection rate density qðx, ωÞ, and external
force density f jðx, ωÞ. For 2D horizontally polarised shear
waves in a lossless solid medium, we have in row 2 horizon-
tal particle velocity v2ðx, ωÞ, shear stress τ2jðx, ωÞ, mass den-
sity ρðxÞ, shear modulus μðxÞ, external horizontal force
density f2ðx, ωÞ, and external shear deformation rate density
h2jðx, ωÞ. Rows 3 and 4 contain the quantities for 2D electro-
magnetic wave propagation, with TE standing for transverse
electric and TM for transverse magnetic. The quantities
are electric field strength Ekðx, ωÞ, magnetic field strength
Hkðx, ωÞ, permittivity εðxÞ, permeability μðxÞ, external elec-
tric current density Jekðx, ωÞ, and external magnetic current
density Jmk ðx, ωÞ. Furthermore, ϵijk is the alternating tensor
(or Levi-Civita tensor), with ϵ123 = ϵ312 = ϵ231 = 1, ϵ213 =
ϵ321 = ϵ132 = −1, and all other components being zero. In
row 5, the quantities related to 3D quantum-mechanical
wave propagation are wave function Ψðx, ωÞ, potential V ðxÞ,
particle mass m, and ℏ = h/2π, with h Planck’s constant.

By eliminating Qj from equations (1) and (2), we obtain
the unified scalar wave equation

β∂j
1
β
∂jP

� �
+ k2P = β∂j

1
β
Cj

� �
+ iωβB, ð3Þ

Table 1: Quantities in unified equations (1) and (2).

P Qj α β B Cj

Acoustic waves (3D) p vj κ ρ q f j

SH waves (2D) v2 −τ2 j ρ
1
μ

f2 2h2j

TE waves (2D) E2 −ϵ2jkHk ε μ −Je2 ϵ2jk J
m
k

TM waves (2D) H2 ϵ2jkEk μ ε −Jm2 −ϵ2 jk J
e
k

Quantum waves (3D) Ψ
2ℏ
mi

∂jΨ 4 − 4V
ℏω

m
2ℏω
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with wave number k defined via

k2 = αβω2: ð4Þ

2.2. Unified Wave Equation in Matrix-Vector Form. We
define a configuration with a preferred direction and reorga-
nise equations (1) and (2) accordingly.

Consider a 3D spatial domain D, enclosed by surface ∂D.
This surface consists of two planar surfaces ∂D0 and ∂D1 per-
pendicular to the x3-axis and a cylindrical surface ∂Dcyl with
its axis parallel to the x3-axis, see Figure 1. The surfaces ∂D0
and ∂D1 are situated at x3 = x3,0 and x3 = x3,1, respectively,
with x3,1 > x3,0. In general, these surfaces do not coincide with
physical boundaries. Surface S in Figure 1 is a cross section of
D at arbitrary x3. The parameters αðxÞ and βðxÞ are piecewise
continuous smoothly varying functions in D, with discontin-
uous jumps only at interfaces that are perpendicular to the x3
-axis (hence, P and Q3 are continuous over the interfaces). In
the lateral direction, the domain D can be bounded or
unbounded. When D is laterally bounded, the configuration
in Figure 1 represents a wave guide. For this situation, we
assume that homogeneous Dirichlet or Neumann boundary
conditions apply, i.e., P =Q3 = 0 or nν∂νP = nν∂νQ3 = 0 at
∂Dcyl, where lowercase Greek subscripts take on the values
1 and 2. When D is laterally unbounded (for example,
for reflection imaging applications), the cylindrical surface
∂Dcyl has an infinite radius and we assume that P and Q3
have “sufficient decay” at infinity. For the 2D situation,
the configuration is a cross section of the 3D situation
for x2 = 0 and lowercase Greek subscripts take on the
value 1 only.

We reorganise equations (1) and (2) into a matrix-vector
wave equation which acknowledges the x3-direction as the
direction of preference. By eliminating the lateral compo-
nents Q1 and Q2 (or, for 2D wave problems, the lateral com-
ponent Q1), we obtain [8, 15, 19–21]

∂3q =Aq + d, ð5Þ

where wave vector q and source vector d are defined as

q =
P

Q3

 !
,

d =
C3

B0

 !
,

ð6Þ

with

B0 = B + 1
iω

∂ν
1
β
Cν ð7Þ

and operator matrix A defined as

A =
0 A12

A21 0

 !
, ð8Þ

with

A12 = iωβ, ð9Þ

A21 = iωα −
1
iω

∂ν
1
β
∂ν: ð10Þ

The notation in the right-hand side of equations (7)
and (10) should be understood in the sense that differen-
tial operators act on all factors to the right of it. Hence,
operator ∂νð1/βÞ∂ν, applied via equation (5) to P, stands
for ∂νðð1/βÞ∂νPÞ.

Note that the quantities contained in the wave vector q
are continuous over interfaces perpendicular to the x3-axis.
Moreover, these quantities constitute the power-flux density
(or, for quantum-mechanical waves, the probability-flux
density) in the x3-direction via

j = 1
4 P∗Q3 +Q∗

3Pf g, ð11Þ

where the asterisk denotes complex conjugation.

2.3. Symmetry Properties of the Operator Matrix. We discuss
the symmetry properties of the operator matrix A. First,
consider a general operator U (which can be a scalar or a
matrix), containing space-dependent parameters and differ-
ential operators ∂ν. We introduce the transpose operator
Ut via the following integral property:ð

S

Ufð Þtg dxL =
ð
S

f t Utg
� �

dxL: ð12Þ

Here, xL is the lateral coordinate vector, with xL = ðx1, x2Þ
for 3D and xL = x1 for 2D wave problems. S denotes an
integration surface perpendicular to the x3-axis at arbitrary
x3, with edge ∂S, see Figure 1. The quantities f ðxLÞ and
gðxLÞ are space-dependent test functions (scalars or vectors).
When these functions are vectors, f t is the transpose of f ;
when they are scalars, f t is equal to f . When S is bounded,

x1
x2 x3

𝜕 1

𝜕 0

𝜕 cyl

x3,0

x3,1

n = (0, 0, −1)

n = (0, 0, 1)

n = (n1, n2, 0)
𝜕

Figure 1: Configuration with the x3-direction as the preferred
direction. In the lateral direction, this configuration can be
bounded (for wave guides) or unbounded (for example, for
geophysical reflection imaging applications). For the 2D situation,
the configuration is a cross section of the 3D situation for x2 = 0.
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homogeneous Dirichlet or Neumann conditions are imposed
at ∂S. When S is unbounded, ∂S has an infinite radius
and f ðxLÞ and gðxLÞ are assumed to have sufficient decay
along S towards infinity. Operator U is said to be symmetric
when Ut =U and skew-symmetric when Ut = −U. For
the special case that U = ∂ν, equation (12) implies ∂tν = −∂ν
(via integration by parts along S). Hence, operator ∂ν is
skew-symmetric.

We introduce the adjoint operator U† (i.e., the complex
conjugate transpose of U) via the integral property

ð
S

Ufð Þ†g dxL =
ð
S

f † U†g
� �

dxL: ð13Þ

When the test functions are vectors, f † is the complex
conjugate transpose of f ; when they are scalars, f † is the com-
plex conjugate of f . Operator U is said to be Hermitian (or
self-adjoint) when U† =U and skew-Hermitian when U† =
−U. For the operators A12 and A21, defined in equations
(9) and (10), we find A t

12 =A12, A
t
21 =A21, A

†
12 = −A12,

andA†
21 = −A21. Hence, operatorsA12 andA21 are symmet-

ric and skew-Hermitian. With these relations, we find for the
operator matrix A

AtN = −NA, ð14Þ

A†K = −KA, ð15Þ
with

N =
0 1
−1 0

 !
,

K =
0 1
1 0

 !
:

ð16Þ

Note that, using the expressions for q and K in equations
(6) and (16), we can rewrite equation (11) for the power-flux
density (or, for quantum-mechanical waves, the probability-
flux density) as

j = 1
4 q

†Kq: ð17Þ

2.4. Reciprocity Theorems. We derive reciprocity theorems
between two independent solutions of wave equation (5)
for the configuration of Figure 1. We consider two states A
and B, characterised by wave vectors qAðx, ωÞ and qBðx, ωÞ,
obeying wave equation (5), with source vectors dAðx, ωÞ
and dBðx, ωÞ. In domain D, the parameters α and β, and
hence the matrix operator A, are chosen the same in the
two states (outside ∂D they may be different in the two
states). Consider the quantity ∂3ðqtANqBÞ in domain D.
Applying the product rule for differentiation, using equation
(5) for both states, integrating the result over D and applying
the theorem of Gauss yields

ð
D

�
AqAð Þt + dtA

� �
NqB + qtAN AqB + dBð Þ

�
dx

=
ð
∂D
qtANqBn3dx:

ð18Þ

Here, n3 is the component parallel to the x3-axis of the
outward pointing normal vector on ∂D, with n3 = −1 at
∂D0, n3 = +1 at ∂D1, and n3 = 0 at ∂Dcyl, see Figure 1. In
the following, the integral on the right-hand side is restricted
to the horizontal surfaces ∂D0 and ∂D1, which together are
denoted by ∂D0,1. The integral on the left-hand side can be
written as

Ð
D
ð⋯Þdx = Ð x3,1x3,0

dx3
Ð
S
ð⋯ÞdxL. Using equation

(12) for the integral along S and symmetry property (14), it
follows that the two terms in equation (18) containing oper-
ator A cancel each other. Hence, we are left with

ð
D

dtANqB + qtANdB
� �

dx =
ð
∂D0,1

qtANqBn3dxL: ð19Þ

This is a convolution-type reciprocity theorem [22–24],
because products like qtAðx, ωÞNqBðx, ωÞ in the frequency
domain correspond to convolutions in the time domain. A
more familiar form is obtained by substituting the expres-
sions for q, d, and N (equations (6) and (16)), choosing Cj

= 0 and using equation (2) to eliminate Q3, which gives

ð
D

−BAPB + PABBð Þdx =
ð
∂D0,1

1
iωβ

PA∂3PB − ∂3PAð ÞPBð Þn3dxL:

ð20Þ

Next, consider the quantity ∂3ðq†AKqBÞ in domainD. Fol-
lowing the same steps as above, using equations (13) and (15)
instead of (12) and (14), we obtain

ð
D

d†AKqB + q†AKdB
� �

dx =
ð
∂D0,1

q†AKqBn3dxL: ð21Þ

This is a correlation-type reciprocity theorem [25],
because products like q†Aðx, ωÞKqBðx, ωÞ in the frequency
domain correspond to correlations in the time domain.
Substituting the expressions for q, d, and K and choosing
Cj = 0 yield the more familiar form

ð
D

B∗
APB + P∗

ABBð Þdx =
ð
∂D0,1

1
iωβ

P∗
A∂3PB − ∂3PAð Þ∗PBð Þn3dxL:

ð22Þ

We obtain a special case by choosing states A and B iden-
tical. Dropping the subscripts A and B in equations (21) and
(22) and multiplying both sides of these equations by 1/4 give

1
4

ð
D

d†Kq + q†Kd
� �

dx = 1
4

ð
∂D0,1

q†Kqn3dxL, ð23Þ
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1
4

ð
D

B∗P + P∗Bð Þdx = 1
4

ð
∂D0,1

1
iωβ

P∗∂3P − ∂3Pð Þ∗Pð Þn3dxL,

ð24Þ
respectively. These equations quantify conservation of power
(or, for quantum-mechanical waves, probability).

3. Decomposed Wave Equation and Its
Symmetry Properties

3.1. General Decomposition of the Matrix-Vector Wave
Equation. To facilitate the decomposition of the matrix-
vector wave equation (equation (5)), we recast the operator
matrix A into a somewhat different form. To this end, we
introduce an operator H 2, according to

H 2 = −iω
ffiffiffi
β

p
A21

ffiffiffi
β

p
= k2 +

ffiffiffi
β

p
∂ν

1
β
∂ν

ffiffiffi
β

p
, ð25Þ

with operator A21 defined in equation (10) and wavenumber
k in equation (4). Operator H 2 can be rewritten as a Helm-
holtz operator [14, 21]

H 2 = k2s + ∂ν∂ν, ð26Þ

with the scaled wavenumber ks defined as [26]

k2s = k2 −
3 ∂νβð Þ ∂νβð Þ

4β2 + ∂ν∂νβð Þ
2β : ð27Þ

Note thatH t
2 =H 2 andH†

2 =H 2; hence, operatorH 2 is
symmetric and self-adjoint and its spectrum is real-valued
(with positive and negative eigenvalues). Using equation
(25), we rewrite operator matrix A, defined in equation
(8), as

A =
0 iωβ

−
1

iω
ffiffiffi
β

p H 2
1ffiffiffi
β

p 0

0
B@

1
CA: ð28Þ

Next, we decompose this operator matrix as follows

A =LHL−1, ð29Þ

with

H =
iH 1 0
0 −iH 1

 !
, ð30Þ

L =
L1 L1

L2 −L2

 !
, ð31Þ

L−1 = 1
2

L−1
1 L−1

2

L−1
1 −L−1

2

 !
: ð32Þ

Operators H 1, L1, and L2 are pseudodifferential oper-
ators [7, 8, 14, 16, 21, 27–30]. The decomposition expressed
by equation (29) is not unique; hence, different choices for
operators H 1, L1, and L2 are possible. We discuss two of
these choices in detail in the next two sections. Here, we
derive some general relations that are independent of these
choices.

By substituting equations (28), (30), (31), and (32) into
equation (29), we obtain the following relations

ωβ =L1H 1L
−1
2 , ð33Þ

1
ω

ffiffiffi
β

p H 2
1ffiffiffi
β

p =L2H 1L
−1
1 : ð34Þ

We introduce a decomposed field vector p and a decom-
posed source vector s via

q =Lp, p =L−1q, ð35Þ

d =Ls, s =L−1d, ð36Þ
where

p =
P+

P−

 !
,

s =
S+

S−

 !
:

ð37Þ

Substitution of equations (29), (35), and (36) into the
matrix-vector wave equation (5) yields

∂3p = H −L−1∂3L
� �

p + s: ð38Þ

Substituting equations (30), (31), (32), and (37) into
equation (38) gives

∂3
P+

P−

 !
=

iH 1 0

0 −iH 1

 !
P+

P−

 !
−
1
2

L−1
1 L−1

2

L−1
1 −L−1

2

 !

�
∂3L1 ∂3L1

∂3L2 −∂3L2

 !
P+

P−

 !
+

S+

S−

 !
:

ð39Þ

This is a system of coupled one-way wave equations.
From the first term on the right-hand side, it follows that
the one-way wave fields P+ and P− propagate in the positive
and negative x3-direction, respectively. The second term on
the right-hand side accounts for coupling between P+ and
P−. The last term on the right-hand side contains sources
S+ and S− which emit waves in the positive and negative
x3-direction, respectively.

We conclude this section by substituting equations (35)
and (36) into equations (19), (21), and (23). Using equations
(12) and (13) for the integration along the lateral coordinates,
this yields
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ð
D

stALtNLpB + ptALtNLsB
� �

dx

=
ð
∂D0,1

ptALtNLpBn3dxL,
ð40Þ

ð
D

s†AL†KLpB + p†AL†KLsB
� �

dx

=
ð
∂D0,1

p†AL†KLpBn3dxL,
ð41Þ

1
4

ð
D

s†L†KLp + p†L†KLs
� �

dx

= 1
4

ð
∂D0,1

p†L†KLpn3dxL:
ð42Þ

These equations form the basis for reciprocity theorems
for the decomposed field and source vectors p and s in the
next two sections.

3.2. Flux-Normalised Decomposition and Reciprocity
Theorems. The first choice of operators H 1, L1, and L2
obeying equations (33) and (34) is [14–16]

H 1 =H 1/2
2 , ð43Þ

L1 = ω/2ð Þ1/2β1/2H−1/2
1 , ð44Þ

L2 = 2ωð Þ−1/2β−1/2H 1/2
1 : ð45Þ

Operator H 1, which is the square root of the Helmholtz
operator H 2, is commonly known as the square root opera-
tor [3, 4, 8]. Like the Helmholtz operatorH 2, the square root
operator H 1 is a symmetric operator [16], hence H t

1 =H 1.
For the adjoint square root operator, we have H †

1 = ðH t
1Þ∗

=H∗
1 . The spectrum of H 1 is real-valued for propagating

waves and imaginary-valued for evanescent waves. Hence,
unlike the Helmholtz operator, the square root operator is
not self-adjoint. If we neglect evanescent waves, we may
approximate the adjoint square root operator as H †

1 ≈H 1.
Similar relations hold for the square root of the square root
operator and its inverse; hence, ðH±1/2

1 Þt =H±1/2
1 , and

neglecting evanescent waves, ðH±1/2
1 Þ† ≈H±1/2

1 . From here
onward, we replace ≈ by = when the only approximation is
the negligence of evanescent waves. Using these symmetry
relations for H 1 and equations (16), (31), (44), and (45),
we obtain

LtNL = −N, ð46Þ

and neglecting evanescent waves,

L†KL = J, ð47Þ

with

J =
1 0
0 −1

 !
: ð48Þ

Hence, equations (40), (41), and (42) simplify to

−
ð
D

stANpB + ptANsB
� �

dx = −
ð
∂D0,1

ptANpBn3dxL,

ð
D

s†AJpB + p†AJsB
� �

dx =
ð
∂D0,1

p†AJpBn3dxL,

1
4

ð
D

s†Jp + p†Js
� �

dx = 1
4

ð
∂D0,1

p†Jpn3dxL:

ð49Þ

By substituting the expressions for p, s, N, and J (equa-
tions (37), (16), and (48)), we obtainð

D

−S+AP
−
B + S−AP

+
B − P+

AS
−
B + P−

AS
+
Bð Þdx

=
ð
∂D0,1

−P+
AP

−
B + P−

AP
+
Bð Þn3dxL,

ð50Þ

ð
D

S+∗A P+
B−S

−∗
A P−

B+P+∗
A S+B−P

−∗
A S−Bð Þdx

=
ð
∂D0,1

P+∗
A P+

B−P
−∗
A P−

Bð Þn3dxL,
ð51Þ

1
4

ð
D

S+∗P+−S−∗P−+P+∗S+−P−∗S−ð Þdx

= 1
4

ð
∂D0,1

P+ 2 − P− 2								� �
n3dxL:

ð52Þ

Note that, since the right-hand side of equation (52) is
equal to the right-hand side of equation (24), it quantifies
the power flux (or the probability flux for quantum-
mechanical waves) through the surface ∂D0,1. Therefore, we
call P+ and P−

flux-normalised one-way wave fields. Conse-
quently, equations (50) and (51) are reciprocity theorems of
the convolution type and correlation type, respectively, for
flux-normalised one-way wave fields. These theorems have
been derived previously [16] and have found applications
in advanced wave field imaging methods for active and pas-
sive data [31–42].

3.3. Field-Normalised Decomposition and Reciprocity
Theorems. The second choice of operators H 1, L1, and L2
obeying equations (33) and (34) is [21]

H 1 = β1/2H 1/2
2 β−1/2, ð53Þ

L1 = 1, ð54Þ
L2 = ωβð Þ−1H 1: ð55Þ

Only the Helmholtz operator H 2 is the same as in
the previous section (it is defined in equation (26)). The
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operators H 1, L1, and L2 are different from those in the
previous section, but for convenience, we use the same sym-
bols. Using q =Lp (equation (35)) and equations (6), (31),
(37), and (54), we find

P = P+ + P−: ð56Þ

Hence, P+ and P− have the same physical dimension as the
full field variable P (which is defined in Table 1 for different
wave phenomena). Therefore, we call P+ and P−

field-
normalised one-way wave fields (for convenience, we use
the same symbols as in the previous section).

The square root operator H 1/2
2 is symmetric, but H 1

defined in equation (53) is not. From this equation, it easily
follows that H 1 premultiplied by β−1 is symmetric, hence

1
β
H 1

� �t

= 1
β
H 1, ð57Þ

and neglecting evanescent waves,

1
β
H 1

� �†
= 1
β
H 1: ð58Þ

Using these symmetry relations for ð1/βÞH 1 and equa-
tions (16), (31), (54), and (55), we obtain

LtNL =
0 −2L2

2L2 0

 !
= −N 2

ωβ
H 1

� �

= −
2
ωβ

H 1

� �t

N,
ð59Þ

and neglecting evanescent waves,

L†KL =
2L2 0

0 −2L2

 !
= J 2

ωβ
H 1

� �

= 2
ωβ

H 1

� �†
J:

ð60Þ

Using this in equations (40) and (41) yields

−
ð
D

stA
2
ωβ

H 1

� �t

NpB + ptAN
2
ωβ

H 1

� �
sB


 �
dx

= −
ð
∂D0,1

ptA
2
ωβ

H 1

� �t

NpBn3dxL,

ð
D

s†A
2
ωβ

H 1

� �†
JpB + p†AJ

2
ωβ

H 1

� �
sB

" #
dx

=
ð
∂D0,1

p†A
2
ωβ

H 1

� �†
JpBn3dxL:

ð61Þ

By substituting the expressions for p, s, N, and J
(equations (37), (16), and (48)), using equations (12) and
(13), we obtain

−
ð
D

2
ωβ

�
H 1S

+
Að ÞP−

B − H 1S
−
Að ÞP+

B

+ P+
A H 1S

−
Bð Þ − P−

A H 1S
+
Bð Þ�dx

= −
ð
∂D0:1

2
ωβ

�
H 1P

+
Að ÞP−

B − H 1P
−
Að ÞP+

B

�
n3dxL,

ð62Þ

ð
D

2
ωβ

�
H 1S

+
Að Þ∗P+

B − H 1S
−
Að Þ∗P−

B

+ P+∗
A H 1S

+
Bð Þ−P−∗

A H 1S
−
Bð Þ�dx

=
ð
∂D0,1

2
ωβ

H 1P
+
Að Þ∗P+

B − H 1P
−
Að Þ∗P−

B

� �
n3dxL:

ð63Þ

We aim to remove the operator H 1 from these equa-
tions. From equations (39) and (54), we obtain

∂3P
+ = +iH 1P

+ −
1
2 L−1

2 ∂3L2
� �

P+ − P−ð Þ + S+, ð64Þ

∂3P
− = −iH 1P

− + 1
2 L−1

2 ∂3L2
� �

P+ − P−ð Þ + S−, ð65Þ

with L2 defined in equation (55). Assuming that in state
A the derivatives in the x3-direction of the parameters α
and β at ∂D0,1 vanish and there are no sources at ∂D0,1,
we find from equations (64) and (65)

∂3P
±
A = ±iH 1P

±
A at ∂D0,1: ð66Þ

Below we use this to remove H 1 from the right-hand
sides of equations (62) and (63). Next, we aim to remove
H 1 from the left-hand sides of these equations. From s =
L−1d (equation (36)) and equations (6), (32), (37), (54), and
(55), we find

S± = ± 12
1
ωβ

H 1

� �−1
B0 +

1
2C3, ð67Þ

or

± 2
ωβ

H 1S
± = B0 ±

1
ωβ

H 1C3: ð68Þ

We define new decomposed sources B+
0 and B−

0 , accord-
ing to

B±
0 = B0 ±

1
ωβ

H 1C3 = ± 2
ωβ

H 1S
±: ð69Þ
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Using equations (66) and (69) in the right- and left-
hand sides of equations (62) and (63), we obtainð

D

−B+
0,AP

−
B − B−

0,AP
+
B + P+

AB
−
0,B + P−

AB
+
0,B

� �
dx

=
ð
∂D0,1

−2
iωβ

�
∂3P

+
Að ÞP−

B + ∂3P
−
Að ÞP+

B

�
n3dxL,

ð70Þ

ð
D

B+∗
0,AP

+
B + B−∗

0,AP
−
B+P+∗

A B+
0,B+P−∗

A B−
0,B

� �
dx

=
ð
∂D0,1

−2
iωβ

∂3P
+
Að Þ∗P+

B + ∂3P
−
Að Þ∗P−

B

� �
n3dxL:

ð71Þ

Equations (70) and (71) are reciprocity theorems of the
convolution type and correlation type, respectively, for
field-normalised one-way wave fields. These theorems are
modifications of previously obtained results [43, 44]. The
main modification is that we applied decomposition at both
sides of the equations instead of at the right-hand sides only.
Moreover, in the present derivation, the condition for the
validity of equation (66) is only imposed for state A. In the
next section, we use equations (70) and (71) to derive repre-
sentation theorems for field-normalised one-way wave fields
and we indicate applications.

4. Field-Normalised Representation Theorems

4.1. Green’s Functions. Representation theorems are obtained
by substituting Green’s functions in reciprocity theorems.
Our aim is to introduce one-way Green’s functions, to be
used in the reciprocity theorems for field-normalised one-
way wave fields (equations (70) and (71)). First, we introduce
the full Green’s function Gðx, xA, ωÞ as a solution of the uni-
fied wave equation (3) for a unit monopole point source at xA,
with Bðx, ωÞ = δðx − xAÞ and Cjðx, ωÞ = 0. Hence,

β∂j
1
β
∂jG

� �
+ k2G = iωβδ x − xAð Þ: ð72Þ

As boundary condition, we impose the radiation condition
(i.e., outward propagating waves at infinity). Next, we intro-
duce one-way Green’s function as solutions of the coupled
one-way equations (64) and (65) for a unit monopole point
source at xA. Hence, we choose again Bðx, ωÞ = δðx − xAÞ
and Cjðx, ωÞ = 0. Using equations (69) and (7), we define
decomposed sources as B±

0 = B± = B = ±2L2S
±, with L2

defined in equation (55), or

S± x, ωð Þ = ± 1
2L

−1
2 B± x, ωð Þ = ± 12L

−1
2 B x, ωð Þ

= ± 1
2L

−1
2 δ x − xAð Þ:

ð73Þ

We consider two sets of one-way Green’s functions. For
the first set, we choose a point source S+ðx, ωÞ = ð1/2ÞL−1

2
B+ðx, ωÞ, with B+ðx, ωÞ = δðx − xAÞ, which emits waves
from xA in the positive x3-direction, and we set S−ðx, ωÞ

equal to zero. Hence, for this first set, one-way equations
(64) and (65) become

∂3G
+,+ = +iH 1G

+,+ −
1
2 L−1

2 ∂3L2
� �

G+,+−G−,+ð Þ

+ 1
2L

−1
2 δ x − xAð Þ,

ð74Þ

∂3G
−,+ = −iH 1G

−,+ + 1
2 L−1

2 ∂3L2
� �

G+,+−G−,+ð Þ: ð75Þ

Here, G±,+ stands for G±,+ðx, xA, ωÞ. The second super-
script (+) indicates that the source at xA emits waves in the
positive x3-direction. The first superscript (±) denotes the
propagation direction at x. For the second set of one-way
Green’s functions, we choose a point source S−ðx, ωÞ = −ð1/2Þ
L−1

2 B−ðx, ωÞ, with B−ðx, ωÞ = δðx − xAÞ, which emits waves
from xA in the negative x3-direction, and we set S+ðx, ωÞ
equal to zero. Hence, for this second set, one-way equations
(64) and (65) become

∂3G
+,− = +iH 1G

+,−−
1
2 L−1

2 ∂3L2
� �

G+,− −G−,−ð Þ, ð76Þ

∂3G
−,− = −iH 1G

−,− + 1
2 L−1

2 ∂3L2
� �

G+,− − G−,−ð Þ

−
1
2L

−1
2 δ x − xAð Þ:

ð77Þ

Here, G±,− stands for G±,−ðx, xA, ωÞ, with the second
superscript (−) indicating that the source at xA emits waves
in the negative x3-direction. Like for the full Green’s function
Gðx, xA, ωÞ, we impose radiation conditions for both sets of
one-way Green’s functions.

To find a relation between the full Green’s function and
the one-way Green’s functions, we evaluate β∂3ð1/βÞ∂3
ðG+,+ + G−,+ + G+,− + G−,−Þ using equations (74), (75), (76),
(77), (25), (53), and (55). This gives equation (72), with G
replaced by G+,+ +G−,+ +G+,− +G−,−. Since the full Green’s
function and the one-way Green’s functions obey the same
radiation conditions, we thus find

G =G+,+ +G−,+ +G+,− +G−,−: ð78Þ

This very simple relation is a consequence of the field-
normalised decomposition, introduced in Section 3.3.

4.2. Source-Receiver Reciprocity. We derive source-receiver
reciprocity relations for the field-normalised one-way Green’s
functions introduced in the previous section. To this end, we
make use of the reciprocity theorem of the convolution type
for field-normalised one-way wave fields (equation (70)).
This theorem was derived for the configuration of Figure 1,
assuming that in domain D, the parameters α and β are the
same in the two states (see Section 2.4). Outside D, these
parameters may be different in the two states. For the Green’s
state, we choose the parameters for x3 ≤ x3,0 and for x3 ≥ x3,1
independent of the x3-coordinate, according to αðxLÞ and
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βðxLÞ. Hence, if we let Green’s state (with a point source
at xA in D) take the role of state A, then the condition for
the validity of equation (66) is fulfilled. Moreover, Green’s
functions are purely outward propagating at ∂D0,1 (because
outside D no scattering occurs along the x3-coordinate).
Hence, G+,±ðx, xA, ωÞ = 0 at ∂D0 and G−,±ðx, xA, ωÞ = 0 at
∂D1. We let a second Green’s state (with a point source
at xB in D and the same parameters α and β as in state
A, inside as well as outside D) take the role of state B.
Hence, G+,±ðx, xB, ωÞ = 0 at ∂D0 and G−,±ðx, xB, ωÞ = 0 at
∂D1. With only outward propagating waves at ∂D0,1, the
surface integral on the right-hand side of equation (70) van-
ishes. Hence, taking into account that B±

0 = B± (since Cj = 0),
equation (70) simplifies to

ð
D

−B+
AP

−
B − B−

AP
+
B + P+

AB
−
B + P−

AB
+
Bð Þdx = 0: ð79Þ

First, we consider sources emitting waves in the positive
x3-direction in both Green’s states, hence B+

A = δðx − xAÞ,
B−
A = 0, P±

A =G±,+ðx, xA, ωÞ, B+
B = δðx − xBÞ, B−

B = 0, and P±
B

=G±,+ðx, xB, ωÞ. Substituting this into equation (79) yields

G−,+ xB, xA, ωð Þ =G−,+ xA, xB, ωð Þ, ð80Þ

see Figure 2(a). Next, we replace the source in state B by one
emitting waves in the negative x3-direction, hence B+

B = 0,
B−
B = δðx − xBÞ, and P±

B =G±,−ðx, xB, ωÞ. This gives

G+,+ xB, xA, ωð Þ =G−,− xA, xB, ωð Þ, ð81Þ

see Figure 2(b). By replacing also the source in state A by one
emitting waves in the negative x3-direction, according to
B+
A = 0, B−

A = δðx − xAÞ, and P±
A =G±,−ðx, xA, ωÞ, we obtain

G+,− xB, xA, ωð Þ =G+,− xA, xB, ωð Þ, ð82Þ

see Figure 2(c). Finally, changing the source in state B
back to the one emitting waves in the positive x3-direc-
tion yields

G−,− xB, xA, ωð Þ =G+,+ xA, xB, ωð Þ, ð83Þ

see Figure 2(d).
Source-receiver reciprocity relations similar to equations

(80), (81), (82), and (83) were previously derived for flux-
normalised one-way Green’s functions [17], except that two
of those relations involve a change of sign when interchan-
ging the source and the receiver. The absence of sign changes
in equations (80), (81), (82), and (83) is due to the definition
of B±

0 in equation (69). Moreover, unlike the flux-normalised
reciprocity relations, the field-normalised source-receiver
reciprocity relations of equations (80), (81), (82), and (83)
have a very straightforward relation with the well-known
source-receiver reciprocity relation for the full Green’s func-
tion. By separately summing the left- and right-hand sides of
equations (80), (81), (82), and (83) and using equation (78),
we simply obtain

G xB, xA, ωð Þ = G xA, xB, ωð Þ: ð84Þ

4.3. Kirchhoff-Helmholtz Integrals for Forward Propagation.
We derive Kirchhoff-Helmholtz integrals of the convolution
type for field-normalised one-way wave fields. For state B, we

G−,+(x
B
, x

A
, 𝜔) G−,+(x

A
, x

B
, 𝜔)

x
B

x
A

x
A

x
B

=

x1
x2 x3

(a)

x
B

x
A

x
A

x
B

G+,+(x
B
, x

A
, 𝜔) G−,−(x

A
, x

B
, 𝜔)

=

x1
x2 x3

(b)

x
B

x
A

x
A

x
B

=

G+,−(x
A
, x

B
, 𝜔)G+,−(x

B
, x

A
, 𝜔)

x1
x2 x3

(c)

x
B

x
A

x
A

x
B

=

G−,−(x
B
, x

A
, 𝜔) G+,+(x

A
, x

B
, 𝜔)

x1
x2 x3

(d)

Figure 2: Visualisation of the source-receiver reciprocity relations for the field-normalised one-way Green’s functions, formulated by
equations (80), (81), (82), and (83). The “rays” in this and subsequent figures are strong simplifications of the complete one-way wave
fields, which include primary and multiple scattering.
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consider the decomposed actual field, with sources only out-
side D; hence, B±

0,B = 0 in D and P±
B = P±ðx, ωÞ. The parame-

ters α and β are the actual parameters inside as well as
outsideD. For state A, we choose the Green’s state with a unit
point source at xA in D. The parameters α and β in D are the
same as those in state B, but for x3 ≤ x3,0 and for x3 ≥ x3,1,
they are chosen independent of the x3-coordinate. Hence,
the condition for the validity of equation (66) is fulfilled.
First, we consider a source in state A which emits waves in
the positive x3-direction, hence B+

A = δðx − xAÞ, B−
A = 0, and

P±
A =G±,+ðx, xA, ωÞ. Substituting all this into equation (70)

(with B±
0,A = B±

A) gives

P− xA, ωð Þ =
ð
∂D0,1

2
iωβ xð Þ

�
∂3G

+,+ x, xA, ωð Þð ÞP− x, ωð Þ

+ ∂3G
−,+ x, xA, ωð Þð ÞP+ x, ωð Þ�n3dxL:

ð85Þ

Next, we replace the source in state A by one which
emits waves in the negative x3-direction, hence B+

A = 0,
B−
A = δðx − xAÞ, and P±

A =G±,−ðx, xA, ωÞ. Equation (70) thus
gives

P+ xA, ωð Þ =
ð
∂D0,1

2
iωβ xð Þ

�
∂3G

+,− x, xA, ωð Þð ÞP− x, ωð Þ

+ ∂3G
−,− x, xA, ωð Þð ÞP+ x, ωð Þ�n3dxL:

ð86Þ

Recall that ∂D0,1 consists of ∂D0 (with n3 = −1) and
∂D1 (with n3 = +1), see Figure 1. Since G+,±ðx, xA, ωÞ = 0
at ∂D0 and G−,±ðx, xA, ωÞ = 0 at ∂D1 (because outside D

no scattering occurs along the x3-coordinate in state A),
the first term under the integral in equations (85) and
(86) gives a contribution only at ∂D1 and the second term
only at ∂D0.

Hence,

P± xA, ωð Þ =
ð
∂D0

−2
iωβ xð Þ ∂3G

−,∓ x, xA, ωð Þ� �
P+ x, ωð ÞdxL

+
ð
∂D1

2
iωβ xð Þ ∂3G

+,∓ x, xA, ωð Þ� �
P− x, ωð ÞdxL:

ð87Þ

Note that there is no contribution from P−ðx, ωÞ at ∂D0
nor from P+ðx, ωÞ at ∂D1, see Figure 3.

We conclude this section by considering a special case.
Suppose the source of the actual field (state B) is located
at xB in the half-space x3 < x3,0. Then, by taking x3,1 →
∞, the field P− at ∂D1 vanishes. This leaves the single-
sided representation

P± xA, xB, ωð Þ =
ð
∂D0

−2
iωβ xð Þ ∂3G

−,∓ x, xA, ωð Þ� �
P+ x, xB, ωð ÞdxL:

ð88Þ

Note that we included the source coordinate vector xB
in the argument list of P±ðxA, xB, ωÞ. This representation is
an extension of a previously derived result [43], in which
the fields were decomposed at ∂D0 but not at xA. It
describes forward propagation of the one-way field P+ðx,
xB, ωÞ from the surface ∂D0 to xA (with xA and xB defined
at opposite sides of ∂D0). In the following two sections, we
discuss representations for backward propagation of one-
way wave fields.

4.4. Kirchhoff-Helmholtz Integrals for Backward Propagation
(Double-Sided). We derive Kirchhoff-Helmholtz integrals
of the correlation type for field-normalised one-way wave
fields. For state B, we consider the decomposed actual field,
with a point source at xB and source spectrum sðωÞ. The
parameters α and β are the actual parameters inside as well
as outside D. For state A, we choose the Green’s state with
a unit point source at xA in D. The parameters α and β in
D are the same as those in state B, but for x3 ≤ x3,0 and for
x3 ≥ x3,1, they are chosen independent of the x3-coordinate.
Hence, the condition for the validity of equation (66) is ful-
filled. First, we consider sources emitting waves in the posi-
tive x3-direction in both states, hence B+

A = δðx − xAÞ,
B−
A = 0, P±

A =G±,+ðx, xA, ωÞ, B+
B = δðx − xBÞsðωÞ, B−

B = 0, and
P±
B = P±,+ðx, xB, ωÞ. Substituting this into equation (71) (with

B±
0,A = B±

A and B±
0,B = B±

B) gives

P+,+ xA, xB, ωð Þ+χ xBð Þ G+,+ xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0,1

−2
iωβ xð Þ

�
∂3G

+,+ x, xA,ωð Þf g∗P+,+ x, xB, ωð Þ

+ ∂3G
−,+ x, xA,ωð Þf g∗P−,+ x, xB, ωð Þ�n3dxL,

ð89Þ

where χ is the characteristic function of the domain D. It is
defined as

χ xBð Þ =
1, for xB in D,
1
2 , for xB on ∂D0,1,

0, for xB outside D:

8>>><
>>>:

ð90Þ

Since G+,+ðx, xA, ωÞ = 0 at ∂D0 and G−,+ðx, xA, ωÞ = 0
at ∂D1 (because outside D no scattering occurs along the
x3-coordinate in state A), the first term under the integral

x
A

x

x

P+(x, 𝜔)

P−(x, 𝜔)

x1
x2 x3

x3,0

x3,1

G−,−(x, x
A
, 𝜔)

G−,+(x, x
A
, 𝜔)

G+,+(x, x
A
, 𝜔)

G+,−(x, x
A
, 𝜔)

𝜕 1

𝜕 0

Figure 3: Visualisation of the different terms in the field-normalised
one-way Kirchhoff-Helmholtz integral for forward propagation,
formulated by equation (87). The solid Green’s functions contribute
to P+ðxA, ωÞ, the dashed Green’s functions to P−ðxA, ωÞ.
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in equation (89) gives a contribution only at ∂D1 and the
second term only at ∂D0. Hence,

P+,+ xA, xB, ωð Þ + χ xBð Þ G+,+ xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0

2
iωβ xð Þ ∂3G

−,+ x, xA,ωð Þf g∗P−,+ x, xB, ωð ÞdxL

−
ð
∂D1

2
iωβ xð Þ ∂3G

+,+ x, xA,ωð Þf g∗P+,+ x, xB, ωð ÞdxL:

ð91Þ

Next, we replace the source in state B by one emit-
ting waves in the negative x3-direction, hence B+

B = 0,
B−
B = δðx − xBÞsðωÞ and P±

B = P±,−ðx, xB, ωÞ. This gives

P+,− xA, xB, ωð Þ + χ xBð Þ G−,+ xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0

2
iωβ xð Þ ∂3G

−,+ x, xA,ωð Þf g∗P−,− x, xB, ωð ÞdxL

−
ð
∂D1

2
iωβ xð Þ ∂3G

+,+ x, xA,ωð Þf g∗P+,− x, xB, ωð ÞdxL:

ð92Þ

By replacing also the source in state A by one
emitting waves in the negative x3-direction, according
to B+

A = 0, B−
A = δðx − xAÞ, and P±

A =G±,−ðx, xA, ωÞ, we obtain

P−,− xA, xB, ωð Þ + χ xBð Þ G−,− xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0

2
iωβ xð Þ ∂3G

−,− x, xA,ωð Þf g∗P−,− x, xB, ωð ÞdxL

−
ð
∂D1

2
iωβ xð Þ ∂3G

+,− x, xA,ωð Þf g∗P+,− x, xB, ωð ÞdxL:

ð93Þ

Finally, changing the source in state B back to the one
emitting waves in the positive x3-direction yields

P−,+ xA, xB, ωð Þ + χ xBð Þ G+,− xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0

2
iωβ xð Þ ∂3G

−,− x, xA,ωð Þf g∗P−,+ x, xB, ωð ÞdxL

−
ð
∂D1

2
iωβ xð Þ ∂3G

+,− x, xA,ωð Þf g∗P+,+ x, xB, ωð ÞdxL:

ð94Þ

Equation (93) is an extension of a previously derived
result [44], in which the fields were decomposed at ∂D0,1
but not at xA and xB. Equations (91), (92), and (94) are fur-
ther variations. Equation (94) is visualised in Figure 4.
Together, these equations describe backward propagation
of the one-way wave fields P−,±ðx, xB, ωÞ from ∂D0 and
P+,±ðx, xB, ωÞ from ∂D1 to xA. Except for some special cases,
the integrals along ∂D1 do not vanish by taking x3,1 →∞.
Hence, unlike the forward propagation representation (87),
the double-sided backward propagation representations
(91), (92), (93), and (94) in general do not simplify to

single-sided representations. In the next section, we discuss
an alternative method to derive single-sided representations
for backward propagation.

We conclude this section by considering a special case.
Suppose that in state B the parameters α and β are the
same as in state A not only in D but also outside D. Then,
P±,±ðx, xB, ωÞ = G±,±ðx, xB, ωÞsðωÞ for all x. Substituting this
into representations (91), (92), (93), and (94), summing the
left- and right-hand sides of these representations separately
and dividing both sides by sðωÞ, using equations (78) and
(84) and assuming that xB is located in D, we obtain

Gh xA, xB, ωð Þ =
ð
∂D0

2
iωβ xð Þ ∂3G

− x, xA, ωð Þf g∗G− x, xB, ωð ÞdxL

−
ð
∂D1

2
iωβ xð Þ ∂3G

+ x, xA, ωð Þf g∗G+ x, xB, ωð ÞdxL,

ð95Þ

where the so-called homogeneous Green’s function GhðxA,
xB, ωÞ is defined as

Gh xA, xB, ωð Þ =G xA, xB, ωð Þ +G∗ xA, xB, ωð Þ
= 2R G xA, xB, ωð Þf g, ð96Þ

(with R denoting the real part) and where G±ðx, xA, ωÞ =
G±,+ðx, xA, ωÞ+G±,−ðx, xA, ωÞ (and a similar expression for
G±ðx, xB, ωÞ). Equation (95) is akin to the well-known repre-
sentation for the homogeneous Green’s function [45, 46],
but with decomposed Green’s functions under the integrals.
The simple relation between representations (91), (92), (93),
and (94) on the one hand and the homogeneous Green’s
function representation (95) on the other hand is a conse-
quence of the field-normalised decomposition, introduced
in Section 3.3.

4.5. Kirchhoff-Helmholtz Integrals for Backward Propagation
(Single-Sided). The complex-conjugated Green’s functions
f∂3G±,±ðx, xA, ωÞg∗ under the integrals in equations (91),
(92), (93), and (94) can be seen as focusing functions, which
focus the wave fields P±,±ðx, xB, ωÞ onto a focal point xA.
However, this focusing process requires that these wave
fields are available at two boundaries ∂D0 and ∂D1, enclos-
ing the focal point xA. Here, we discuss single-sided field-
normalised focusing functions f ±1 ðx, xA, ωÞ and we use these
in modifications of reciprocity theorems (70) and (71) to

x
A

x

x

x
B

{G−,−(x, x
A
, 𝜔)}⁎

P−,+(x, x
B
, 𝜔)

P+,+(x, x
B
, 𝜔)

{G+,−(x, x
A
, 𝜔)}⁎

𝜕 1

𝜕 0
x3,0

x3,1

x1
x2 x3

Figure 4: Visualisation of the different terms in the field-normalised
one-way Kirchhoff-Helmholtz integral for backward propagation,
formulated by equation (94).
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derive single-sided Kirchhoff-Helmholtz integrals for back-
ward propagation.

We start by defining a new domain DA, enclosed by two
surfaces ∂D0 and ∂DA perpendicular to the x3-axis at x3 =
x3,0 and x3 = x3,A, respectively, with x3,A > x3,0, see Figure 5.
Hence, ∂DA is chosen such that it contains the focal point
xA. The two surfaces ∂D0 and ∂DA are together denoted by
∂D0,A. The focusing functions f ±1 ðx, xA, ωÞ, which will play
the role of state A in the reciprocity theorems, obey the
one-way wave equations (64) and (65) (but without the
source terms S±), with parameters α and β in DA equal
to those in the actual state B, and independent of the
x3-coordinate for x3 ≤ x3,0 and for x3 ≥ x3,A. Hence, the
condition for the validity of equation (66) is fulfilled.
Analogous to equation (56), the field-normalised focusing
functions f ±1 ðx, xA, ωÞ are related to the full focusing
function f1ðx, xA, ωÞ, according to

f1 x, xA, ωð Þ = f +1 x, xA, ωð Þ + f −1 x, xA, ωð Þ: ð97Þ

The focusing function f +1 ðx, xA, ωÞ is incident to the
domain DA from the half-space x3 < x3,0 (see Figure 5).
It propagates and scatters in the inhomogeneous domain
DA, focuses at xA on surface ∂DA, and continues as
f +1 ðx, xA, ωÞ in the half-space x3 > x3,A. The back-scattered
field leaves DA via surface ∂D0 and continues as f −1 ðx, xA, ωÞ
in the half-space x3 < x3,0. The focusing conditions at the
focal plane ∂DA are [18]

∂3 f
+
1 x, xA, ωð Þ� 


x3=x3,A
= 1
2 iωβ xAð Þδ xL − xL,Að Þ, ð98Þ

∂3 f
−
1 x, xA, ωð Þ½ �x3=x3,A = 0: ð99Þ

Here, xL,A denotes the lateral coordinates of xA. The oper-
ators ∂3 and the factor ð1/2ÞiωβðxAÞ are not necessary to
define the focusing conditions but are chosen for later conve-
nience. To avoid instability, evanescent waves are excluded
from the focusing functions. This implies that the delta func-
tion in equation (98) should be interpreted as a spatially
band-limited delta function. Note that the sifting property of
the delta function, hðxL,AÞ =

Ð
S
δðxL − xL,AÞhðxLÞdxL, remains

valid for a spatially band-limited delta function, assuming
hðxLÞ is also spatially band-limited.

We now derive single-sided Kirchhoff-Helmholtz inte-
grals for backward propagation. We consider the reciprocity
theorems for field-normalised one-way wave fields (equa-
tions (70) and (71)), with D and ∂D0,1 replaced by DA and
∂D0,A, respectively. For state A, we consider the focusing
functions discussed above; hence, B+

Aðx, ωÞ = B−
Aðx, ωÞ = 0

and P±
Aðx, ωÞ = f ±1 ðx, xA, ωÞ. For state B, we consider the

decomposed actual field, with a point source at xB in the
half-space x3 > x3,0 and source spectrum sðωÞ. The parame-
ters α and β in state B are the actual parameters inside as well
as outside ∂D0,A. First, we consider a source in state B which
emits waves in the positive x3-direction, hence B+

Bðx, ωÞ =
δðx − xBÞsðωÞ, B−

Bðx, ωÞ = 0, and P±
Bðx, ωÞ = P±,+ðx, xB, ωÞ.

Substituting all this into equations (70) and (71) (with
B±
0 = B±), using equations (98) and (99) in the integrals

along ∂DA, gives

P−,+ xA, xB, ωð Þ + χA xBð Þf −1 xB, xA, ωð Þs ωð Þ
=
ð
∂D0

2
iωβ xð Þ

�
∂3 f

+
1 x, xA,ωð Þ� �

P−,+ x, xB, ωð Þ

+ ∂3 f
−
1 x, xA,ωð Þð ÞP+,+ x, xB, ωð Þ

�
dxL,

ð100Þ

P+,+ xA, xB, ωð Þ − χA xBð Þ f +1 xB, xA, ωð Þ� �∗s ωð Þ
=
ð
∂D0

−2
iωβ xð Þ

�
∂3 f

+
1 x, xA,ωð Þ� �∗P+,+ x, xB, ωð Þ

+ ∂3 f
−
1 x, xA,ωð Þf g∗P−,+ x, xB, ωð Þ

�
dxL,

ð101Þ

where χA is the characteristic function of the domain DA.
It is defined by equation (90), with D and ∂D0,1 replaced
by DA and ∂D0,A, respectively. Next, we replace the source
in state B by one which emits waves in the negative
x3-direction, hence B+

Bðx, ωÞ = 0, B−
Bðx, ωÞ = δðx − xBÞsðωÞ,

and P±
Bðx, ωÞ = P±,−ðx, xB, ωÞ. This gives

P−,− xA, xB, ωð Þ + χA xBð Þf +1 xB, xA, ωð Þs ωð Þ
=
ð
∂D0

2
iωβ xð Þ

�
∂3 f

+
1 x, xA,ωð Þ� �

P−,− x, xB, ωð Þ

+ ∂3 f
−
1 x, xA,ωð Þð ÞP+,− x, xB, ωð Þ

�
dxL,

ð102Þ

P+,− xA, xB, ωð Þ − χA xBð Þ f −1 xB, xA, ωð Þf g∗s ωð Þ
=
ð
∂D0

−2
iωβ xð Þ

�
∂3 f

+
1 x, xA,ωð Þ� �∗P+,− x, xB, ωð Þ

+ ∂3 f
−
1 x, xA,ωð Þf g∗P−,− x, xB, ωð Þ

�
dxL:

ð103Þ

Equations (100), (101), (102), and (103) are single-sided
representations for backward propagation of the one-way
wave fields P±,±ðx, xB, ωÞ from ∂D0 to xA. Similar results
have been previously obtained [47, 48], but without decom-
position at xB. An advantage of these equations over equa-
tions (91), (92), (93), and (94) is that the backward
propagated fields P±,±ðxA, xB, ωÞ are expressed entirely in
terms of integrals along the surface ∂D0.

f+(x, x
A
, 𝜔)1

x1
x2

x3

𝜕
A

𝜕 0

A

f+(x, x
A
, 𝜔)1 f−(x, x

A
, 𝜔)1

x3,0

x3,A
x
A

Figure 5: Configuration for the derivation of the single-sided
Kirchhoff-Helmholtz integrals for backward propagation.
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Single-sided representations containing the field-
normalised focusing functions f ±1 ðx, xA, ωÞ find applications,
for example, in reflection imaging methods, which account
for multiple scattering. In these methods, the focusing func-
tions are retrieved from the reflection response at the surface
∂D0, using the Marchenko method [18, 49–51].

We conclude this section by considering a special
case. Suppose that in state B the parameters α and β
are the same as in the Green’s state. Then, P±,±ðx, xB, ωÞ =
G±,±ðx, xB, ωÞsðωÞ for all x. Moreover, P+,±ðx, xB, ωÞ = 0 for
x at ∂D0. Substituting this into representations (100), (101),
(102), and (103), summing the left- and right-hand sides of
these representations separately, dividing both sides by sðωÞ
and using equation (97), we obtain

G xA, xB, ωð Þ + χA xBð Þ2iI f1 xB, xA, ωð Þf g
=
ð
∂D0

2
iωβ xð Þ ∂3

�
f +1 x, xA, ωð Þ

− f −1 x, xAωð Þf g∗�G− x, xB, ωð ÞdxL,

ð104Þ

(with I denoting the imaginary part), where G−ðx,
xB, ωÞ =G−,+ðx, xB, ωÞ+G−,−ðx, xB, ωÞ. Taking the real part
of both sides gives

Gh xA, xB, ωð Þ =R

ð
∂D0

4
iωβ xð Þ ∂3

�
f +1 x, xA, ωð Þ

− f −1 x, xA, ωð Þf g∗�G− x, xB, ωð Þdx,
ð105Þ

where GhðxA, xB, ωÞ is the homogeneous Green’s function,
defined in equation (96). Unlike in equation (95), here the
homogeneous Green’s function is represented by a single
integral along the surface ∂D0, containing field normalised
one-way focusing and Green’s functions.

5. Conclusions

We have considered flux-normalised and field-normalised
decomposition of scalar wave fields into coupled one-way
wave fields. The operators for field-normalised decomposi-
tion exhibit less symmetry than those for flux-normalised
decomposition. Nevertheless, we have shown that reciprocity
theorems can be derived for field-normalised one-way wave
fields in a similar way as those for flux-normalised one-way
wave fields. An additional condition for the reciprocity theo-
rems for field-normalised one-way wave fields is that in one
of the states the derivatives in the x3-direction of the param-
eters α and β vanish at the boundary of the considered
domain. This condition is easily fulfilled when one of the
states is a Green’s function or a focusing function, for which
the parameters α and β can be freely chosen at and outside
the boundary of the domain.

We have used the reciprocity theorems for field-
normalised one-way wave fields as a starting point for deriv-
ing representation theorems for field-normalised one-way
wave fields in a systematic way. We obtained representations
for forward and for backward propagations of one-way wave
fields. These representations account for multiple scattering.

Whereas the Kirchhoff-Helmholtz integrals for forward
propagation can be easily transformed into single-sided rep-
resentations, this transformation is less straightforward for
the Kirchhoff-Helmholtz integrals for backward propagation.
By replacing the Green’s functions by focusing functions, we
obtained single-sided representations for backward propaga-
tion of field-normalised one-way wave fields. These represen-
tations are particularly useful to retrieve wave fields in the
interior of a domain in situations where measurements can
be carried out only at a single surface. An important applica-
tion is reflection imaging, accounting for multiple scattering.
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